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Abstract: A Kalman filter approach for combining the outputs of an array of high-drift gyros to
obtain a virtual lower-drift gyro has been known in the literature for more than a decade. The success
of this approach depends on the correlations of the random drift components of the individual
gyros. However, no method of estimating these correlations has appeared in the literature. This
paper presents an algorithm for obtaining the statistical model for an array of gyros, including the
cross-correlations of the individual random drift components. In order to obtain this model, a new
statistic, called the “Allan covariance” between two gyros, is introduced. The gyro array model
can be used to obtain the Kalman filter-based (KFB) virtual gyro. Instead, we consider a virtual
gyro obtained by taking a linear combination of individual gyro outputs. The gyro array model is
used to calculate the optimal coefficients, as well as to derive a formula for the drift of the resulting
virtual gyro. The drift formula for the optimal linear combination (OLC) virtual gyro is identical to
that previously derived for the KFB virtual gyro. Thus, a Kalman filter is not necessary to obtain a
minimum drift virtual gyro. The theoretical results of this paper are demonstrated using simulated
as well as experimental data. In experimental results with a 28-gyro array, the OLC virtual gyro has a
drift spectral density 40 times smaller than that obtained by taking the average of the gyro signals.

Keywords: virtual gyro; Allan variance; inertial sensor

1. Introduction

The concept of combining the outputs of an array of high-drift sensors to produce a virtual
low-drift sensor was introduced by Bayard and Ploen [1,2], who used a Kalman filter to produce the
virtual sensor. They showed, through analysis and simulation examples, that the reduced drift of the
virtual sensor depends on the drift components of the individual sensors being “favorably correlated”
(i.e., having some negative correlation). In order to implement the Bayard approach it is necessary to
estimate these correlations from sensor data, but no such estimation algorithm has appeared in the
literature. Several researchers have attempted to implement the Bayard approach (see [3–6]). However,
none of these efforts were able to implement the full Bayard algorithm because they were not able to
estimate the correlations between the drift components of the individual sensors. In this paper we
present an algorithm for estimating these correlations.

In addition to providing the Kalman filter algorithm for combining sensors, Bayard and Ploen
also derived a mathematical formula for the drift of their optimal virtual sensor. This formula provides
a lower bound on the drift of any method of combining the sensor outputs. In this paper we consider
obtaining a virtual sensor by taking a linear combination of the individual sensor outputs. We derive a
formula for computing the optimal coefficients and also derive a formula for the drift of the resulting
virtual sensor. Our formula for the drift of the optimal linear combination virtual sensor is identical to
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Bayard and Ploen’s formula for the drift of the Kalman filter-based virtual sensor. Because the optimal
drift can be obtained using only a linear combination of sensor outputs, we conclude that a Kalman
filter is unnecessary for this problem.

The performance of a rate gyro or accelerometer is influenced by a number of factors including
scale-factor errors, quantization effects, temperature effects, random drift, and additive noise.
A comprehensive account of all of these factors for gyros is found in an IEEE Standard [7]. Among the
many possible noise sources mentioned, the additive noise and random drift are often the dominant
sources. In our experience, this is the case for tactical-grade MEMS sensors. Other researchers have
made the same observation [8].

When an array of multiple sensors is considered, there may be correlations in the statistical
properties of one sensor to another that can be exploited to reduce the drift. In this paper, we assume
that the additive noise terms for different sensors are uncorrelated but that there may be correlations
between the drift components of different sensors. This paper provides an algorithm to estimate these
correlations from a finite amount of calibration data. We consider an array of gyros, but the modeling
algorithm applies also to an array of accelerometers [9,10]. The organization of this paper, as well as its
relationship to previous work, is as follows.

In Section 2.1 the standard single-gyro model for additive noise (ARW) and random drift (RRW)
is introduced, along with the concept of Allan variance, which is computed in discrete-time using
sampled gyro signals. The approach described here is based on the computed Allan variance of a
single gyro, but is not based on the usual method of fitting lines to the Allan variance plot [7,11].
It was shown in [12] that this line-fitting method is a statistically inconsistent estimator. In [13] a
modification of Allan variance using sliding windows was presented in order to produce a better plot.
However, this modification is not necessary for the statistical modeling procedure used here because
the procedure automatically deemphasizes inaccurate Allan variance points using theoretical formulas
for the variance and covariance of computed Allan variance points. Other approaches to modeling
individual gyros are presented in [14,15]. However, these approaches have not been extended to
modeling the correlations in an array of gyros. In [16], the formulas of [10] were used to model triaxial
rate gyros. However, the three gyro signals were assumed to be uncorrelated.

Section 2.4 presents a model for the signals in a two-gyro array, and introduces a new statistic that
we call the Allan covariance between two gyros. The model for the correlation between two gyros can
be extended to an array of many gyros by modeling all pairwise combinations of gyros. The statistical
properties of a gyro array are described by the spectral density matrices, R and Q of the additive noise
and random drift components of the gyro signals.

Section 2.7 extends to 2-gyro model to an array of gyros and derives an algorithm for estimating
the off-diagonal elements of the Q matrix. Also derived is a formula for the coefficient vector c∗, which
gives the optimal linear combination of gyro outputs to produce a scalar virtual gyro signal.

Section 2.9 presents simulation results for a 6-gyro array. Signals are generated using given Q and
R matrices. Estimates Q̂ and R̂ are obtained from a finite amount of data using the algorithm from
Section IV. The matrix Q̂ matrix is used to calculate the coefficients for the optimal linear combination
of gyro signals. The theoretical formula for the drift of the virtual gyro is confirmed by simulations.

Section 2.11 presents experimental results with an array of 28 MEMS gyros. The algorithm given
in Section 2.7 is used to estimate the Q and R matrices for this gyro array and to compute the optimal
coefficient vector c∗. The RRW spectral density of the resulting virtual gyro is calculated and found to
be over 40-times smaller than that for a virtual gyro obtained by averaging the gyro outputs.

2. Results

2.1. Single-Gyro Model for Noise and Drift

The output signal, y(t), of a gyro in the absence of motion will be referred to as a calibration signal,
and can be described by the following equations:
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y(t) = b(t) + n(t)
ḃ(t) = w(t)

(1)

where b(t) is the bias (random drift), n(t) is observation noise, which is assumed to be white noise
with spectral density R, and w(t) is another white-noise process described below in Equation (2). In
the discrete-time treatment given below it is assumed that the gyro signal is lowpass filtered to a
bandwidth B Hz. For rate gyros, the bias term b(t) is referred to as rate random walk or RRW, and the
additive noise term n(t) is referred to as angle random walk or ARW.

The bias term b(t) is a random process consisting of the integral of a white noise process w(t)
with spectral density Q. The integral creates a nonstationary random process whose variance increases
with time, which provides a good model for the drift of a sensor. The bias signal is modeled as follows

ḃ(t) = w(t), E[w(t1)w(t2)] = Qδ(t1 − t2). (2)

The bias and noise terms are characterized by the numbers Q and R, respectively.
Allan variance, denoted a(τ), is computed for different values of a smoothing parameter, τ.

In order to compute the Allan variance associated with a record of calibration data, the signal is
partitioned into N τ-second intervals.

Let ȳk, k = 1, · · · , N be the average values of the N nonoverlapping τ-second intervals of
calibration data. Then the Allan variance statistic for this data set is defined as

a(τ) =
1

2(N − 1)

N−1

∑
k=1

(ȳk+1 − ȳk)
2. (3)

The sensor signal is sampled with a sampling interval of T seconds to obtain the discrete-time signal

yk = y(kT), k = 1, · · · , N. (4)

Consider the statistical characterization of the sampled noise and drift components of the sensor signal.
The noise term n(t) is modeled as bandlimited white noise with spectral density R and bandwidth

B Hz. If the noise term is sampled with sampling interval T = 1/(2B) second, the noise samples have
variance R/T and noise samples at different sampling instants are uncorrelated. That is,

E[n(k1T)n(k2T)] =
R
T

δ[k1 − k2], (5)

where δ[k] = 1 if k = 0 and zero otherwise.
The drift term, b(t), is modeled as integrated white noise, as shown in Equation (2). The sampled

bias term may be written as:

yk = b(kT) =
∫ kT

0
w(τ)dτ. (6)

Let the random variables zk, k = 1, · · · , M, be the averages of M nonoverlapping length-m
segments of data, where M = N/m:

z1 =
y1 + · · ·+ ym

m
, · · · , zM =

y(M−1)m+1 + · · ·+ ymM

m
. (7)

In this analysis, the Allan variance smoothing parameter, τ, is τ = mT.
The Allan variance statistic is computed from a finite record of sampled data as follows:

a[m] =
1

2(M− 1)

M−1

∑
k=1

(zk+1 − zk)
2. (8)
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2.2. Mean and Covariance

The results in this subsection were derived in [10]. The mean values for the ARW and RRW
components of a[m] are:

ARW: E(a[m]) =
R

mT
, RRW: E(a[m]) =

Q(mT)
3

. (9)

Consider now the Allan variances computed from a data record of N samples at two values of m,
say m1 and m2, where m2 = p ·m1 for some integer p ≥ 1. We require that M1 and M2 defined as

M1 =
N
m1

, M2 =
N
m2

(10)

are both integers. For the ARW component, the covariance between a[m1] and a[pm1] is

covar(a[m1], a[pm1]) =
3M2 − 4

(M1 − 1)(M2 − 1)p2
R2

(m1T)2 . (11)

For the RRW component, covar(a[m1], a[pm1]) =

[(12p3 − 6p + 3)M2 − 2(6p3 − 3p + 2)]Q2(m1T)2

36(M1 − 1)(M2 − 1)p2 . (12)

In order to use Equations (11) and (12) for a set of Allan variance points, the values of m used
to compute these points must all be integer multiples of each other. This is accomplished by using
values of m that are powers of 2. Consider a set of points m =

[
2 4 · · · 2q

]
for some integer q. Let

a[m] be the corresponding vector of Allan variance statistics. The covariance matrices of a[m] for the
ARW and RRW terms are obtained, element by element, from Equations (11) and (12), respectively. We
denote these covariance matrices as

covar(a[m]) = CR(m, R) for ARW (13)

covar(a[m]) = CQ(m, Q) for RRW. (14)

For example, the ij element of the matrix CR(m, R) is covar(a[mi], a[mj]), where mi and mj are the ith
and jth elements, respectively of m and Equation (11) is used to evaluate the covariance.

2.3. Algorithm for Estimating Q and R for a Single Gyro

The algorithm presented in this section is based on standard results in statistical estimation
theory, as expressed by the following theorem describing the best linear unbiased estimator [17]. This
estimator has the lowest variance of any linear unbiased estimator.

Theorem 1. Given
x = Hθ+ w,

where x is an N × 1 vector of observations, H is a known N × p matrix, θ is a p× 1 vector of parameters to be
estimated, and w is zero-mean random vector with covariance matrix C. Then the best linear unbiased estimator
for θ is

θ̂ = (HTC−1H)−1HTC−1x. (15)

The expected value of the estimator is the true parameter vector, θ, and the covariance matrix of the estimator is

Cθ̂ = (HTC−1H)−1 (16)
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This theorem was used in [10] to obtain an algorithm for estimating Q and R for a single gyro and
is used in Section IV below to derive an algorithm for modeling an array of gyros. The single-gyro
algorithm is summarized in Algorithm 1.

Algorithm 1: An algorithm for estimating individual gyro parameters Q and R. c©2012 IEEE,
reprinted with permission from [10].

1. Given a data record of N points of gyro calibration data let J = J1 − 3, where J1 is the integer part of

log2(N). Calculate the Allan variance statistic for m =
[
2 4 · · · 2J

]T
.

2. Let τ̂0 = Tm0 be an estimate of the smoothing lag corresponding to the minimum value of the Allan
variance. For example, choose m0 to be the index from Step 1 that gives the smallest Allan variance.

3. From the values of m calculated in Step 1, select m1 =
[
2 · · · 2N1

]T
, such that the maximum value

satisfies 2N1 < τ̂0/(8T).
4. Obtain a preliminary estimate of R

R̂0 = (HT
RC−1

R (m1, 1)HR)
−1HT

RC−1
R (m1, 1)a[m1],

where HR =
[
1/(2T) · · · 1/(2N1 T)

]T
.

5. Calculate a preliminary estimate of Q:
Q̂0 = 3R̂0/τ̂2

0 .

6. Let (see Equations (13) and (14)):

C = CR(m, R̂0) + CQ(m, Q̂0)

where m is obtained in Step 1.
7. The estimates of Q and R are given by[

Q̂
R̂

]
= (HTC−1H)−1HTC−1a[m],

where

H =


(2T)/3 1/(2T)

...
...

(2J−2T)/3 1/(2J−2T)

 .

2.4. Mathematical Model for a Two-Gyro Array

In order to model an array of gyros it suffices to jointly model two gyros by estimating the
correlation properties between the two gyros, as well as their individual statistical properties. Once the
procedure is developed for two gyros it can be used for an array of any number of gyros by modeling
all pairwise combinations of gyros.

The output signal vector, y(t), of a two-gyro array can be described by the following equation

y(t) = ω(t) + b(t) + n(t) (17)

where ω(t) is a vector of true rate signals, b(t) is a vector of gyro biases, and n(t) is an observation
noise vector. In the absence of motion, the true rate is zero and the gyro output signal consists of bias
plus noise. The bias term b(t) is a vector of rate random walks or RRW, and the additive noise term n(t)
is a vector of angle random walks or ARW.

The elements of the noise vector n(t) are modeled as statistically independent bandlimited white
noise processes with spectral densities R1 and R2, respectively, and common bandwidth B Hz. The
spectral density matrix of n(t) is
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R =

[
R1 0
0 R2

]
. (18)

Let w(t) be a vector white-noise process with spectral density matrix Q. That is

E[w(t1)w(t2)] = Qδ(t1 − t2), Q =

[
Q11 Q12

Q12 Q22

]
. (19)

The bias vector is a random walk arising from w(t):

ḃ(t) = w(t). (20)

Gyro calibration data, with ω(t) = 0, consists of bias and noise terms. These terms are
characterized by the matrices Q and R, respectively. Given a finite record of gyro calibration data,
the problem at hand is to estimate the nonzero elements of Q and R. In Algorithm 1 of the previous
section, an algorithm is given for modeling an individual gyro. This algorithm may be used separately
for gyro 1 and gyro 2 to obtain estimates of Q11 and R1 from gyro 1 data, and Q22 and R2 from gyro 2
data. All that remains is to show how to estimate Q12 using the data from gyros 1 and 2.

Consider uniformly sampling the two gyros with sampling interval T:

yk = y(kT), yk =

[
y1

k
y2

k

]
, k = 1, · · · , N. (21)

Similarly to Equation (7) for a single gyro, define the vectors zk to be the average of M nonoverlapping
length-m segments of vector-value gyro data yk, where M = N/m:

z1 =
y1 + · · ·+ ym

m
, · · · , zM =

y(M−1)m+1 + · · ·+ ymM

m
. (22)

We define the Allan covariance matrix for a smoothing interval of m samples to be

A[m] =
1

2(M− 1)

M−1

∑
k=1

(zk+1 − zk)(zk+1 − zk)
T , (23)

where M = N/m. Equation (23) is a simple extension of the single-gyro Allan variance formula (8). To
our knowledge, this paper is the first time Equation (23) has been used to model an array of correlated
gyros. The diagonal elements of A[m] are the usual Allan variances for gyros 1 and 2, respectively. The
off diagonal terms, which are equal, are the Allan covariance between gyro 1 and gyro 2. We denote
the off-diagonal term of A[m] as c[m], which is given by

c[m] =
1

2(M− 1)

M−1

∑
k=1

(zk+1(1)− zk(1))(zk+1(2)− zk(2)), (24)

where zk(1) is the first element of zk containing signals from gyro 1, and zk(2) is the second element of
zk containing signals from gyro 2. The terms in the summation defining c[m] may be written using the
following vectors of signal differences, for k = 1, · · · , M− 1:

xk =


y1

k·m+1 − y1
(k−1)m+1

...
y1
(k+1)m − y1

k·m

 , wk =


y2

k·m+1 − y2
(k−1)m+1

...
y2
(k+1)m − y2

k·m

 . (25)
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We can write
zk+1(1)− zk(1) =

1
m

oTxk, (26)

where o is a vector of ones. Similarly, we can write

zk+1(2)− zk(2) =
1
m

oTwk. (27)

Then

c[m] =
1

2m2(M− 1)

M−1

∑
k=1

oTxkwT
k o. (28)

2.5. Mean of the Allan Covariance

The mean of c[m] is found by calculating the expected value of xkwT
k in Equation (28). The ARW

components of the two gyros are statistically independent. Thus, E[xkwT
k ] = 0 and the mean of the

ARW component of c[m] is zero.
In order to calculate the mean of the RRW component of c[m], define

R̃kk = E[xkwT
k ]. (29)

The lth elements of the vectors xk and wk are given by

xk(l) =
∫ (km+l)T

((k−1)m+l)T
w1(τ1)dτ1,

wk(l) =
∫ (km+l)T

((k−1)m+l)T
w2(τ2)dτ2.

(30)

Using these expressions, the ij element of the matrix R̃kk is calculated as follows:

E[xk(i)wT
k (j)] =

∫ (km+i)T

((k−1)m+i)T

∫ (km+k)T

((k−1)m+j)T
E[w1(τ1)wT

w(τ2)]dτ1dτ2

= Q12

∫ (km+i)T

((k−1)m+i)T

∫ (km+k)T

((k−1)m+j)T
δ(τ1 − τ2)dτ1dτ2.

(31)

The τ1 and τ2 integrals are each computed over intervals of length mT. The value of the double integral
is computed by counting the number of length-T overlapping intervals in the τ1 and τ2 integrals. When
i = j, the limits of integration overlap completely, giving a value of mT for the double integral. When
j = i + 1 or i− 1 there are m− 1 overlapping intervals and the value of the double integral is (m− 1)T.
In general, the number of overlapping intervals is m− |j− i|. Thus, for the RRW component, R̃kk is
equal to 

m (m− 1) · · · 2 1

(m− 1) m
. . . 3 2

...
...

. . .
...

...

2 3
. . . m (m− 1)

1 2 · · · (m− 1) m


Q12T. (32)
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Using Equation (28), the mean of c[m] is

E(c[m]) =
1

2m2(M− 1)

M−1

∑
k=1

oTR̃kko. (33)

The term in the summation is simply the sum of all the elements of the matrix R̃kk, which can be
calculated using Equation (32) to be

oTR̃kko =
2m3 + m

3
Q12T. (34)

In practical applications the RRW term is significant only for large value of the smoothing parameter
τ = mT, e.g., m > 1000. Thus, only the highest power of m in Equation (34) is needed. Substituting
Equation (34) into Equation (33) yields the mean of the RRW component of the Allan covariance:

E(c[m]) =
Q12

3
mT. (35)

Because the mean of the ARW component of Allan variance is zero, the previous equation is also the
mean of the Allan covariance of a gyro calibration signal.

2.6. Covariance of the Allan Covariance

The covariance between two values of the Allan covariance statistic, c[m1] and c[m2], is needed to
obtain the best linear unbiased estimate of Q12 using an algorithm similar to that used for modeling a
single gyro. Let m2 = p ·m1 for some integer p ≥ 1. Let N be the number of samples in the sampled
gyro calibration signals and let M1 and M2 be defined as

M1 =
N
m1

, M2 =
N
m2

. (36)

By choosing m1, m2, and N to be powers of 2, both M1 and M2 will be integers. The covariance
expressions for the ARW and RRW components are derived in the Appendix A. For the ARW
component, the covariance is

covar(c[m1], c[pm1]) =
3M2 − 4

2(M1 − 1)(M2 − 1)p2
R1R2

(m1T)2 . (37)

Given a vector m containing n values of m (each a power of 2), let the vector a be the Allan covariance
evaluated at each element of m. Then the n× n covariance matrix of a is calculated element-by-element
using Equation (37). The resulting covariance matrix is called CR(m, R1, R2).

For the RRW component, covar((c[m1], c[pm1]) is given by the following expression:

[(12p3 − 6p + 3)M2 − 2(6p3 − 3p + 2)](Q1Q2 + Q2
12)(m1T)2

72(M1 − 1)(M2 − 1)p2 . (38)

The n× n covariance matrix of a is calculated element-by-element using Equation (38). The resulting
covariance matrix is called CQ(m, Q11, Q22, Q12).

2.7. Statistical Model for a Gyro Array

Consider an array of g gyros. The Allan covariance matrix A[m] will be a g× g symmetric matrix.
The off-diagonal terms, Aij[m] i 6= j are the Allan covariances between gyro i and gyro j. We assume
that the ARW components of the different gyros are uncorrelated so that the off-diagonal terms of the
spectral density matrix R are equal to zero. This uncorrelated assumption has been verified for the
hardware gyro described in Section 2.11. Each of the diagonal elements of R may be estimated using
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the single-gyro algorithm given in Algorithm 1, which also gives the diagonal elements of the spectral
density matrix Q. All that remains is to estimate the off-diagonal terms of Q, Qij i 6= j. An algorithm
to do this is derived next.

The algorithm for estimating Qij is based on Theorem 1. In order to use this theorem, let

m =
[
2 4 · · · 2J

]
be a set of J smoothing indices and let a be the vector of corresponding Allan

covariances
a =

[
Aij[2] Aij[4] · · · Aij[2J ]

]T
. (39)

From Equation (34) the mean of a is

E(a) = m
T
3

Qij. (40)

The covariance of a is (see Equations (37) and (38))

C = CR(m, Ri, Rj) + CQ(m, Qi, Qj, Qij). (41)

Knowing the mean and covariance of a, Theorem 1 may be used to obtain an estimator for Qij as
follows. Using the notation of Theorem 1, let x = a, H = mT/3, θ = Qij, with C given by Equation (41).
The only difficulty is that the matrix CQ in Equation (41) depends on Qij, the parameter we want to
estimate. The simplest way to obtain a realizable algorithm is to set Qij to zero in the formula for CQ.
The effect of this approximation will be examined in the simulation study in Section 2.9. The complete
algorithm for estimating the off-diagonal entries of the matrix Q is given in Algorithm 2.

Algorithm 2: An algorithm for estimating the off-diagonal terms, Qij, of the spectral density
matrix Q for the drift components of an array of gyros.

1. Given a data record of N points of vector-valued gyro calibration data from an array of g gyros, let
J = J1 − 3, where J1 is the integer part of log2(N). Calculate the set of g× g Allan covariance matrices

{A[m]} using Equations (21) through (23) for all m ∈ m, where m =
[
2 4 · · · 2J

]T
.

2. Estimate the individual gyro statistics R̂k and Q̂kk, k = 1, · · · , g, using the algorithm for single gyros
given in Algorithm 1.

3. Let a be the vector whose elements are Aij[m] for all m ∈ m.
4. Let

H = (T/3)m.

5. Calculate the covariance matrix (see Equations (37) and (38))

C = CR(m, R̂i, R̂j) + CQ(m, Q̂i, Q̂j, 0)

6. The estimate of Qij is calculated as follows:

Q̂ij = (HTC−1H)−1HTC−1a

2.8. Optimal Linear Combination of Gyro Signals

Suppose we have an array of g gyros with a known RRW matrix Q. The outputs of the gyros
are collected into a vector y(t). A virtual gyro signal v(t) can be obtained by taking a fixed linear
combination of the gyro signals:

v(t) = cTy(t) (42)

where the coefficient vector c =
[
c1 · · · cg

]T
satisfies

oTc = 1, with o =
[
1 · · · 1

]T
. (43)
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Each gyro is measuring the same velocity signal ω(t). The constraint in Equation (43) implies that the
weighted signal components in each of the gyro signals will add up to ω(t).

The signal v(t) can be modeled as the output of a single gyro with some effective RRW spectral
density matrix Qv. We define the optimal coefficient vector c∗ to be the one that results in the virtual
gyro having the smallest value of Qv.

From Equations (20) and (42), the bias signal for the virtual gyro satisfies

v̇(t) = cT ẏ(t) = cTw(t). (44)

Comparing Equation (44) with Equation (2), it can be seen that the spectral density of the RRW
component of the virtual gyro is

E[(cTw(t1))(cTw(t2))] = E[(cTw(t1))(w(t2))
Tc]

= cTQcδ(t1 − t2).
(45)

Thus, Qv for a virtual gyro signal formed as a fixed linear combination of gyro signals is

Qv = cTQc. (46)

The optimal coefficient vector c∗ is the one that minimizes the drift of the virtual gyro Equation (46)
subject to the constraint in Equation (43). That is,

c∗ = arg min
c

cTQc such that oTc = 1. (47)

Using a Lagrange multiplier to convert this to an unconstrained optimization problem and setting the
first derivative to zero yields the well-known solution to Equation (47):

c∗ =
Q−1o

oTQ−1o
. (48)

The virtual gyro signal obtained by taking the linear combination of gyro signals using the coefficient
vector c∗ will have an RRW spectral density Q∗v given by Equation (46). Substituting Equation (48) in
Equation (46) yields

Q∗v =
1

oTQ−1o
. (49)

Because o is a vector of ones, the previous equation says that Q∗v, the RRW spectral density of the
optimal linear combination (OLC) virtual gyro, is equal to the reciprocal of the sum-of-elements of the
matrix Q−1. This is identical to the virtual gyro drift obtained from the Kalman filter approach. In
column 10 of Bayard and Ploen’s patent [2] they say that “the theoretically minimum drift attainable
from combining N gyro devices having Rate Random Walk matrix Q is given by 1/(sum of the
elements of Q−1).” Thus the minimum drift achieved by the Kalman filter based (KFB) approach is
identical to that achieved by the OLC approach presented in this paper.

Consider the following similarities and differences between the KFB and OLC approaches. In both
cases the algorithms are derived for gyros that are modeled using only ARW and RRW components.
In both cases the matrix Q must be estimated from calibration data that is obtained while the array
is motionless. In order to solve the Kalman filter equations the estimated matrix Q̂ must be positive
definite. For the OLC approach, the theoretical formulas assume a positive definite Q̂ but it is shown
in Equation (54) (and preceding text) how to handle the case when Q̂ is not positive definite. Finally,
to calculate the KFB virtual gyro output from an array of g gyros in an operational environment, the
gyro signals must be processed by an gth-order Kalman filter. In contrast the OLC virtual gyro simply
forms a weighted sum of the g gyro signals using a fixed linear combination.
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2.9. Simulation Example

The example in this section consists of a simulation of an array of six gyros. The matrix R is a
diagonal matrix with units of deg2/(hr) and the following diagonal elements:

10−3 ×
[
0.1010 0.0712 0.0490 0.0383 0.0385 0.0914

]
. (50)

The matrix Q, with units deg2/(hr)3, is

0.0119 −0.0004 0.0048 −0.0076 −0.0112 −0.0026
−0.0004 0.0220 0.0093 0.0005 0.0015 0.0097
0.0048 0.0093 0.1628 −0.0598 0.0026 −0.0141
−0.0076 0.0005 −0.0598 0.0976 0.0191 0.0254
−0.0112 0.0015 0.0026 0.0191 0.0259 0.0114
−0.0026 0.0097 −0.0141 0.0254 0.0114 0.1167


. (51)

We begin with some theoretical calculations based on the known Q matrix. Then, in the second
subsection below, we present results using simulated gyro signals.

Theoretical Calculations

The drift quality of the individual gyros is given by the diagonal elements of Q. Gyro 3 is the
worst, with Q33 = 163× 10−3. Gyro 1 is the best, with Q11 = 11.9× 10−3.

There are several ways that a virtual gyro signal can be obtained by taking a fixed linear
combination of the outputs of the six gyros. One way is to take the average of the gyro signals

using the coefficient vector c =
[
1/6 · · · 1/6

]T
. Another way is to take a weighted average of the

gyro signals in which the weights are the inverses of the Q values for each individual gyro. This is
equivalent to using only the diagonal elements of the matrix Q in Equation (48). A third way is to use
the optimal linear combination c∗ given by Equation (48). The RRW spectral density Qv for any virtual
array created by taking a fixed linear combination of gyro signals can be computed using Equation (46).
The results for the three methods just mentioned are shown in Table 1.

Table 1. Coefficient vectors for a 6-gyro array and corresponding RRW spectral density Qv using
three methods. Method 1 is the unweighted average of the gyro signals. Method 2 uses only the
diagonal elements of the theoretical Q matrix to calculate the coefficients. Method 3 is the optimal
linear combination, which is calculated using the entire Q matrix.

Method 1 Method 2 Method 3

Coefficient
Vector


0.1667
0.1667
0.1667
0.1667
0.1667
0.1667




0.4353
0.2354
0.0318
0.0531
0.2000
0.0444




0.5600
0.1196
−0.0145
−0.0039
0.3480
−0.0092



Qv 11.5× 10−3 3.8× 10−3 2.7× 10−3

Several observations can be made about this example. First, the simple average of the gyro signals
does not improve the drift of the best individual gyro, mostly because the individual gyros have very
different Q values. This disparity in Q values is accounted for using only the diagonal elements of Q
in the calculation of the coefficient vector, which greatly improves the value of Qv. Finally, the optimal
linear combination, which is calculated using the entire Q matrix, gives the lowest value of Qv.
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2.10. Simulation Results

In order to test Algorithm 2, 500 realizations of the gyro signals were created at 10 Hz sampling
rate for a duration of 31.1 hours using the spectral density matrices given in Equations (50) and (51).
For each of the 500 trials the matrices Q̂ and R̂ were computed using Algorithm 2. Two different
coefficient vectors were computed. The first used the diagonal elements of Q̂ in Equation (48). The
second, optimal coefficient vector, was computed using the full Q̂ matrix in Equation (48). Finally,
virtual gyro signals were created by taking linear combinations of the six gyro signals using the two
coefficient vectors. The virtual gyro signals were modeled using Algorithm 1 and the spectral densities
(R̂v, Q̂v) for the virtual gyros were recorded. Figure 1 is a plot of the Q̂v values corresponding to the
two coefficient vectors for each trial. For the virtual gyros created using only the diagonal elements of
Q̂, the resulting Q̂v values had a mean of 3.9× 10−3 and a standard deviation of 2.9× 10−4. The mean
of Q̂v is 3% larger than the theoretical value shown in Table 1 under Method 2. The Q̂v values for the
virtual gyros created using the full Q̂ matrix had a mean of 3.0× 10−3 and a standard deviation of
2.5× 10−4. This mean value is 11% larger than the theoretical value shown in Table 1 under Method 3
due to errors in estimating the the off-diagonal elements of Q. We believe that those errors are due
primarily to the approximation used in computing CQ. See Equation (41) and the discussion following.

Trial Number
0 50 100 150 200 250 300 350 400 450 500

E
st

im
at

ed
 R

R
W

 S
pe

ct
ra

l D
en

si
ty

 (
de

g
2
/h

r3
)

#10 -3

2.5

3

3.5

4

4.5

5

5.5

Coefficient vector calculated using entire Qhat matrix
Coefficent vector calculated using only diagonal elements of Qhat

Figure 1. Random drift (RRW) spectral density Q̂v for virtual gyros corresponding to coefficient vectors
calculated using only the diagonal elements of Q̂ and using the entire Q̂ matrix. A virtual gyro created
by averaging the gyro signals has an RRW spectral density of 11.5× 10−3 for all trials (see Table 1).

2.11. Hardware Results for a 28-Gyro Array

The algorithm has been implemented on a sensor array developed by NUWC. The sensor array
consisted of 28 3-axis MEMS gyroscopes mounted on a flat board. The gyroscope part number is
L3GD20 from ST Microelectonics. Calibration data were collected while the gyro array was motionless
(lying on a table) at room temperature. The outputs of each gyro were lowpass filtered and sampled at
10 Hz. Each pair of 14 sensors are handled by a Propeller multicore microcontroller. The XYZ data from
each all the sensors are packaged, time tagged and streamed to the computer through a high-speed
USB port in binary format. Dedicated software on the PC was used to log the data and convert to
ASCII upon saving it to a file.

The gyro signals were recorded for 58.3 hours and the x-axis signals were analyzed. In order to
test the assumption that the ARW components of different gyros are uncorrelated, the Algorithm 2
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was modified to estimate the entire R̂, including the off-diagonal elements, as well as the matrix Q̂.
The diagonal elements of R̂ were sorted and compared with the eigenvalues of R̂, which were also
sorted. The entries in the two lists varied only in the third significant figures, indicating that the
ARW components are indeed uncorrelated. The remainder of this section uses the Algorithm 2, which
assumes that R is a diagonal matrix. By not explicitly estimating the off-diagonal terms in R there are
fewer parameters to estimate, which results in a more accurate estimate of the off-diagonal elements
of Q.

The sorted eigenvalues of Q̂ and the sorted diagonal elements of Q̂ are plotted in Figure 2. The
differences in the elements of these two lists indicates correlation between the RRW components of the
gyros, which can be used for drift reduction.
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Figure 2. Sorted eigenvalues and sorted diagonal elements of the matrix Q̂, which was estimated from
data from a 28-gyro array.

However, Figure 2 also reveals a difficulty that must be addressed before computing the optimal
linear combination vector c∗ from Q̂. The difficulty is that Q̂ has several negative eigenvalues, which
are due to errors in estimating the individual entries in the Q̂ matrix. If Q̂ has negative eigenvalues
then the quantity cTQ̂c, which is minimized to obtain the optimal linear combination coefficient vector,
may take negative values. In this case, the result of the minimization will be the largest possible
negative value of cTQ̂c, which is not a useful result. There are several ways to deal with this difficulty,
and we have found the following to be the most effective. Let the singular value decomposition (SVD)
of Q̂ be written as follows:

Q̂ =
g

∑
k=1

skukvT
k (52)

where uk and vk are the left and right singular vectors, respectively, of Q̂, and sk are the singular values.
The inverse of Q̂ may be written as:

Q̂−1 =
g

∑
k=1

s−1
k ukvT

k . (53)

When Q̂ has negative eigenvalues, we propose to compute a partial inverse by omitting the first term
or two in the SVD expansion of Q̂−1. These are the least important terms because they contain the
inverse of the largest singular values. For the Q̂ obtained from the 28-gyro array only the first term
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was omitted, and the coefficients for the optimal linear combination were computed as follows, using
x as a temporary variable (see Equation (48)):

x =
28

∑
k=2

s−1
k ukvT

k ; c∗ =
x

oTx
. (54)

A virtual gyro signal was created by taking a linear combination of the 28 gyro signals using three
different methods. Method 1 is the unweighted average of the gyro signals. Method 2 uses only the
diagonal elements of Q̂ in Equation (48) to calculate the coefficients. Method 3 is the optimal linear
combination, which is calculated using Equation (54). The Allan variance plots for these three virtual
gyros are shown in Figure 3 and the estimated R and Q parameters are shown in Table 2.
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Figure 3. Allan variance plots for virtual gyros. Circles are calculated Allan variance points. Smooth
curves are theoretical Allan variance plots corresponding to the (R̂, Q̂) obtained for each virtual gyro
using Algorithm 1. Vertical lines through each point are±2 standard deviations calculated using (R̂, Q̂).
(Top plot): average of 28 gyros. (Middle plot): weighted average of 28 gyros using only diagonal
elements of Q̂. (Lower plot): optimal linear combination of 28 gyros.
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Table 2. Estimated values of ARW and RRW spectral densities for virtual gyros obtained from
experimental data by three different methods. Method 1 is the unweighted average of the gyro
signals. Method 2 uses only the diagonal elements of Q̂ to calculate the coefficients. Method 3 is the
optimal linear combination, which is calculated using the entire Q̂ matrix.

Method ARW RRW

1 2.2× 10−8 82.3× 10−8

2 12.7× 10−8 10.8× 10−8

3 9.9× 10−8 2.0× 10−8

Table 2 shows that, for this set of experimental data, using only the diagonal elements of Q̂ gives a
virtual gyro with a value of Q̂v that is a factor of 8-times smaller than that obtained by an unweighted
average of the gyro signals. Using the full Q̂ matrix (with partial inverse) decreases Q̂v by an additional
factor of 5.

Note that if the RRW components of the 28 gyros in the array were uncorrelated, the theoretical
matrix Q would be a diagonal matrix. Due to estimation errors, the matrix Q̂ would contain nonzero
off-diagonal terms, but these off-diagonal terms would not contain any useful information. The fact
that the linear combination obtained using the full Q̂ matrix gave substantially better results than the
linear combination obtained using only the diagonal elements of Q̂ is evidence that the off-diagonal
terms of the theoretical Q matrix are nonzero. That is, there is evidence that the RRW components for
the gyros in this hardware array are correlated.

3. Discussion and Conclusions

We have presented an algorithm for estimating R and Q, the spectral density matrices for the
ARW and RRW components, respectively, of an array of gyros. The algorithm is based on the definition
of the Allan covariance between two gyros, which is a generalization of the Allan variance for a single
gyro. We considered virtual gyros, defined by fixed linear combinations of the signals from a gyro
array, and derived a formula for the coefficients of the optimal linear combination resulting in the
virtual gyro with smallest drift.

The performance of the minimum-drift virtual gyro was demonstrated using simulated as well as
experimental data. Experimental results with an array of 28 gyros showed that the proposed virtual
gyro had a drift spectral density 40-times smaller than that obtained by taking the average of the gyro
signals.

One area of future work is to extend the approach presented in this paper to handle gyros
who calibration signals are modeled by more than just ARW and RRW components. For example,
references [14,15] show how to model a single gyro which has ARW, RRW, and Gauss-Markov
components. Although all of these components are needed to accurately model the gyro, the long-term
drift of a gyro is determined only by the RRW component. If the modeling procedure in [14,15], or
some other modeling procedure, were extended to a gyro array, only the spectral density matrix Q
of the RRW components would be needed to obtain a minimum-drift OCL virtual gyro. The optimal
coefficients would still be calculated using Equation (48).

In order for the minimum-drift gyro to be much better than the average of the gyros, the
off-diagonal entries in the matrix Q must be nonzero; that is, there must be correlations among
the RRW components of different gyros in the array. Another important area of future work is to
determine what aspects of gyro fabrication influence the correlation properties between gyros. Finally,
we mention that other approaches to combining multiple gyros and accelerometers are presented
in [18]. It is possible that the statistical analysis presented above could be combined with the ideas
in [18].



Sensors 2017, 17, 352 16 of 18

Author Contributions: Richard Vaccaro developed the mathematical analysis and derived the algorithms.
Ahmed Zaki conceived of an alternative to a Kalman filter for virtual gyro synthesis and developed the hardware
and software used to collect the experimental data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Derivation of Covariance of Allan Covariance Between Two Gyros

Consider the second moment of the Allan covariance c[m] defined in Equation (28).

E(c2[m]) =
1

4m4(M− 1)2

M−1

∑
i=1

M−1

∑
j=1

E
[
(oTxi)(oTwi)(oTxj)(oTwj)

]
. (A1)

The expectation inside the double summation contains the product of four Gaussian random variables.
Consider the following formula for such an expectation [19,20]:

E(v1v2v3v4) = E(v1v2)E(v3v4) + E(v1v3)E(v2v4)

+ E(v1v4)E(v2v3)− 2E(v1)E(v2)E(v3)E(v4).
(A2)

The correspondence between Equations (A1) and (A2) is as follows:

v1 = (oTxi), v2 = (oTwi), v3 = (oTxj), v4 = (oTwj). (A3)

Each of the random variables in Equation (A3) has zero mean, thus the last term of Equation (A2)
is equal to zero. The first term of Equation (A2) , using Equations (A3) and (29), is

E((oTxi)(oTwi))E((oTxj)(oTwj)) = (oTR̃iio)(oTR̃jjo). (A4)

Substituting this into the right-hand side of Equation (A1) and using Equation (33) yields E2(c[m]).
This square of the mean can be subtracted from E(c2[m]) to yield the variance of c[m]. Thus, the
second and third terms of the right-hand side of Equation (A2), substituted into Equation (A1), give
the variance of c[m]. These two terms will be called “term 2” and “term 3,” respectively. They are
given by

term 2 =
1

4m4(M− 1)2

M−1

∑
i=1

M−1

∑
j=1

(oTR1
ijo)(o

TR2
ijo) (A5)

and

term 3 =
1

4m4(M− 1)2

M−1

∑
i=1

M−1

∑
j=1

(oTR̃ijo)(oTR̃T
ijo), (A6)

where
R̃ij = E[xiwT

j ] (A7)

and R1
ij and R2

ij are defined as follows:

R1
ij = E(xixT

j ) (gyro 1), R2
ij = E(wiwT

j ) (gyro 2). (A8)

The variance of c[m] is the sum of terms 2 and 3, and the values of these terms are computed next.
The following single-gyro formulas for the variance of the Allan variance a[m] (see Equation (8))

were derived in [10].

var(a[m]) =
1

2m4(M− 1)2

M−1

∑
i=1

M−1

∑
j=1

(oTRijo)2, (A9)

where
Rij = E(xixj). (A10)
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For the ARW component,

var(a[m]) =
3M− 4
(M− 1)2

R2

(mT)2 . (A11)

For the RRW component,

var(a[m]) =
9M− 10

36(M− 1)2 Q2(mT)2. (A12)

Term 2 in Equation (A5) may be compared with the formula for a single gyro given by
Equation (A9). Equation (A5) has an extra factor of 2 in the denominator and has the product of
two different gyros, (oTR1

ijo)(o
TR2

ijo) instead of the square of the term for one gyro. Thus, term 2 is

given by the variance formulas (A11) and Equation (A12) with the following changes: R2 is replaced by
R1R2 in Equation (A11) , Q2 is replaced by Q1Q2 in Equation (A12), and both expressions are divided
by 2. The results are as follows:

ARW: term 2 = 3M− 4
2(M− 1)2

R1R2
(mT)2

RRW: term2 = 9M− 10
72(M− 1)2 Q1Q2(mT)2.

(A13)

Term 3 in Equation (A6) for ARW is zero because additive noises on different gyros are
uncorrelated. In order to compute term 3 for RRW, note that the sum of elements of R̃ij is equal
to the sum of elements of R̃T

ij . Thus, the summand of Equation (A6) may be written as (oTR̃ijo)2. Now
compare the definition of R̃ij in Equation (A7) with the definition of Rij in (A10). In Equation (A10)
the expectation is taken of a product of signal difference vectors from a single gyro. When the data in
the signal difference vectors come from overlapping intervals, the expectation is Q times the length
of the overlap. In Equation (A7) the expectation is taken of the product of signal difference vectors
from two different gyros. When the data in the signal difference vectors come from overlapping
intervals the expectation is Q12 times the length of the overlap. The intervals in Equation (A9) are the
same lengths as those in Equation (A7). The expected values are squared in Equation (A9) as well as
in Equation (A6). Thus, term 3 for RRW is given by the variance formula (A12) with the following
changes: Q2 is replaced by Q2

12 and the expression is divided by 2. The results are as follows:

ARW: term 3 = 0
RRW: term3 = 9M− 10

72(M− 1)2 Q2
12(mT)2. (A14)

Summing terms 2 and 3 using Equations (A13) and (A14) yields the ARW and RRW variance
expressions for the Allan covariance c[m].

To summarize, the ARW and RRW formulas for var(c[m]) given by summing terms 2 and 3 in
Equation (A13) and (A14) are identical to the corresponding formulas (A11) and (A12) for var(a[m])
when the following substitutions are made in the latter formulas:

ARW: R2 is replaced by R1R2/2
RRW: Q2 is replaced by (Q1Q2 + Q2

12)/2.
(A15)

Consider now the covariance between two values of the Allan covariance, c[m1] and c[m2], where
m2 = p ·m1 for some integer p ≥ 1. The covariance calculations are similar to the variance calculations
given above except that m is replaced by m1 for the first gyro and m2 for the second gyro. In [10]
the same intervals of length m1 and m2 were used with data from a single gyro. As was seen in the
variance calculations, the formulas for a single gyro may be used to get the results for two gyros
using the substitutions shown in Equation (A15). Because the lengths of the overlapping intervals
depend on m2 = p · m1 and are the same for the single gyro and two gyro cases, the expressions
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for covar(c[m1], c[p ·m1]) may be obtained from Equations (11) and (12) by making the substitutions
described in Equation (A15). The results are shown in Equations (37) and (38).
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