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Abstract: A quantum hybrid (QH) intelligent approach that blends the adaptive search capability of
the quantum-behaved particle swarm optimisation (QPSO) method with the intuitionistic rationality
of traditional fuzzy k-nearest neighbours (Fuzzy k-NN) algorithm (known simply as the Q-Fuzzy
approach) is proposed for efficient feature selection and classification of cells in cervical smeared
(CS) images. From an initial multitude of 17 features describing the geometry, colour, and texture of
the CS images, the QPSO stage of our proposed technique is used to select the best subset features
(i.e., global best particles) that represent a pruned down collection of seven features. Using a dataset
of almost 1000 images, performance evaluation of our proposed Q-Fuzzy approach assesses the
impact of our feature selection on classification accuracy by way of three experimental scenarios
that are compared alongside two other approaches: the All-features (i.e., classification without prior
feature selection) and another hybrid technique combining the standard PSO algorithm with the
Fuzzy k-NN technique (P-Fuzzy approach). In the first and second scenarios, we further divided
the assessment criteria in terms of classification accuracy based on the choice of best features and
those in terms of the different categories of the cervical cells. In the third scenario, we introduced new
QH hybrid techniques, i.e., QPSO combined with other supervised learning methods, and compared
the classification accuracy alongside our proposed Q-Fuzzy approach. Furthermore, we employed
statistical approaches to establish qualitative agreement with regards to the feature selection in the
experimental scenarios 1 and 3. The synergy between the QPSO and Fuzzy k-NN in the proposed
Q-Fuzzy approach improves classification accuracy as manifest in the reduction in number cell
features, which is crucial for effective cervical cancer detection and diagnosis.

Keywords: computational intelligence; quantum hybrid intelligent systems; quantum machine
learning; medical image processing; disease diagnosis; Fuzzy k-NN; quantum-behaved PSO; cervical
smear images; cancer detection

1. Introduction

Hybrid intelligent systems (HIS) simultaneously integrate (or combine) two or more intelligent
approaches, such as fuzzy techniques, genetic algorithms, neural networks, agent-based techniques,
case-based reasoning, and other computationally (or artificially) intelligent approaches conducive
to overcome individual limitations and achieve synergetic outcomes. Such hybridisation offers the
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capability to handle real-world complex problems involving imprecision, uncertainty, vagueness,
high-dimensionality, etc. [1]. HIS systems are applied in almost every area of life, but notable
applications can be found in science, technology, business, commerce, and medicine.

Cervical cancer is one of the most common lethal malignant diseases among women. Thankfully,
however, with improvements in medical technologies, over the past few years, it is easier to detect
such disease at an early stage by doing Pap smear image tests. These tests typically involve filtering
out abnormal cervical cells [2] and use of the results to detect precancerous changes in cervical cells
based on colour and shape properties of their nuclei and cytoplasm [3]. Screening for cervical cancer
by Pap smear image tests provide an inference regarding the presence of the Papilloma virus that
is responsible for cervical cancer [4]. However, performing the Pap smear test manually is known
to be a time-consuming and error-prone exercise that is further exacerbated by the lack of adequate
pathology expertise [5]. In addition, due to subjective disparity from different cytologists, the results
of the screening often show a lot of inconsistencies [6], thereby further compromising the screening
process [7]. Moreover, since hundreds of images need to be analysed daily, the manual screening
process to classify the cells is a challenging pursuit that is susceptible to error [8]. A single cell
from the Pap smear test can be classified into one of seven classes [9–12], which are superficial
squamous, intermediate squamous, columnar, mild dysplasia, moderate dysplasia, severe dysplasia,
and carcinoma in situ.

Meanwhile, in furtherance of improving the accuracy of automated cervical cell detection systems,
dynamic segmentation techniques are required to delineate the contours of the cytoplasm and nucleus
in the cell images from Pap smear tests. This has led to the proposal of numerous approaches aimed at
improving the assessment of Pap smear image test results.

Some studies related to the cervical cancer detection classification of various cervical cell features
are presented in [8–14]. The study in [8] uses 14 features and five classifiers to validate their
classification results with focus on digital imaging colposcopy. In [11], a neuro-fuzzy method was used
to classify the 20 features in cervical cell types; while in [13] an automatic cervical cell segmentation and
classification method was applied on three datasets of Pap smeared images. Therein, nine features were
used and the results obtained were compared alongside five other classification methods. A support
vector machine technique based on recursive feature elimination (SVM-RFE) was used to select the
features and classify the cervical cell types in [14]. In that study, eleven (11) nuclei features and nine
cytoplasm features were used to differentiate the cervical cell types. The study in [14] combined four
feature selection approaches with the traditional support vector machine (SVM) algorithm in order to
classify the cell types. It was reported therein that the accuracy of the classification results depended on
good choice of features, which further indicates the importance of choosing the best subset of features
enhances to accuracy of classification results.

In terms of feature selection, three methods: filter, wrapper, and hybrid methods, are widely
used in the literature [15]. The filter method is considered computationally fast, easy to interpret,
and is scalable for high-dimensional data [16]. Nonetheless, equipped with advanced machine
learning algorithms to select the best feature subsets, the wrapper and hybrid methods are known to
demonstrate better performances than the filter methods. Besides, hybrid methods commonly use
supervised learning techniques and swarm-based intelligent methods as integral components of their
feature selection. Many previous studies utilised the swarm intelligence algorithms for their feature
selection stages, among which is the particle swarm optimisation (PSO) that is widely used to solve
optimisation problems [17].

Recently, quantum machine learning, which is an approach integrating quantum mechanics
into traditional machine learning approaches, has been used to further understand and enhance the
learning process. One of such techniques is the quantum-behaved particle swarm optimisation (QPSO),
which is a variant of the standard PSO algorithm, that was proposed in [18] by exploiting some proven
properties of quantum mechanics. Among other superlative properties, QPSO eliminates the velocity
term and control parameters that are used in the traditional PSO approach [17]. This ensures that,
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in comparison with the original PSO algorithm [18], the QPSO offers improved performance in terms
of its search capability.

Since that effort, numerous approaches have been suggested to further enhance the QPSO. Among
them, a new QPSO (NQPSO) algorithm was proposed in [19] to further improve on the QPSO by
employing and balancing the choice of local and one global neighbourhood search strategies. Similarly,
in [20] an improved QPSO (IQPSO) algorithm was proposed and utilised for visual features selection
(VFS). Overall, the standard QPSO approach was proposed to deal premature convergence, and it is
simple and easy to understand [19]. The use of a global optimal to determine the best subset features
makes the QPSO a veritable choice to accelerate convergence in feature selection tasks.

Therefore, the study presented in this work exploits the proven versatility of the QPSO algorithm
as the main component of a new hybrid approach for selecting features of cervical cells in Pap smeared
images by blending the QPSO with the intuitionistic descriptiveness of Fuzzy k-Nearest Neighbours
(Fuzzy k-NN) algorithms. Specifically, the best choice of subset features is enhanced by combining the
QPSO with the Fuzzy k-NN, which itself is an extension of the k-nearest neighbours (k-NN) algorithms
but with fuzzy intuition integrated into it [21–23]. As envisaged, this hybridisation leads to modest
improvements in cervical cell classification accuracy.

To validate the expected potency of the proposed technique, the Herlev dataset [24], which
contains original and segmented images collated using the CHAMP software [10–12], is used.
To establish the cogency of the outcomes from our proposed technique, we utilised 17 geometric,
chromatic, and textural features that are employed in some available literature [3,11,12] to describe our
cervical cell images. The acuteness of the QPSO unit of the proposed technique ensures that the best
features are selected and then pruned down to a collection of seven features. This feature selection
step, combined with the rationality from the Fuzzy k-NN guarantees improvement in cell classification
accuracy, which is crucial in cervical cancer prediction.

The remainder of the paper is organised as follows: advances in cervical cell classification for
smeared images are highlighted in the next section as well as a succinct overview of the QPSO and
Fuzzy k-NN algorithms including arguments supporting their adoption as the core units of our
proposed approach to feature selection and cell classification for cervical cancer detection. These two
units and how they coalesce into our quantum hybrid (QH) system are discussed in Section 3,
while experimental results to demonstrate the utility of our proposed technique are reported in
Section 4.

2. Overview of Cell Classification in Smeared Cervical Images, Quantum-Behaved PSO and
Fuzzy k-NN

As mentioned earlier, in this section we will highlight the advances made in cell classification for
smeared cervical images. Additionally, we will present a succinct overview of the QPSO and Fuzzy
k-NN algorithms and conclude with a few arguments supporting their adoption as the core units of
our proposed approach to feature selection and cell classification in cervical cancer detection.

2.1. Cell Classification in Smeared Cervical Images

Cervical cancer is a malignant cancer that forms in cervical tissues (i.e., the organ that connects
the uterus to the vagina) [14]. The Pap smear image test is one of the first procedures used to extract
medical inference regarding the presence of the Papilloma virus, which is known to be responsible
for causing cervical cancer [3]. Pap smear image tests also provide a window for early detection and
treatment before the condition deteriorates [6]. A single-cell pap smear image can be classified into
one of the seven classes presented in Table 1 [9–12].
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Table 1. Classification of Pap smear single image cell types.

1 Normal cells
Superficial squamous

Intermediate squamous
Columnar

2 Abnormal cells

Mild dysplasia
Moderate dysplasia

Severe dysplasia
Carcinoma in situ

As seen from the table, abnormal cervical cells that have undergone precancerous changes (called a
dysplastic cell) are further divided into four main phases. The first phase, called mild dysplasia, occurs
when the nucleus grows larger and brighter than normal. In the second phase, called moderate
dysplasia, the nucleus becomes darker and larger in size. The third phase, known as severe dysplasia,
occurs when the size and texture of both the nucleus and cytoplasm change: the nucleus grows (in size)
while becoming darker with strange shapes, and the cytoplasm also becomes darker but smaller in
size. The last phase, known as Carcinoma in situ, is characterised by a very large nucleus and it occurs
at a point when cytology strongly suggests malignancy.

Knowledge of these cell attributes allows us to describe cells in cancerous and precancerous
stages since they are marked by many changes in morphology and architecture, including geometry
(in terms of both shape and size) of the cytoplasm and nucleus, changes in nuclear-cytoplasm ratios,
and others [15–17]. Some sample results for Pap smear image tests are shown in Figure 1.
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Figure 1. A single cell cervical smear image: (a) superficial squamous, (b) intermediate squamous,
(c) columnar, (d) mild dysplasia, (e) moderate dysplasia, (f) severe dysplasia, (g) carcinoma in situ [2,9–13].

2.2. Quantum-Behaved Particle Swarm Optimisation (QPSO)

Quantum computing is a new and exciting computing paradigm that is tailored towards exploiting
the physical attributes of quantum mechanics to harness information processing [25]. Many new
applications have been proposed either for use with quantum computing hardware or just to exploit
some of the confounding properties of quantum mechanics to enhance traditional computing protocols,
notably those in the areas of image processing, quantum machine learning (QML), and general areas
of computational intelligence [25–28].

QML, which incorporates integration of ‘quantumness’ into traditional machine learning
algorithms, and its application in different domains is an emerging sub-discipline that seems to
receiving increased attention [29]. Among others, a major objective of this study is to explore the
integration of QML techniques (specifically, QPSO) in image-based cervical cancer detection [29,30].

We begin our discussion of the QPSO with a pithy highlight of the standard particle swarm
optimisation (PSO) algorithm. PSO was proposed (by Eberheart and Kennedy in 1995 [21]) to mimic
the social behaviour of a swarm of birds searching for food in a predefined space, with each of
them behaving in accordance with the expected intelligence of the swarm population in such an
environment [20]. Furthermore, the scenario imposes the additional restriction that there is only one
source of food and none of the birds has prior knowledge of this location. Although rather inefficacious,
based on the foregoing scenario, the easiest solution would be to trail any bird that perchance stumbles
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into this location. Consequently, all the birds in the population would traverse (albeit, randomly) the
same path to the food source irrespective of their own proximity to the source and the remaining birds
in the population. In PSO parlance, each single solution in the search space is called a particle, like a
bird. PSO is initialised with random particles (solutions) and an optimal solution is determined within
the search space by updating each generation. All particles have fitness values and velocities with
which they fly over the search space as they follow paths covered by particles that are perceived as
better solutions [19].

The d dimension of the ith particle is represented as Xi = (xi1, xi2, . . . , xid) and for each generation
each particle is updated using two ‘best’ values [16]. The first of these solutions, called Pi_best (personal
best), is the best solution for a specific particle, while the second one, called Pglobal (global best) is
the best value of any particle in the population. The fitness function of particle X (denoted as F(X)),
is defined using the F1 score (which will be presented much later in Equation (29)).

The quantum-behaved version of the PSO (i.e., the QPSO) was proposed to improve on the
capabilities of the PSO algorithm. In it, the probability of the particle appearing in position X may be
obtained from the quantum mechanical interpretation of the wave function of the particle at current
position (t) as described in Equation (1) [20].

ψ(x(t)) =
1√
Q

e−
|mbest(t)−X(t)|

Q (1)

where the parameter Q depends on the mean of best and current positions of the particles and it helps
to specify the search scope for a particle; and mbest is calculated as the mean of the best positions of all
particles (S) in the population, such that:

mbest =
1
S ∑ Pi_best (2)

The parameter Q and the position X are updated according to the constraints in Equations (3)–(5).

Q(t) = 2· ∝ ·|mbest(t)− X(t)|, (3)

X(t + 1) = p(t)− ∝ ·|mbest(t)− X(t)|·ln 1
u(t)

, if s(t) ≥ 0.5 (4)

and
X(t + 1) = p(t)− ∝ ·|mbest(t)− X(t)|·ln 1

u(t)
, if s(t) < 0.5, (5)

where u and s are uniformly distributed random numbers in the interval (0,1), the parameter α is the
contraction-expansion coefficient [18], and p(t) takes the form defined in Equation (6).

p(t) = φ(t)·Pi_best(t) + (1− φ(t))·Pglobal(t), (6)

where φ is a uniformly distributed random number in the interval (0,1), and to update the new best
position of particle I (Pi_best (t + 1)), Equation (7) is used.

Pi_best(t + 1) =

{
X(t), i f F(X(t)) > F(Pi_best(t))

Pi_best(t), i f F(X(t)) ≤ F(Pi_best(t))
(7)

The Pseudocode in Table 2 outlines the steps to execute the QPSO algorithm (as discussed
in [18,19]).



Sensors 2017, 17, 2935 6 of 17

Table 2. Pseudocode for executing the QPSO algorithm [18,19].

Initialise the current positions and the Pi_best positions of all the particles
Do

Calculate mbest in Equation (2)
Select a suitable value for α
For particles i = 1 to S
1. Calculate the fitness value of particle i according to classification accuracy
2. Update Pi_best and Pglobal in Equation (7)
3. For dimension 1 to d
ϕ = rand (0,1)
u = rand (0,1)
If s = rand (0,1) ≥ 0.5
update particle positions in Equation (4)

else
update particle positions in Equation (3)

Until terminal condition is satisfied.

As outlined in the pseudocode, each particle is encoded into a binary string whose length is equal
to the size of feature vector. A value of ‘1’ indicates that a feature is selected, whereas a value of
‘0’ indicates otherwise. In this manner, each particle is encoded into a binary string as presented in
Equation (8) and further depicted in Figure 2 [19].

x =

{
1, if Sigmoid(x) > U(0, 1)
0, otherwise

, (8)

where Sigmoid(x) = 1/(1 + e−x) and U(0,1) is a uniformly distributed random number in the
interval (0,1).

The 100101 six-bit string depicting a particle (shown in Figure 2), shows that the first, fourth,
and sixth features are selected, whereas the second, third, and fifth features are not selected. The fitness
value of each particle is calculated based on the accuracy of the classification results.
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2.3. Fuzzy k-Nearest Neighbours (Fuzzy k-NN)

Fuzzy k-nearest neighbours (Fuzzy k-NN) is an extension of the standard k-nearest neighbours
(k-NN) algorithm but with fuzzy intuition is integrated into it [22]. More precisely, fuzzy theory is
used to generalise definitions of the k-NN membership values of the data in each class as defined in
Equation (9).

u(x, ci) =
∑K

k=1 u(xk, ci).d(x, xk)
−2

m−1

∑K
k=1 d(x, xk)

−2
m−1

, (9)

where u(x, ci) is membership values of data x in the class ci, k value is the number of nearest neighbours,
u(xk, ci) is membership value of k nearest neighbours’ data x in the class ci, d(x, xk) is distance between
data x and k nearest neighbours, and m is weight exponent, which should be greater than 1.

The pseudocode in Table 3 outlines the Fuzzy k-NN algorithm (as discussed in [22,23]).
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Table 3. Pseudocode for executing the Fuzzy k-NN algorithm [22,23].

Normalise the data

Find the k-nearest neighbours

Calculate the membership value u(x, ci) in Equation (9)

Select the maximum value of c from u(x, ci)

Assign class c to the data

3. Methodology for Quantum Hybrid Approach to Cervical Cancer Feature Selection
and Classification

Pap cervical smear (CS) images are rich in various features like colour, shape, and texture.
The process of accurate extraction of these unique visual features from the images is very crucial in
developing an automated cancer screening process [8].

The layout of our proposed quantum hybrid technique (QHT) that combines the
quantum-behaved PSO with the Fuzzy k-NN (henceforth referred to as the Q-Fuzzy approach) to
select appropriate features for accurate classification of cervical cells in smeared images is presented in
Figure 3.

As seen in that figure, the inputs are the original and segmented versions of the cervical smear
images. In the first stage of the proposed technique, features relevant to the colour, shape, or texture
of the input smeared images are extracted. Following this, in the second stage, the proposed QH
(i.e., the combination of QPSO and Fuzzy k-NN) algorithm is used for feature selection and subsequent
cell classification. The output of the system provides an inference about the predicted class from data
testing of cervical smear images.
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Figure 3. Layout of proposed quantum hybrid (Q-Fuzzy) technique to select and classify cells in
smeared cervical images.

The flowchart in Figure 4 further highlights the steps of our proposed feature selection and
classification using proposed the QH or Q-Fuzzy (i.e., QPSO blended with Fuzzy k-NN) approach.

To ensure effective cell classification, the feature extraction stage is designed to target
seventeen (17) features related to the geometry, colour, and texture of the input CS images.
These features have been widely cited in previous studies, notably [3,11,13]. However, for integrality,
we further define these features in Equations (10)–(26).
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Figure 4. Flowchart depicting process of feature selection using the proposed Q-Fuzzy approach.

a. Area of nucleus, An

An = number of pixels in the nucleus region (10)

b. Major axis of nucleus, Ln

Ln = the length of the major axis of an ellipse that completely encloses the nucleus region.
(11)

c. Minor axis of nucleus, Dn

Dn = the length of the minor axis of an ellipse that completely encloses the nucleus region.
(12)

d. Aspect ratio of nucleus, Rn

Rn =
Wn

Hn
, (13)

where Wn is the width of the nucleus and Hn is the height of the nucleus region.
e. Perimeter of Nucleus, Pn

Pn = the perimeter of the nucleus region, (14)
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f. Roundness of nucleus, Ncircle

Ncircle =
π

4
.Ln

2 → Nroundness =
An

Ncircle
. (15)

g. Maxima of nucleus, Maxn

Maxn = number of local maximum value from eight pixels in the neighbourhood of the nucleus region.
(16)

h. Minima of nucleus, Minn

Minn = number of local minimum value from eight pixels in the neighbourhood of the nucleus region.
(17)

i. Homogenity of nucleus, Hn

Hn =
m

∑
i=1

m

∑
i=1

p(i, j)
1 + i− j

, (18)

where p(i, j) is the probability pixel pairs in the nucleus region calculated by gray level
co-occurrence matrix and m is the number of grey level in image.

j. Brightness of nucleus, Bn

Bn = the average pixel intensity of nucleus region. (19)

k. Maxima of cytoplasm, Maxc

Maxc = number of local maximum value from eight (8) pixels in the
neighbourhood of the cytoplasm region.

(20)

l. Minima of cytoplasm, Minc

Minc = number of local minimum value from eight (8) pixels in the
neighbourhood of the cytoplasm region.

(21)

m. Brightness of cytoplasm, Bc

Bc = the average pixel intensity of cytoplasm region. (22)

n. Area of entire cell, Acell

Acell = number of pixels in the cell region. (23)

o. Compactness of the entire cell, Ccell

Ccell =
P2

cell
Acell

. (24)

p. Ratio of nucleus and cell, Rcell

Rcell =
Anu

Acy
, (25)

where Acell is area of the cell region
q.

LBPcell = the local binary pattern of cell region. (26)
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To extract textural features from the CS images, we use Local Binary Pattern Histogram Fourier
(LBP-HF) protocol, wherein we start by applying operator LBP to obtain the pattern of data and create
its histogram using Uniform LBP approach. Second, the LBP-HF feature is computed by applying
Discrete Fourier Transform (DFT) from n histogram Uniform LBPs. Finally, the feature vector of
LBP-HF is obtained by combining histogram values of all zeros, all ones, non-uniform, and Fourier
spectrum values.

Based on the LBP-HF and relevant texture features in Equations (10)–(26), we obtain a texture
feature vector of 38 entries, while the total feature vector has 54 entries. As mentioned earlier,
further details about these features can be found in [3,10,13].

As outlined (in the red short-dashed rectangle) in Figure 3, the feature selection stage of our
proposed QHT technique comprises of two units that utilise the quantum-behaved PSO technique and
the Fuzzy k-NN algorithm so that both feature selection and classification accuracy in smeared cervical
images are enhanced.

We further clarify that (in Figure 4) the fuzzy k-NN is applied prior to computing the fitness
function, i.e., using the F1 score (defined later in Equation (29)). In other words, the QPSO approach
is used to find the variation of subset features by generating particles that are each evaluated by
calculating fitness values from the accuracy of classification result. Following this, the Fuzzy k-NN
method is applied to classify the categories of smear images. Based on their fitness values, the particles
with best fitness values are assigned as local best position and global best position. The particle that is
assigned as global best position represents the best subset features.

In this study, we shall use Fuzzy k-NN to enhance the accuracy of our classification of cells in
smeared cervical images, and the best position Pi_best of particle i is determined using Equation (18) [18].

4. Experiments on Smeared Cervical Images Using Q-Fuzzy Approach

Using the framework outlined in Figures 3 and 4, which were discussed in latter parts of the
preceding section, in this section, we present an experimental validation regarding the utility of our
proposed QH approach for feature selection in cervical cell classification.

4.1. Description of Dataset

For our experimental validation, the unit cell microscopic cervical smear (CS) images from the
Herlev dataset [24] will be used as input dataset. This dataset consists of 917 CS images that were
collated by cytology experts using a microscope connected to a digital camera. Each image was taken
with a resolution of 0.201 µm/pixel [10–12].

After capturing the images, cytology experts were tasked with manually classifying the CS images
into the seven classes discussed in Section 2. Each cell is assessed by two experts while a medical
doctor was asked to further examine the samples that are deemed hard to deal with. All the images
in the dataset are segmented into the cytoplasm, nucleus, and background regions using CHAMP
software [12]. Results of the segmentation were further examined by cytology experts to ensure
accuracy. A few sample images from the Herlev dataset (with their respective ground truth images)
are shown in Figure 5. Furthermore, Table 4 presents the description of the Herlev smeared cervical
dataset as well as their distribution and categories.
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Figure 5. Sample cervical smear images and manual segmentation (ground truth) images [2,11–13,15–17].
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Table 4. Classification of Pap smear single image cell types in the Herlev dataset [24].

Cell Class Name Cell Count Sub-Total

Normal
Normal superficial squamous 74

242Normal intermediate squamous 70
Normal columnar 98

Abnormal

Carcinoma in situ 150

675
Light dysplastic 182

Moderate dysplastic 146
Severe dysplastic 197

Total 917 917

4.2. Evaluation Method

Many approaches are utilised to evaluate the performance of classification algorithms. Here,
we use the Precision, Recall, and F1 Score analysis (or PRS analysis). Precision is used to ascertain the
accuracy of classification using the number of correctly classified positive examples divided by the
number of examples labelled by the system as positive (Equation (27)). Recall is the number of correctly
classified positive examples divided by the number of positive examples in the data (Equation (28)),
and F1 Score is a combination of Precision and Recall [30,31] as defined in Equation (29).

Precision(P) =
tp

tp + f p
(27)

Recall(R) =
tp

tp + f n
(28)

F1 score = 2.
P× R
P + R

(29)

where tp is true positive, fp is false positive, and fn is false negative.
The r-fold cross validation method is employed for validating the experimental results,

which considering the size of our data, 5-fold cross-validation is used.
To establish the relationship between the different feature classification approaches, we employ

Cohen’s kappa statistical measure, which is widely used to quantify agreement between two raters
(i.e., mechanism to assess or observe a variable or system), that each classify N items into C mutually
exclusive categories [32] as defined in Equation (30).

κ =
po − pe

1− pe
(30)

where po is the relative observed agreement between raters (akin to accuracy) and pe is the hypothetical
probability of chance agreement. If raters are in complete agreement κ = 1, whereas when there is
no agreement among the raters other than what would be expected by chance (i.e., as given by pe),
then κ ≤ 0.

4.3. Experimental Result for Cervical Smear Image Classification

Earlier in Section 3, the mechanism via which the best out of an assemblage of 17 features with
size of feature vector of 54 entries for the CS images were pruned down to seven features with a feature
vector of 32 entries.

The seven best features utilised for the remainder of our performance assessment are area
of nucleus (i.e., Equation (10), roundness of nucleus i.e., Equation (15)), brightness of nucleus
(i.e., Equation (19)), brightness of cytoplasm (i.e., Equation (22)), area of entire cell (i.e., Equation (23)),
ratio of nucleus and cytoplasm (i.e., Equation (25)), and local binary pattern with histogram Fourier
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(LBP-HF) (i.e., Equation (26)). Furthermore, for the LBP-HF, 25 of 38 feature vectors were selected.
Meanwhile, in the Fuzzy k-NN unit of the proposed Q-Fuzzy approach (Figure 3), we computed the
accuracy for varying values of k (i.e., the number of nearest neighbours as outlined earlier in Section 2
and discussed in standard literature including [22,23]) starting with k = 2, which implies that at least
2 nearest neighbours are considered in determining the prediction result. In addition, it was observed
that beyond k = 4 the accuracy of prediction results decreased, and so the upper bound was limited at
k = 7.

We clarify here that our experiments are mainly focused on establishing the impact of the
feature selection on the classification accuracy and how well our proposed QH approach (which
combines the QPSO algorithm with the Fuzzy k-NN—or simply the Q-Fuzzy approach) contributes
toward improving the performance of classification results, which is deemed crucial for cervical
cancer detection.

Consequently, we considered three experimental scenarios whereby, in the first two experiments,
we compared the classification results obtainable with and without prior feature selection.
This encompasses comparisons between our proposed Q-Fuzzy approach and other Fuzzy k-NN
hybrid methods including one that blends the standard PSO with the Fuzzy k-NN technique (which we
refer to as the P-Fuzzy approach) alongside the All-Features approach, i.e., classification without
prior feature selection imposing the use of all the image features. Based on this setup, in the first
experimental scenario, we present an assessment of the classification results for the All-features,
P-Fuzzy, and Q-Fuzzy approaches.

For a more objective assessment, we maintained the same parameter values of PSO and QPSO
as well as the number of particles and number of iterations (maintained as 20 and 200, respectively)
while varying the number of nearest neighbours, k. The outcomes (in Table 5) show that (for all values
of k) applying prior feature selection (i.e., in both the P-Fuzzy or Q-Fuzzy approaches) improved the
classification results in comparison to instances using all features (i.e., the All-Features approach).
The highest performance obtained without feature selection (i.e., using all features) is realised at k = 5,
whereas the best performance for the P-Fuzzy and Q-Fuzzy approaches was obtained at k = 4.

Table 5. Comparison of classification results for approaches with (i.e., P-Fuzzy and Q-Fuzzy) and those
without prior feature selection (i.e., All-features).

k
All-Features P-Fuzzy Q-Fuzzy

Precision Recall F1
Score κ Precision Recall F1

Score κ Precision Recall F1
Score κ

2 0.67 0.74 0.70 0.66 0.73 0.80 0.76 0.72 0.73 0.79 0.76 0.71
3 0.68 0.69 0.68 0.64 0.76 0.77 0.76 0.72 0.77 0.77 0.77 0.73
4 0.74 0.74 0.74 0.70 0.83 0.84 0.83 0.81 0.85 0.86 0.85 0.83
5 0.76 0.76 0.76 0.72 0.80 0.81 0.80 0.76 0.80 0.81 0.80 0.76
6 0.73 0.73 0.73 0.68 0.74 0.76 0.75 0.70 0.74 0.75 0.74 0.69
7 0.69 0.70 0.69 0.64 0.71 0.72 0.71 0.67 0.73 0.74 0.73 0.69

Furthermore, using the same approaches (i.e., All-features, P-Fuzzy, and Q-Fuzzy), in the second
experimental scenario, we assessed the impact of prior feature selection on the classification accuracy
for all the seven cervical cell categories. Our results, in Table 6, indicate that our proposed QH feature
selection approach that blends the QPSO algorithm with the Fuzzy k-NN (i.e., the Q-Fuzzy approach)
yielded better classification accuracy than both the All-features and P-Fuzzy approaches in terms of
outcomes of the PRS analysis. Further investigation of the outcomes indicates an improvement in the
classification accuracy for all cell categories when prior feature selection (P-Fuzzy or Q-Fuzzy) was
utilised. Moreover, our proposed Q-Fuzzy approach outperformed the P-Fuzzy hybrid approach for
all cervical cell categories (except the Normal Columnar category) with its best classification results in
the Normal superficial cell category.
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Table 6. Comparison of classification results with and without prior feature selection using the
all-features, P-Fuzzy, and proposed Q-Fuzzy approaches.

Cell Category
All Features (k = 5) P-Fuzzy (k = 4) Q-Fuzzy (k = 4)

Precision Recall F1
Score Precision Recall F1

Score Precision Recall F1
Score

Normal superficial 0.83 0.86 0.84 0.95 0.91 0.93 0.95 0.95 0.95
Normal intermediate 0.82 0.74 0.78 0.89 0.84 0.86 0.89 0.89 0.89
Normal columnar 0.63 0.67 0.65 0.65 0.72 0.68 0.61 0.74 0.67
Carcinoma in situ 0.74 0.83 0.78 0.81 0.87 0.84 0.84 0.90 0.87
Light dysplastic 0.83 0.78 0.81 0.88 0.94 0.91 0.89 0.97 0.93
Moderate dysplastic 0.69 0.85 0.76 0.83 0.96 0.89 0.89 0.96 0.93
Severe dysplastic 0.79 0.62 0.70 0.86 0.65 0.74 0.88 0.61 0.72

To further establish the utility of the proposed Q-Fuzzy QH approach, in the third experimental
scenario, we compared it (i.e., the proposed Q-Fuzzy approach) with other hybrid QH approaches
formed by blending the QPSO algorithm with other supervised learning methods, namely, the Naïve
Bayes (NB) and the support vector machines (SVM). Additionally, we examined the performance
of the proposed approach alongside other feature selection methods, such as the filtering approach
i.e., Relief [31,32] (by selecting the 25 top-ranked features from a feature vector of 54 entries (i.e., based
on the Relief score), the sequential feature selection (SFS) method, which has an in-built capability to
add or remove features sequentially [33,34] and the random forest (RF) method, which is an ensemble
learning based technique that is widely employed in classification, regression, etc. [31].

To clearly assess the potential impacts of integrating ‘quantumness’ into cell classification of
cervical smear images for the purpose of cervical cancer detection, our discussion of the results in
Table 7 will be predicated in two directions.

Table 7. Comparison of classification outcomes between hybrid QH approaches that combine QPSO
with Naïve Bayes, Support Vector Machines (SVM), Random Forest (RF), and Fuzzy k-NN.

Classifier Methods All Features

Feature Selection Methods

Non-Quantum HIS QHT

Relief SFS PSO QPSO

Naïve Bayes
(NB)

Precision 0.72 0.75 0.76 0.73 0.76
Recall 0.72 0.76 0.77 0.74 0.77

F1 score 0.72 0.75 0.76 0.73 0.76
κ 0.67 0.71 0.72 0.68 0.72

SVM

Precision 0.79 0.83 0.85 0.84 0.84
Recall 0.79 0.83 0.86 0.84 0.85

F1 score 0.79 0.82 0.84 0.84 0.84
κ 0.74 0.80 0.82 0.81 0.81

Random Forest
(RF)

Precision 0.79 0.83 0.85 0.84 0.85
Recall 0.80 0.83 0.86 0.84 0.86

F1 score 0.79 0.82 0.85 0.84 0.85
κ 0.74 0.80 0.83 0.81 0.82

Fuzzy k-NN
(k = 4 and k = 5)

Precision 0.76 0.74 0.80 0.83 0.85
Recall 0.76 0.79 0.85 0.84 0.86

F1 score 0.76 0.76 0.83 0.83 0.85
κ 0.72 0.72 0.80 0.81 0.83

First, we analyse the results in terms of the resulting HIS models that are realised by blending the
classifiers (in the extreme left of Table 7) with the feature selection methods (Naïve Bayes (NB) support
vector machines (SVM) and random forest (RF)) that produce the NB, RF, SVM, and Fuzzy k-NN
(FkNN) HIS models. To simplify our discussion, we further divided the models into two categories.
The first category consists of non-quantum HIS models wherein neither the classifier nor the feature
selection units has any ‘quantumness’ in it. The second category comprises of quantum HIS techniques
(or simply quantum hybrid techniques) that are realised by blending the QPSO feature selection
method with each of the four classifiers (NB, SVM, RF, and FkNN). The resulting NB, SVM, RF, and
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FkNN QHTs are shown highlighted in Table 7. Notably, we clarify that the FkNN QHT (whose results
are shaded in darker background) is also our proposed Q-Fuzzy approach that blends the QPSO into
the Fuzzy k-NN classifier method.

Our analysis in terms of the HIS models pitches the non-quantum models against the QH
techniques for each classifier method. As reported in Table 7, the QHT technique of each classification
method (i.e., QPSO blended with NB, QPSO blended with SVM, QPSO blended with RF and QPSO
blended with FkNN) present between marginal to modest improvements across all the parameters
(i.e., Precision, Recall, F1 score, and Cohen’s Kappa measure) used to assess the classification accuracy
than most of the non-quantum HIS models for that same classifier. Similarly, the results obtained when
All-Features (i.e., without prior feature selection) methods is used are improved along all parameters
in comparison with using the QHT of each corresponding classification method.

To focus the assessment in terms of our proposed Q-Fuzzy approach, the second perspective of
our discussion of the results in Table 7 is confined to comparisons between the four QHTs. The results
(shaded area) show that, with the exception of the RF-based QHT, our proposed Q-Fuzzy approach
(or FkNN-based QHT) performs better than the NB and SVM-based QHTs in terms of all four
parameters that are reported (in Table 7). Even though these improvements are modest (ranging
between 1 to 9 percent for Precision, Recall and F1 score and 2 to 11 percent for the Cohen’s Kappa
statistical measure) their impact in terms of better detection of cancerous cells in cervical smear images
are significant. Moreover, as reported earlier in Table 6, our proposed Q-Fuzzy approach outperformed
its closest competition (the P-Fuzzy technique or PSO-based non-quantum HIS) in terms of accuracy
of classifying most of the cell categories in the cervical smear images. Similarly, as reported in Table 5,
the proposed Q-Fuzzy approach presented better classification accuracy in terms of abnormal cell
categories than the P-Fuzzy method.

In concluding, we reiterate that all along our objective has been to explore the impact of integrating
‘quantumness’ into HIS models. As reported earlier in this section, the quantum hybridised QHT
models enhanced the classification accuracy across most of classifier methods (i.e., NB, SVM and Fuzzy
k-NN) that were evaluated. Furthermore, as noted in earlier Section 2, the improvements recorded via
the proposed Q-Fuzzy approach could be attributed to the manner that the intuitionistic rationality of
the Fuzzy k-NN complements the adaptive search capability of the quantum-behaved QPSO algorithm.
Consequently, the foregoing narrative enunciates potential applications for quantum machine learning
algorithms in image-based approaches to disease diagnosis and treatment.

5. Concluding Remarks

Accuracy is an important aspect of cell detection and delineation, especially in many image-based
applications for disease diagnosis. To enhance the accuracy of classification of cells in smeared
cervical images, our study proposes a hybrid feature selection technique that combines the potency
of the quantum-behaved particle swarm optimisation (QPSO) algorithm with the versatility of the
Fuzzy k-nearest neighbours (Fuzzy k-NN) algorithm (i.e., the proposed quantum hybrid (QH) or
Q-Fuzzy technique).

From an initial multitude of 17 features that describe the geometry, colour, and texture of the
cervical images, the QPSO stage of our proposed technique is used to select the best subset features
(i.e., global best particles) that represent a pruned-down collection of seven features.

Using the Herlev dataset [24]) consisting of almost 1000 images, our verification of the cogency
of the proposed QH approach in cervical cancer detection was predicated upon its use in three
experimental scenarios. The purpose of the first two scenarios is to establish the impact of prior feature
selection on classification accuracy. In these experiments, we compared the All-Features approach
(i.e., when no prior feature selection is used in the classification) alongside HIS models including the
P-Fuzzy approach (which is a hybrid approach that combines the standard PSO algorithm with the
Fuzzy k-NN technique) on one side and alongside our proposed Q-Fuzzy approach that blends the
quantum-behaved PSO algorithm with the Fuzzy k-NN technique. Outcomes from these tests confirm
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that integrating ‘quantumness’ into the feature selection units led to enhanced classification accuracy.
Moreover, the efficacy of our proposed Q-Fuzzy approach manifests in the manner that it rivals the
P-Fuzzy approach in terms of classification accuracy for six out of the seven cervical cell categories.
In the third experimental scenario, we established the synergy between the quantum-behaved PSO and
the Fuzzy k-NN technique that form our proposed Q-Fuzzy approach by comparing its classification
accuracy alongside that from a trio of hybrid QH approaches that each blends the QPSO with other
classification methods, namely the Naïve Bayes (NB) networks, the random forest (RF) ensemble
method and the support vector machine (SVM). Outcomes establish that the adaptive search capability
of the quantum-behaved QPSO algorithm is best complemented by the intuitionistic rationality
inherent to the Fuzzy k-NN technique. Overall, our proposed QPSO blended Fuzzy k-NN QH
approach (i.e., Q-Fuzzy approach) outperformed the other approaches that QPSO blended with the
NB and SVM with modest average increases ranging from 2 to 11 percent in terms of the classification
parameters that were evaluated.

Buoyed by the foregoing outcomes, in ongoing work, additional ‘quantumness’ will be exploited
and integrated into the QPSO (as well as in QH techniques generally) so that the accuracy and
performance of the feature selection could be further enhanced. These efforts would improve the
effectiveness of image-based approaches used in cervical cancer diagnosis and treatment. Later,
we hope to exploit these strategies (and others in [35]) in image-based detection of other carcinogens.
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