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Abstract: An integrated navigation system coupled with additional sensors can be used in the
Micro Unmanned Aerial Vehicle (MUAV) applications because the multi-sensor information is
redundant and complementary, which can markedly improve the system accuracy. How to deal with
the information gathered from different sensors efficiently is an important problem. The fact that
different sensors provide measurements asynchronously may complicate the processing of these
measurements. In addition, the output signals of some sensors appear to have a non-linear character.
In order to incorporate these measurements and calculate a navigation solution in real time, the
multi-sensor fusion algorithm based on factor graph is proposed. The global optimum solution
is factorized according to the chain structure of the factor graph, which allows for a more general
form of the conditional probability density. It can convert the fusion matter into connecting factors
defined by these measurements to the graph without considering the relationship between the sensor
update frequency and the fusion period. An experimental MUAV system has been built and some
experiments have been performed to prove the effectiveness of the proposed method.

Keywords: micro unmanned aerial vehicle; multi-sensor information fusion; factor graph;
probability density

1. Introduction

In recent years, the use of low-cost miniature unmanned aerial vehicles (MUAVs) for civilian
applications has evolved from imagination to actual implementation. Systems have been designed
for environmental monitoring, search and rescue, mapping, and mining and post seismic emergency
management [1–5]. In order to obtain an acceptable cost/benefit ratio of these systems, there have
been many techniques to reduce the cost including the aspects of the sensor, the platform, and the
algorithm [6].

However, cost reduction of the sensor can lead to lower stability and accuracy, which is directly
related to the reliability of the system. Thus, dependence on a single sensor cannot satisfy the demand
and makes it difficult to obtain the accurate response to external environment. Through integrated
usage of multiple-source information, people can get more objective and intrinsic knowledge of a
certain target [7]. As a matter of fact, multi-sensor integrated navigation is becoming a hot area of
research. Many studies focus on the integration of the GPS/INS system with additional sensors such as
magnetometers, cameras, ultrasonic sensors, laser scanners, barometers, or earth/sun/star sensors [8].
The combination scheme can make use of all information from these sensors and overcome their
limitations, which allows for the provision of reliable navigation solutions [9].
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In order to achieve the optimal solution in the integrated navigation, the fundamental problem is
information fusion [10]. In general, multi-sensor information fusion is a form of sensor integration,
which involves combining the outputs of different sensor systems to obtain a better estimate of
what they are sensing according to some fusion rules [11,12]. Nowadays, multi-sensor data fusion
has attracted widespread attention, its theory and methods have been applied to a lot of research
fields [13,14]. The conventional approach employed in reference [15] uses the centralized Kalman
filtering method which processes all of the measurements at a central processor and provide a
global optimal estimate. The advantage of this method is that it involves minimal information
loss. However, the centralized filter can result in a large computational burden and poor fault
tolerance due to overloading of the filter with too many data [16]. To deal with these problems,
decentralized information fusion methods [17–19] have been developed in fields such as distributed
control systems and integrated navigation. In decentralized fusion, a processor at the center of the
network is used to manage all nodes. The decentralized fusion algorithms are based on the global
optimality criterion, which has reasonable fusion accuracy, good fault-tolerance, and lower computing
effort requirements. Among them, the federated Kalman filtering algorithm [20] and the parallel
Kalman filtering algorithm [21] are representative. However, if the dimensions of the measurement
vector are too high, the order of the measurement noise covariance matrix complicates the calculation
of an inverse. Dempster-Shafer theory (DST) is an efficient method to deal with incomplete data
coming from different information sources in data fusion [22]. It does not rely on any prior knowledge
of the probability distribution. Thus, how to combine the information from different sources, which
may be conflicting, becomes a challenging problem in complex decision making. The method referred
in reference [23] focuses on the research on sequential decentralized filters. This method saves a great
deal of computing time, especially for the systems with some measurement delays within one sampling
period, where the updates are operated without waiting for all the data [24]. However, in the practical
applications, an MUAV may be equipped with a set of multi-rate sensors, and these sensors generally
operate at different frequencies. So it may complicate the processing of these measurements [25]. In
addition, the output signals of some sensors appear non-linear in character. How to incorporate these
measurements and calculate the optimal navigation solution by fusing all the available information
sources has not been fully investigated.

In this paper, based on the principle of the probability graph model, a new approach for
information fusion in multi-sensor integrated navigation systems is proposed. At first, the structure
of the micro unmanned aerial vehicle system is described and the model for the navigation system
is built. Then the details about information fusion method based on the factor graph are presented.
An experimental system has been built and experimental results have been designed to prove the
effectiveness of the proposed method.

2. System Overview

In this section, the hardware structure of the MUAV system is described. The MUAV has the
characteristics of small size and light weight. A multi-sensor navigation system plays a key role in
the MUAV system. According to the characteristics of different navigation sensors, the hardware is
designed to enhance the expandability of the system. Considering the flexibility and high efficiency
of the hardware structure, dual-redundant sensors are used in order to improve performance of the
navigation system. The redundant sensors are beneficial for monitoring the health of each sensor if
one sensor fails to work. The hardware also consists of the Cortex-M4 core ARM processor, RC signal
processing, motor drive circuit, SD card data storage, and the communication interface.

The MUAV is equipped with a variety of sensors, including the GPS receiver, optic flow sensor,
sonar sensor, Xbee wireless communication module, electron speed regulator, and motors, etc. Different
sensors and their performance are shown as follows.
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• MPU-6000 inertial sensor, including a three-axis MEMS gyroscope and a three-axis accelerometer.
• HMC5983 magnetometer enables 1◦ to 2◦ compass heading accuracy with temperature

compensation.
• MS5611 barometer module, with an altitude resolution of 0.1 m.
• URM37 sonar module provides 0.04 m–5 m non-contact measurement function, the ranging

accuracy can reach to 1 cm.
• Ublox LEA 6H GPS receiver, with the position accuracy of 2 m.
• Optical flow sensor processing the pixel resolution of 752× 480 at 120 (indoor) to 250 Hz (outdoor).

The ground control station used is the advanced open-source ground Control Station software,
which can realize 2/3D aerial maps with drag-and-drop waypoints. The SPI bus is used for interfacing
the sensor to our microcontroller which makes the measurements available to our ground control
station. The hardware structure of the MUAV is shown in Figure 1.
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Figure 1. System hardware structure of the MUAV. 

3. System Model for the Navigation System 

In order to accomplish the navigation, the system equations of the system can be established. In 
this system, the local North-East-Down frame is selected as navigation frame. 

3.1. State Model of the System 

The state variable of the micro unmanned aerial vehicle system can be chosen as follows. 

( ) T T T T T
a gt     X p v q  (1)

where  Tx y zp  represents the relative position vector to the desired hover position 

navigation position, 
T

x y zv v v   v  represents the velocity vector,  0 1 2 3

T
q q q qq  

represents the attitude quaternion, 
x y z

T

a a a a
        is the acceleration random walk term, 

and 
x y z

T

g g g g
        is the gyro random walk term. 

The continuous time kinematic navigation equations are given by: 

Figure 1. System hardware structure of the MUAV.

3. System Model for the Navigation System

In order to accomplish the navigation, the system equations of the system can be established.
In this system, the local North-East-Down frame is selected as navigation frame.

3.1. State Model of the System

The state variable of the micro unmanned aerial vehicle system can be chosen as follows.

X(t) =
[

pT vT qT ∇T
a ∇T

g

]
(1)

where p =
[

x y z
]T

represents the relative position vector to the desired hover position

navigation position, v =
[

vx vy vz

]T
represents the velocity vector, q =

[
q0 q1 q2 q3

]T

represents the attitude quaternion, ∇a =
[
∇ax ∇ay ∇az

]T
is the acceleration random walk term,

and ∇g =
[
∇gx ∇gy ∇gz

]T
is the gyro random walk term.
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The continuous time kinematic navigation equations are given by:

.
p = v
.
v = Cn

b · (̃f
b −∇a −ωa) +

[
0 0 1

]T
g

.
q = 1

2 q⊗ (w̃b
ib −∇g −ωg).

∇a = ωba.
∇g = ωbg

(2)

where,
[
ωT

p ωT
v ωT

ba
ωT

bg
ωT

a ωT
g

]
are the gaussian white noises.

3.2. Measurement Model of the System

In the MUAV navigation system, the measurement model should be established below.

3.2.1. GPS Measurement Equation

The GPS receiver measures the MUAV’s velocity and position. Hence, the GPS measurement
equation is described as Equation (3).

pgps = p +ω
gps
p

vgps = v +ω
gps
v

(3)

where pgps, vgps are measurements of the GPS receiver; and ω
gps
p , ωgps

v are the gauss stochastic
measurement noise terms.

3.2.2. Barometric Altimeter Measurement Equation

The barometric altimeter is used to measure barometric pressure and translate it into an output of
voltage ranging from zero to five volts. The barometric errors vary in accordance with the environment.
The observation model of the barometer sensor is given by

hpres = h + ωpres (4)

where hpres is the altitude measured by the barometer, h is the true altitude, and ωpres is the white noise
of the barometer.

The height measured by the barometric altimeter is relative to the sea level, while the height
measured by the GPS receiver is based on the WGS84 coordinate system. There are some differences
between them. In practical application, the height has to be converted to a uniform standard and then
fused. The sea level parameter correction method is often used to compensate the barometric altimeter
bias. Actual sea level parameters can be calculated by using the atmospheric parameters of the location
when the altitude is known. With the modified sea-level parameters, the barometric altimeter bias will
be compensated.

3.2.3. Magnetometer Measurement Equation

The magnetometer is one of the common sensors used in MUAV. It is lightweight and reliable.
It can provide the direction of the magnetic field, which can be used as aiding information.
The magnetometer output mb is not influenced by the maneuvering acceleration. Thus, the
well-compensated magnetometer data are used to measure the attitude matrix Cb

n to enhance the
accuracy of the attitude estimation. The magnetometer measurement equation is described as
Equation (5).

mb = Cb
n ·mn +ωm (5)
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Cn
b =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (6)

where mn is the magnet vector in navigation frame. Supposing the local magnetic declination and

magnetic inclination are θdec and θinc respectively, then mn =

 cos θinc cos θdec
cos θinc sin θdec
− sin θinc

.

3.2.4. Optical Flow Measurement Equation

The downward-looking visual system is called the PX4-FLOW sensor, which is an open source
embedded metric optical flow CMOS camera designed for indoor and outdoor applications. The
raw pixel movement data are used to calculate the horizontal velocity. The observation model of the
optic-flow sensor is given by

voptic = kv + ωoptic (7)

where voptic is the velocity acquired by the optic-flow sensor, v is the true horizontal velocity, ωoptic is
the white noise of optic-flow observation, and k represents the coefficient determined by the camera
focal length and altitude of the MUAV.

3.2.5. Sonar Measurement Equation

The sonar sensor and the barometric altimeter are often used to measure the altitude in the MUAV
system. Because the sonar sensor has advantages of high precision, narrow measuring range and good
stability, it can also meet the demand of indoor or low altitude flight. The barometric altimeter can be
easily affected by environment, but it has a wide measuring range. So it can be used in the outdoor
or high altitude flight. In some specific environments, these two kinds of sensors can be used in
combination to acquire high reliability. The sonar measurement equation is described as Equation (8).

y = kx + b (8)

where y is the output of the sonar, x is the true distance, k represents the coefficient of the first order, and
b is the fixed distance error. The error coefficients k and b are acquired by laboratory calibration tests.

4. Information Fusion Method Based on the Factor Graph

The factor graph is a graphic model that encodes the conditional probability density among
unknown variable nodes and the received measurements. The global optimum solution is factorized
according to the chain structure of the factor graph, which allows for a more general form of the
conditional probability density. It can convert the fusion matter into connecting factors defined by
these measurements to the factor graph without considering the relationship between the sensor
update frequency and the fusion period.

4.1. Factor Graph Formulations

The probability graph model is a kind of graph model which can express the joint probability
distribution of random variables. The factor graph is a bipartite graph representing the factorization
structure of a multivariate function into a product of functions (factors), each involving only a subset
of the variables [26]. There are two kinds of nodes in the graph. The variable node X represents
the variable of the global multivariate function, and the factor node F represents the factor in the
factorization. The variable node is connected to a factor node by an edge E [27]. The factor graph is
defined as

G = (F, X, E) (9)
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where Xi ⊆ {x1, x2, · · · , xm} is the subset of the variable nodes xj(j = 1, 2, ..., m), m is the number of the
variable node, F = { f1(X1), f2(X2)..., fn(Xn)} represents a set of the factor nodes fi(Xi)(i = 1, 2, ..., n),
and n is the number of the factor node. Edges E =

{
eij
}

denotes the set of links of the factor graph,
which can exist only between factor nodes and variable nodes. The factor graph G defines one
factorization of the function as

g(X) = ∏
i

fi(Xi) (10)

A factor graph can be used as a probabilistic graphical model which represents a joint probability
mass function of random variables. Each variable node represents a set of the random variables. Each
factor represents the joint probability function of a subset of random variables, which is shown as a
box or a circle. For example, Figure 2 can be factored as

g(u, w, x, y, z) = f1(u, w, x) f2(x, y, z) f3(z) (11)
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The factor vertex f 1, f 2, f 3 are the local functions. Due to the variable vertex u, w, x are connected
to f 1, the factor vertex f 1 involves the independent variables u, w, x. In a similar way, the factor vertex
f 2 involves the independent variables x, y, z. The factor vertex f 3 involves the independent variable z.

4.2. Fusion Algorithm with the Factor Graph

For our application, the factor graph framework model is established for the MUAV navigation
system. This graph-based optimization algorithm is particularly developed to solve the optimization
problem for the current state prediction with asynchronous multi-sensor data. The main purpose is to
calculate the best navigation solution by using the available information sources.

The state variable of the MUAV system X is described in Section 3.1. Xk ∈ Rn is the state variable in
the current time tk. Given the initial distribution p(X0), Xk can propagate with the probability density
p(Xk|Xk+1 ). Zk ∈ Rm represents the independent measurement in the current time tk. The Bayesian
estimation contains two parts, the prediction and the update. The prediction concerns the prior density
of the state with the state model. The update process is to modify the prior density obtained by the
previous step by using the newest measurement in order to obtain an a posteriori probability density
p(X0:k|Z1:k ). Our goal is to solve the a posteriori probability density in the navigation system [28].

Given the observations up to time k, the global conditional joint probability density function
p(X0:k|Z1:k ) for the state vector X0:k is the marginal function. According to the Bayes formula,
p(X0:k|Z1:k ) can be factorized as:
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p(X0:k|Z1:k ) =
p(Zk |Xk )p(Xk |Xk−1 )

p(Zk |Z1:k−1 )
· p(X0:k−1|Z1:k−1 )

=
p(Zk |Xk )p(Xk |Xk−1 )

p(Zk |Z1:k−1 )
· p(Zk−1|Xk−1 )p(Xk−1|Xk−2 )

p(Zk−1|Z1:k−2 )

·p(X0:k−2|Z1:k−2 )

=
p(Zk |Xk )p(Xk |Xk−1 )

p(Zk |Z1:k−1 )
· p(Zk−1|Xk−1 )p(Xk−1|Xk−2 )

p(Zk−1|Z1:k−2 )
· ...

· p(Z1|X1 )p(X1|X0 )
p(Z1)

· p(X0)

=
k

∏
i=1

p(Zi |Xi )p(Xi |Xi−1 )
p(Zi |Z1:i−1 )

p(X0)

(12)

where p(X0) represents all of the available prior information. This global conditional probability
density function is proportional to the likelihood probability density and the state transition prior
probability in the numerator.

p(Zi|Xi )p(Xi|Xi−1 )

p(Zi|Z1:i−1 )
p(X0) ∝ p(Zi|Xi )p(Xi|Xi−1 ) (13)

According to the maximum a posteriori criterion, the state variable with the maximum a posteriori
probability density is considered as the estimation.

X̂MAP
i = argmaxp(Xi|Zi ) (14)

Equation (12) can be written as

k

∏
i=1

p(Zi|Xi )p(Xi|Xi−1 )

p(Zi|Z1:i−1 )
p(X0) ∝

k

∏
i=1

p(Zi|Xi )p(Xi|Xi−1 ) (15)

To calculate the X̂MAP
i in Equation (14), the right side of Equation (15) will be maximized. For

Gaussian noise distributions, the probability density p(Zi|Xi )can be calculated as:

p(Zi|Xi ) =
1

(2π)k/2(R)1/2 exp
{
−1

2
[Zi − hi(Xi)]

TW−1[Zi − hi(Xi)]

}
(16)

where W is the variance matrix, hi() is measurement function, and Zi is the actual measurement. For
the above-mentioned reasons, Equation (17) should be minimized as the following function

J = [Zi − hi(Xi)]
TW−1[Zi − hi(Xi)] = min (17)

For linear measurement, the optimal solution X̂i can be solved by using the method of seeking
extreme. For nonlinear measurement, it can be solved by using Newton iteration method. When
adding the new factor node Zx,i to the graph, the measurements of different sensors are used to
calculate the optimal solution.

By the similar method, the probability density p(Xi|Xi−1 ) can be calculated as the same way. The
probability density p(Xi|Xi−1 ) can be calculated as

p(Xi|Xi−1 ) =
1

(2π)k/2(P)1/2 exp
{
−1

2
[Xi − X̂i(Zi)]

T P−1[Xi − X̂i(Zi)]

}
(18)

where P is the variance matrix. Equation (19) should be minimized as the following function:

J = [Xi − X̂i(Zi)]
T P−1[Xi − X̂i(Zi)] = min (19)
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The estimation of the state X̂i/i−1 can be solved by state vectors propagating. When adding the
new variable Xi+1 to the graph, the IMU measurement is used to calculate the state transition matrix to
predict the values for Xi+1. In the factor graph. Let f () represent the local functions of the probability
density function. Equation (12) can be written as

k

∏
i=1

p(Zi|Xi )p(Xi|Xi−1 )

p(Zi|Z1:i−1 )
p(X0) ∝

k

∏
i=1

f (Zi|Xi ) f (Xi|Xi−1 ) (20)

where f (Zi|Xi ) and f (Xi|Xi−1 ) are the local functions associated with the factor nodes Px,i and Zx,i in
Figure 3, respectively.
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The factor graph model of the navigation system is dominated by the two local functions f (Zi|Xi )

and f (Xi|Xi−1 ). By connecting the variable nodes associated with each function to the factor node,
the factor graph can be constructed. The factor graph method allows for a more general form of the
conditional probability density.

4.3. Factor Graph Modeling

Not all of the sensors can be updated at the same time. In general, the frequencies of the IMU
measurements are very high, which are different from other sensors. For example, the update frequency
of GPS measurement is slower than IMU, which can be described in Figure 4.
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Figure 4. The factor graph containing the GPS measurement.

Variable node Xi represents the state variable of the system. fx,i(IMU) denotes the updating of the
variable node with the IMU measurement Px,i(IMU). The factor IMU is defined as the following form

fx,i(IMU) = p(Xi+1|Xi ) (21)

It connects two different variable nodes Xi and Xi+1 in ti and ti+1 moments, respectively.
The IMU measurement is used to calculate the state transition matrix to predict X̂i+1/i by state
vector propagation.



Sensors 2017, 17, 641 9 of 16

On the other hand, fx,i(GPS) denotes the factor node when the system receives the measurement
Zx,i(GPS). The factor GPS is defined as the following form

fx,i(GPS) = p(ZGPS
i |Xi ) (22)

The estimation of Xk can be solved by using the method of seeking extreme through the probability
density function p(ZGPS

i |Xk ). It can be calculated as Equations (16) and (17). With this model, we can
calculate the minimization of the local functions f (Zi|Xi ) and f (Xi+1|Xi ) to acquire the optimal state
at ti moment.

When the system receives the magnetic measurement Zx,i+1(Magnetic sensor), the factor node
fx,i+1(Magnetic sensor) will be added into the graph. Because the update frequency of the magnetic
sensor is faster than that of GPS, the magnetic sensor nodes appear many times during the update of
GPS. It is described in Figure 5.
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The update frequencies of different sensors in the MUAV are different. In a similar way, the
factor graph model describes the characteristics of the MUAV navigation system, which are shown in
Figure 6.
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Figure 6. The multi-sensor fusion framework based on factor graph.

This model enables us to handle situations where different sensors provide measurements at
different times and at different time intervals. When the measurement equation of the new sensor is
nonlinear, the method can simply add new factors to the graph. If a sensor becomes unavailable due
to various reasons, the system simply stops adding the associated factors to the graph. There is no
need for a special procedure.

To implement the factor graph method, the steps are introduced as follows:

Step 1: Set the initial parameters and define a state-space vector. New factors fnew = {} and new
variables Xnew = {} are initialized. The probability density function p(X0) should be set up
according to the parameters of the system.

Step 2: When the system receives the IMU measurement f̃
b
, w̃b

ib, at ti moment, the factor node
Px,i(IMU) will be added into the graph. It connects two different variable nodes Xi and
Xi+1 in ti and ti+1 moments, respectively. The IMU measurement is used to calculate the state
transition matrix to predict X̂i+1/i by state vector propagation.
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• Position is calculated by pi+1 = pi + vi · ∆t;

• Velocity is calculated by vi+1 = vi + [Cn
b · (̃f

b −∇a −ωa) +
[

0 0 1
]T

g] · ∆t;

• Attitude is calculated by qi+1 = qi + [ 1
2 qi ⊗ (w̃b

ib −∇g −ωg)] · ∆t.

Step 3: Add Xi+1 =
[

pi+1
T vi+1

T qi+1
T ∇T

a ∇T
g

]
to Xnew = {};

Step 4: When the system receives the measurement Zx,k (magnetic, GPS, sonar or optic flow, etc.) at tk
moment, the factor node fx,k(magnetic, GPS, sonar or optic flow, etc.) will be added into the
graph. Add fx,k to fnew = {}.

Step 5: The optimization problem encoded by the factor graph is solved by Gauss–Newton iterations.
Z is the set of all measurements, and X represents the set of all variables. X̂ is an initial estimate
of X. According to Equation (17), the increment ∆X needs to be calculated, which should
satisfy Equation (23).

argmin
∆X

‖J(X̂)∆X− r(X̂)‖2 (23)

where J(X̂) is the Jacobian matrix and r(X̂) is the residual of all measurements.

Calculating the increment ∆X requires factoring the Jacobian matrix into an equivalent upper
triangular form, such as QR factorization. Once the increment ∆X is calculated, the new estimate
X̂ + ∆X can be obtained. It is set to be the initial estimate in the next iteration. For an example of the
system, the factor graph in Figure 7a contains the following four factors which are expressed in the
box. The system in Figure 7b adds a new factor, a block row is added in the Jacobian matrix, which is
denoted as ×.
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The square root information matrix R in Figure 7a is as follows, which is obtained by QR
factorization of the Jacobian matrix:

X1 X2 X3

R =

 × ×
× ×
×

 (24)
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When the new factor node is added in Figure 7b, the corresponding square root information
matrix R’ can be changed as follows:

X1 X2 X3 X4

R′ =


× ×
× ×
× ×
×

 (25)

The modified value, which is different from R, is denoted as ×. It can be seen that the first two
block rows remain unchanged. So, there is no need to recalculate these values.

Step 6: Determine whether the new measurement is received by the system. Return to Step 2.

5. Experiment and Discussion

5.1. Simulation and Analysis

In order to verify the performance of the factor graph method proposed in this paper, the
simulation and analysis are carried out with different methods. In the simulation, a typical flight
trajectory has been designed. We assume a MUAV equipped with many sensors, including IMU, GPS
receiver, magnetometer, and barometer. IMU sensors produce measurements at a high rate while other
sensors generate measurements at lower rates. The flight time is 600 s, and the initial position is [106.5◦,
29.53◦, 25 m]. Parameters of navigation sensors are shown in Table 1.

Table 1. Parameters of navigation sensors.

Sensor Error Value Frequency

IMU

Gyro constant drift 10◦/h

50 Hz
Gyro first-order Markov process 10◦/h
Gyro white noise measurement 10◦/h

Accelerometer first-order Markov process 1 × 10−4 g

GPS
Position error noise 10 m, 10 m, 20 m

1 HzVelocity error noise 0.1 m/s, 0.1 m/s, 0.1 m/s

Magnetometer Heading error noise 0.2◦ 20 Hz

Barometer Height error noise 5 m 10 Hz

The extended Kalman filter (EKF) has been used widely in integrated navigation systems, which
linearizes all nonlinear models. In the traditional EKF algorithm, the state propagates with the
IMU update rate, and performs a measurement update whenever the measurements are available.
The factor graph method is compared with traditional EKF method in the simulation. The flight track
is shown in Figure 8. The five-pointed star represents the starting point. The flight altitude remains
the same.

Monte-Carlo simulations have been performed and the RMSE performances are used to compare
the accuracy of different algorithms. After 100 Monte Carlo simulations, the average RMSE of both
methods are given in Table 2. Compared with the ground truth data from the flight track, Figure 9a,b
illustrates the average RMSE of the position error and the velocity error generated by these two
algorithms, respectively.
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From the above simulation results, the average RMSE performances of the EKF and the factor
graph filter are compared in Table 2. The improvement of the factor graph filter is obvious. The
corresponding accuracy in the velocity and position of the factor graph method improve as well.
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Table 2. Statistical error contrast between two schemes.

Error Type
Average RMSE in the Position

Error (units: m)
Average RMSE in the Velocity Error

(units: m/s)

Longitude Latitude Height Eastern Northern Vertical

Extend Kalman filter 1.212 1.205 0.703 0.141 0.142 0.049

Factor graph filter 1.043 1.035 0.628 0.121 0.115 0.034

5.2. MUAV Flight Test and Results

Outdoor autonomous flight tests on real data have been carried out in a playground. All of the
sensors described in Section 2 are mounted on the vehicle. To evaluate the navigation performance,
a more precise navigation system which has a differential GPS/INS system on the autopilot board
is used as the reference system. For the multi-sensor navigation, GPS positioning is used in single
point mode. We make use of the ARM processor with highly optimized C language to ensure real-time
performance. The data are captured from the autopilot board of the MUAV during the flight. The total
flight time was about 500 s.

The MUAV system in the test flight experiment is shown in Figure 10a. Autonomous flights
include takeoff, waypoint, returning, and landing modes. The horizontal flight track compared with
the expected route is presented in Figure 10b. System dynamic parameters are shown in Table 3.
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Figure 10. Square shaped outdoor trajectory in the flight experiment of the MUAV. (a) Test flight
experiment of the MUAV; (b) Square shaped trajectory.
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Table 3. System dynamic parameters.

Type Parameters Item Unit

Machine size 608 × 608 × 243 mm
Takeoff weight 950 g

Maximum payload <580 g
Flight time 15 min

The expected route with four waypoints is the pre-set track which is uploaded in the MUAV
system before taking off. The circles of the four corners in the square represent the waypoints,
and the default waypoint radius is configured to 3 m. This means that if the vehicle reaches the
waypoint within the default waypoint radius, it will turn to the next waypoint. The flight track is
obtained by the data of the MUAV navigation system. It can be seen that the vehicle can fly along the
expected route. Figure 11a,b illustrates the performance of the position error and the velocity error
generated by these two filters.
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The position and velocity errors of the factor graph filter and EKF are compared in Table 4. It can
be seen that the factor graph method has higher precision than EKF. The RMSE results reduce to less
than 80%. Better results of the system by using the factor graph filter method can be obtained, and the
accuracy level can meet the requirements of the MUAV navigation system.

Table 4. Statistical error contrast between two filters.

Error Type
RMSE in the Position Error

(units: m)
RMSE in the Velocity Error

(units: m/s)

Longitude Latitude Height Eastern Northern Vertical

Extend Kalman filter 1.821 1.451 0.652 0.088 0.086 0.061

Factor graph filter 1.288 1.143 0.519 0.065 0.061 0.049

6. Conclusions

In this paper, a multi-sensor information fusion method based on the factor graph topology is
proposed. The global optimum solution is factorized according to the chain structure of the factor
graph. It can convert the fusion matter into connecting factors in the factor graph, which allows
for a more general form of the conditional probability density. It can convert the fusion matter
into connecting factors defined by these measurements to the factor graph without considering the
relationship between the sensor update frequency and the fusion period. According to the factor graph
theory, the maximum a posteriori probability density is derived in the form of the factor node and
the variable node. By selecting the appropriate cost function of these nodes, the optimal navigation
solution of the system can be calculated. An experimental MUAV system has been built, and some
experiments have been performed to prove the effectiveness of the proposed method.
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