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Abstract: This paper considers a single-hop wireless sensor network where a fusion center collects
data from M energy harvesting wireless sensors. The harvested energy is stored losslessly in an
infinite-capacity battery at each sensor. In each time slot, the fusion center schedules K sensors for
data transmission over K orthogonal channels. The fusion center does not have direct knowledge
on the battery states of sensors, or the statistics of their energy harvesting processes. The fusion
center only has information of the outcomes of previous transmission attempts. It is assumed that
the sensors are data backlogged, there is no battery leakage and the communication is error-free.
An energy harvesting sensor can transmit data to the fusion center whenever being scheduled only if
it has enough energy for data transmission. We investigate average throughput of Round-Robin type
myopic policy both analytically and numerically under an average reward (throughput) criterion.
We show that Round-Robin type myopic policy achieves optimality for some class of energy
harvesting processes although it is suboptimal for a broad class of energy harvesting processes.

Keywords: energy harvesting; decision making; resource allocation; scheduling policy;
wireless sensor network

1. Introduction

1.1. Motivation

The Internet of Things (IoT) is an intelligent large-scale communication infrastructure of uniquely
identifiable devices capable of communicating with each other wirelessly through the Internet [1].
The devices in an IoT structure are typically equipped with wireless sensors [2]. Wireless Sensor
Networks (WSNs) provide the opportunity of efficient data collection and transmission anywhere [3].
Thus, WSNs have various applications, such as agriculture [4], ambient air monitoring [5,6], frost
monitoring [7], structural health monitoring [8–10], remote assistance for elderly people [11], home
monitoring [3,11–13] and smart cities [14,15]. Being frugal with energy consumption is important to
several WSN deployments. Energy harvesting (EH) [16] can particularly facilitate WSN applications
where replacing battery is not practical. Therefore, energy harvesting is a promising approach for the
emerging IoT technology [17]. Energy may be harvested from the environment in several different
ways (solar, piezoelectric, wind, etc.) [17]. As energy harvesters generally depend on uncontrollable
energy resources and the amount of harvested energy is generally low [17,18], WSNs need robust,
self-adaptive, energy efficient policies to optimize their reliable operation lifetime [19,20].

In this paper, we consider a fusion center (FC) collecting data from M EH wireless sensors. At each
time slot (TS), K sensors are scheduled for data transmission by the FC, which does not have the direct
knowledge of the battery states of the sensors or the statistics of their EH processes. It is assumed
that the communication is error-free and the sensors are data backlogged but limited in available
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energy. Each sensor has an infinite-capacity battery to store the harvested energy and battery leakage
is ignored. When a sensor is scheduled in TS t, it sends data to the FC in the TS t as long as it has
enough energy in that TS. Sending one packet takes up one TS. The objective of the FC is to maximize
the average throughput over a time horizon.

In fact, battery states can be made available to the FC through some additional cost (i.e., feedback)
and complexity in some WSNs. However, sending information about the battery state will cause
extra time and energy consumption, which we avoid. Assume that the header containing only
battery state is H bytes and the remaining part (payload + other headers) of the data packet is
P bytes, then sending information about battery state will cause H

P times more time and energy
consumption than those consumption not sending no information about battery state. We can avoid
extra time consumption by consuming significantly more energy. As it is well known in communication
field, data transmission rate is a concave function of transmission power. In fact, the well known

Shannon’s capacity formula [21] ( Shannon’s capacity formula is C = B log2(1 +
S
N
), where C is

the maximum capacity of the channel in bits/second otherwise called Shannon’s capacity limit for
the given channel, B is the bandwidth of the channel in Hertz, S is the signal power in Watts and
N is the noise power, also in Watts. The ratio S

N is called Signal to Noise Ratio (SNR)) indicates
that this concave function is a logarithmic function. Therefore, when sending info about battery
state, we can avoid the extra time consumption only by consuming much more extra energy than H

P .
For example, assume that the overhead containing knowledge of battery state is one fourth of the
exact data, i.e., H

P = 1
4 . Then, sending both overhead and exact data instead of sending only exact

data in the same time duration may cause two times more energy consumption. Thus, it can be said
that although energy consumption and network lifetime are not performance metrics in the problem
at hand, the problem definition (with sending no information about battery states) helps sensors
decrease energy consumption per data packet transmission and thus network lifetime can be increased.
Therefore, it is more relevant from a practical perspective that the FC makes scheduling decisions
without any knowledge about battery states or statistics of their EH processes [22].

To set up the problem, a model about generation and usage of energy is needed. Each sensor
accesses the energy state of its own battery only at the beginning of the time slots in which it is
scheduled by the FC. Moreover, independent from the functional form (linear or other) and type of
energy harvesting resource (solar, wind, piezoelectric, RF, etc.), the net amount of harvested energy
minus used energy is stored losslessly. This assumption is consistent with typical batteries in use today
for which leakage is negligibly small over several minutes because battery leakage causes the battery
to self-discharge less than 10% (10% for Nickel-based batteries and 5% for Lithium-ion batteries) in
24-h from the results in [23]. Based on these mild assumptions about EH processes, an appropriate
performance criterion is the average throughput (reward) criterion over a time horizon rather than
expected discounted throughput (reward) for the problem at hand [24].

1.2. Related Work

Although EH processes are not limited to be Markovian in this work, under Markovian
assumption, the problem could be formulated as a partially observable Markov decision process
(POMDP) [25]. In this case, dynamic programming (DP) [26] may be employed for optimal solution.
However, DP has exponential complexity, which limits its scalability [27].

A second approach is reinforcement learning by considering the problem as a POMDP.
Q-learning [28], one of the most effective model-free reinforcement learning algorithms,
would guarantee convergence to an optimal solution in this problem. However, its very slow
convergence [29] deems it non-ideal for a problem with a sizeable state space, especially as the
discount factor approaches 1. R-learning [30], which maximizes the average reward, may be considered;
however, there is no guarantee on the convergence of R-learning. Therefore, reinforcement learning do
not seem to be suitable for obtaining an efficient solution to this problem. There are other approaches
that can, in the long run, guarantee convergence to optimal behavior. However, in many practical
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applications, a policy that achieves near optimality very quickly is preferable to the one that converges
too slowly to exact optimality [29].

Another approach to this problem is to set it up as a restless multi-armed bandit (RMAB) problem.
An optimal solution was proposed for RMAB problem under certain assumptions by Whittle [31].
It is shown that finding the optimal solution to a general RMAB problem is PSPACE-hard [32]
(In complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing
machine using a polynomial amount of space). As a policy with a reasonable complexity, myopic
policy (MP) has been suggested for various RMAB problems. While MP is not optimal in general since
it focuses only on the present state [33], it can be proven to be optimal in certain special cases.

A very similar problem to the problem at hand is investigated in [34,35]. In fact, we pose the
same problem in [34,35] with the exception that we assume infinite capacity battery without leakage
at the sensors, in contrast to [34,35] where either no battery or unit capacity batteries with leakage
are assumed. Both [34,35] formulate the problem as a POMDP, and, due to the myopic approach in
these work, the focus is on the immediate reward instead of future rewards. In [35], a single-hop
WSN consisting of EH sensors with unit capacity batteries (i.e., able to store only one transmissions’s
worth of energy) and a fusion center is posed as a RMAB problem. The optimality of a round-robin
(RR) based MP is proved under certain specific assumptions. Then, it is shown that this RR based
MP coincides with the Whittle index policy, which is generally suboptimal for RMAB problems [36],
for a specific case. In [34], the problem is formulated as a POMDP and the optimality of a MP is
proven for two cases: (1) the sensors are unable to harvest and transmit simultaneously, and transition
probabilities of the EH processes are affected by the scheduling decisions, and (2) the sensors have
no batteries.

In [37–39], we investigate quite a similar problem with the problem at hand, although the problem
in [38] has some differences due to its system model. In this paper, we consider more general class of
energy harvesting processes than [37,39] do (as it is explained in the rest of this paper, we consider
energy harvesting processes with intensities both ρ ≤ 1 and ρ > 1 in this paper, whereas we consider
only energy harvesting processes with intensities ρ ≤ 1 in [37–39]. Besides this, in this paper, we also
consider the cases for which finding exact throughput performance of the myopic policy is not possible
with using only intensities. For these cases, we find an upper bound for the throughput performance
of the myopic policy).

1.3. Our Contributions

Main contributions of the paper are summarized as follows:

• The EH WSN problem is studied under average throughput (reward) criterion and no battery
leakage assumption for the most general class of EH processes whereas the problem is studied
under discounted throughput (reward) criterion and battery leakage assumption for certain
specific cases in [34,35].

• This paper considers a battery capacity (infinite-capacity) larger than unit capacity (which is the
maximum battery capacity considered in [34,35]) for the EH WSN problem.

• We show that under average throughput criterion and infinite-capacity battery assumption,
RR policies including the MP in [34,35] achieve optimality for some class of EH processes although
they are suboptimal for a broad class of EH processes.

• We obtain an upper bound for throughput performance of the RR policies under average
throughput criterion for quite general (Markov, i.i.d., nonuniform, uniform, etc.) EH processes.
Furthermore, we show that all RR policies including the myopic policy achieve almost the same
throughput performance under an average throughput criterion.

• Compared with [34,35], we consider more reasonable finite capacity battery case in the numerical
results and show that there is a slight difference in throughput performance between the finite
capacity battery case and infinite capacity battery case.
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1.4. Organization of the Paper

The rest of this paper is organized as follows. The system model and problem formulation are
given in Section 2. In Section 3, we show that RR based MP in [34,35] cannot achieve 100% throughput
for a broad class of EH processes under average throughput (reward) criterion. Moreover, we obtain an
upper bound for throughput performance of RR policies including the myopic policy under average
throughput criterion. Furthermore, we show that RR policies including the myopic policy achieve
almost the same throughput as each other. In Section 4, numerical results show that the myopic policy
is suboptimal for a broad class of EH processes, which supports the results found in Section 3. Section 5
concludes the paper and provides some future directions.

2. System Model and Problem Formulation

We consider a single-hop WSN where a fusion center (FC) collects data from M EH-capable
sensors (please see Figure 1). The index set of all sensors is denoted by S = {1, 2, . . . , M}. The WSN
operates in a time-slotted fashion indexed as t = 1, 2, . . . , T. At the beginning of each TS, the FC
schedules K sensors for data transmission by assigning each sensor to one of its K mutually orthogonal
channels. As the research community working on multi-channel protocols generally either assume
that channels are perfectly orthogonal (interference-free) or consider the use of only orthogonal
channels [40], we assume that the channels are mutually orthogonal, i.e., there is no interference.
If the sensors send data at a low data transmission rate and interference management is applied,
very low-error transmission can be achieved. Therefore, we assume error-free transmission in the WSN.
We assume that the sensors always have data to send as it is assumed in [34,35]. When you consider
a single hop wireless sensor network in a wide lowland (flat cropland), there will be no obstacles
like buildings, hills which may cause shadowing, reflection, refraction or absorption/diffractions, etc.
In a single hop WSN with a central scheduler, the sensors are expected to send the same type of data
such as humidity, temperature, pressure, etc. Considering the applications of WSNs in agriculture and
frost monitoring [41–45], the sensors have nearly the same propagation conditions to send the same
type of data in large croplands. Therefore, we assume that data packets have equal size and sending
one packet takes up one TS. A unit energy is defined as the energy required for a sensor to send one
packet in one TS.

N1

N2

N3 N4

N5

N6

N7

N8N9

N10

FC

Figure 1. An example single hop WSN where an FC collects data from 10 EH sensors.

The energy harvested by sensor i in TSs 1 through t is denoted by Ei(t), and the energy harvested
in TS t is denoted by Eh

i (t); i.e., Eh
i (t) = Ei(t + 1)− Ei(t). For t = 1, . . . , T, we define the activation set,

denoted by π(t), as set of the sensors scheduled in TS t under a policy π.
As it is assumed in [34,35], if a sensor has sufficient energy and scheduled in TS t, it sends one

data packet to the FC in TS t. The number of data packets sent by sensor i in TS t under a policy π can
be written as I{i∈π(t)}I{Bπ

i (t)≥1} ∈ {0, 1}, where I{.} is the indicator function and Bπ
i (t) is the stored
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energy in infinite-capacity battery of sensor i in TS t under a policy π. Under the policy π, Bπ
i (t) is

evolved as
Bπ

i (t + 1) = Bπ
i (t) + Eh

i (t)− I{i∈π(t)}I{Bπ
i (t)≥1} ∀i, t. (1)

The number of data packets sent by all sensors to the FC within the first t TSs under a policy π is
denoted by Vπ(t), which is Vπ(t) = ∑M

i=1 Vπ
i (t), where the number of packets sent by sensor i in TSs

1 through t under a policy π is denoted by Vπ
i (t) = ∑t

τ=1 I{i∈π(τ)}I{Bπ
i (τ)≥1}.

In [34,35], the objective is to find a policy that maximizes the total throughput over the time
horizon under expected discounted reward criteria, where the discount factor corresponds to battery
leakage. (Ref. [34] considers the problem under discounted throughput (reward) criteria since [34]
assume battery leakage with discount factor 0.9 such that stored energy decreases to 90% in a time
slot which is generally less than 1 ms. However, this is not realistic with recent battery technology.)
On the other hand, battery leakage in typical batteries causes less than 10% decrease in the stored
energy in 24 h [23]. This decrease implies that battery leakage in a 1 ms-long time slot is less than
0.000000005% and so the discount factor is greater than 0.9999999988, i.e., 0.9999999988 ≤ β < 1
(Twenty-four hours equals to 86400000 ms. If length of a time slot is chosen as 1 ms, then 0.90 ≤
β86400000 < 1 which implies that 0.9999999988 ≤ β < 1). Therefore, we neglect battery leakage in
our problem formulation, which is practical in terms of engineering aspects. As the problem at hand
assumes infinite data backlog and no battery leakage from [19,23], it is delay insensitive by nature.
Hence, from [19,23,24], we formulate the scheduling problem as follows.

Problem 1. Average throughput (reward) maximization over a time horizon, T

max
{π(t)}T

t=1

1
T

Vπ(T),

s.t. Label (1).

The following notions are used in the rest of the paper.

Definition 1. For a given sequence of energy harvests, an optimal policy, π∗, is a policy that maximizes the

total throughput of all sensors upto KT over a time horizon, T, i.e., π∗ , arg max
π∈G

Vπ(T)
T

, where G is set of

feasible policies.

Definition 2. A fully efficient policy, πFE, is a policy under which the sensors use up all of their harvested
energy at the end of the time horizon which yields VFE(T) = ∑M

i=1 VFE
i (T) (Although we use Vπ(t) to denote

the total throughput achieved in first t TSs under a policy π, the total throughput achieved in first t TSs under a
policy πFE is denoted by VFE(T) instead of VπFE

(T) for simplicity. Moreover, V∗(T) and VRR(T) are used
instead of Vπ∗(T) and VπRR

(T), respectively. Similarly, VFE
i (T), V∗i (T) and VRR

i (T) are used instead of
VπFE

i (T), Vπ∗
i (T) and VπRR

i (T), respectively.), where VFE
i (T) = bEi(T)c.

For certain EH processes, an optimal policy may not be a fully efficient policy, as it is explained
in Remark 1.

Definition 3. Efficiency of a policy π, denoted by η(π), is defined as the ratio of the throughput of a policy π

over the throughput of a fully efficient policy, πFE, over the time horizon, T. It can be expressed as

η(π) ,
Vπ(T)
VFE(T)

, (2)

where Vπ(T) and VFE(T) are the number of collected data packets (throughput) over a time horizon T under
a policy π, and fully efficient policy πFE, respectively (When K and T are in order of tens and thousands,
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respectively, throughput of an optimal policy is expected to be in the order of ten thousands. The term, efficiency,
provides us the opportunity of dealing with small numbers less than or equal to 1 instead of large throughput
numbers. Efficiency of a policy also gives us the relative throughput of that policy to the throughput of a fully
efficient policy, which provide convenience in numerical results).

The efficiency term itself can also be considered as relative energy consumption of the system to
total energy harvested by the system.

The number of data packets which can be sent by all sensors from TS t + 1 to TS T is denoted by
Y(t), i.e.,

Y(t) , VFE(T)−V∗(t). (3)

The number of data packets which can be sent by sensor i from TS t + 1 to TS T is denoted by
Yi(t), i.e.,

Yi(t) , VFE
i (T)− max

π∗∈G∗
V∗i (t), (4)

where G∗ is the set of all throughput-optimal policies (under different throughput-optimal policies,
the throughput of a sensor i in first t TSs may be differed since sensor i may be scheduled by the FC
different times under different throughput-optimal policies).

Notice that Y(0) = ∑M
i=1 bEi(T)c and Yi(0) = bEi(T)c.

Definition 4. Intensity of sensor i, ρi, is defined as the integer part of the total energy harvested by sensor i
over the time horizon, T, normalized by KT

M , i.e.,

ρi ,
M bEi(T)c

KT
.

Definition 5. Intensity, ρ, is defined as the sum of integer parts of the total energy harvested by all sensors
over the time horizon, T, normalized by KT, i.e.,

ρ ,
∑M

i=1 bEi(T)c
KT

=
∑M

i=1 ρi

M
.

Remark 1. If both of the following conditions, Yi(t) ≤ (T − t) ∀i ∈ S, ∀t and Y(t) ≤ K(T − t) ∀t,
are satisfied, then an optimal policy becomes a fully efficient policy, i.e., V∗(T) = VFE(T). Otherwise,
an optimal policy cannot achieve throughput of VFE(T) = ∑M

i=1 bEi(T)c, i.e., V∗(T) < VFE(T). In the cases
violating at least one of these conditions, comparing a policy with a fully efficient policy is much simpler than
comparing it with an optimal policy. Therefore, we also introduce the notion of fully efficient policy.

For ease of reference, our commonly used notation is summarized in Table 1.

Table 1. Summary of commonly used symbols and notation.

Symbol Definition

M The number of energy harvesting nodes
K The number of mutually orthogonal channels of FC
S The index set of all nodes
T The time horizon

Vπ(t) Throughput of all nodes in TSs 1 through t under a policy π
Vπ

i (t) Throughput of node i in TSs 1 through t under a policy π
η(π) Efficiency of a policy π
Yi(t) The number of packets which can be sent by node i in (t, T]

ρi Intensity of node i
ρ Intensity
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3. Efficiency of Myopic and Round Robin Policies

A similar problem to the problem at hand is studied in [34,35] for certain specific cases under
discounted reward criterion. RR based MP is proposed in both papers in which they prove the
optimality of this policy for certain specific cases. We applied this RR based myopic policy to the
problem at hand. As the MP in [34,35] is an RR policy with quantum = 1 TS, we investigate only RR
policies with quantum = 1 TS, denoted by πRR, in this paper.

Definition 6. For the network that consists of M sensors and an FC with K channels, a Round Robin (RR)
policy with quantum = 1 TS is an RR policy under which the FC schedules the sensors by allocating one TS
to each sensor for data transmission in a period of M

K TSs (Quantum is defined as the number of TSs allocated
to each sensor in a period (round) by an RR policy. An RR policy with quantum=n TSs is an RR policy that
allocates n TSs to each sensor in a period (round) of Mn

K , and so on. For applicability of RR policies with quantum
= n ≥ 1 TS, M

K must be an integer).

In this section, we show that RR policies with quantum = 1 TS are generally suboptimal by
Theorem 1. Next, we study their efficiencies more precisely and obtain an upper bound for their
efficiencies by Theorem 2. Then, we show that an RR policy with quantum = 1 TS achieves almost the
same efficiency as another RR policy with quantum = 1 TS by Theorem 3, which implies that the MP
in [34,35] is generally suboptimal and the upper bound obtained for RR policies with quantum = 1 TS
is also valid for the MP in [34,35].

Theorem 1. If there exist some sensors i ∈ S such that Yi(t) >
⌈

K(T−t)
M

⌉
for some t < T, all RR policies

with quantum = 1 TS have efficiency lower than 100% even if fully efficient policy exists for Problem 1
(they are suboptimal).

Proof. Under an RR policy with quantum = 1 TS, each sensor is visited by the FC either
⌊

K(T−t)
M

⌋
or
⌈

K(T−t)
M

⌉
times if K(T−t)

M is not an integer. If K(T−t)
M is an integer, then FC allocates K(T−t)

M TSs to

each sensor. This means that total number of transmissions from any sensor cannot exceed
⌈

K(T−t)
M

⌉
.

Yi(t) >
⌈

K(T−t)
M

⌉
implies that sensor i need to send more than

⌈
K(T−t)

M

⌉
data packets in TSs t + 1

through T so as to send VFE
i (T) = bEi(T)c packets, which must be sent by each sensor for full

efficiency. Hence, even if a fully efficient policy exists, any RR policy with quantum = 1 TS is not fully
efficient for Problem 1 (they are suboptimal).

3.1. Efficiency Bounds of RR Policies with Quantum = 1 TS

In this subsection, efficiency bounds of RR policies with quantum = 1 TS are studied precisely for
general EH processes.

Lemma 1. There exists a class of EH processes with intensity ρi, such that, for these EH processes, some sensor
i transmits lower than min {Yi(0), qi} data packets over a time horizon, T, by an RR policy with quantum =
1 TS, where qi is the number of TSs allocated to sensor i over the time horizon, i.e., qi ∈

{⌊
KT
M

⌋
,
⌊

KT
M

⌋
+ 1
}

.

Proof. Please see Appendix A.

Now, we introduce two sets, H1 and H2, which are used in Theorem 2, Corollaries 1 and 2.
H1 denotes the index set of the sensors i for which

⌊
KT
M

⌋
+ 1 TSs are allocated and Yi(0) >

⌊
KT
M

⌋
+ 1.

Moreover, H2 denotes the index set of the sensors i for which
⌊

KT
M

⌋
TSs are allocated and Yi(0) >

⌊
KT
M

⌋
.

By definition, ρi > 1 for sensors i ∈ H , H1 ∪ H2.
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Theorem 2. For general EH processes,

(i) If KT
M /∈ Z, efficiency of an RR policy with quantum=1 TS satisfies

η(πRR) ≤ 1−
∑
i∈H

(ρi − 1)− M
KT
|H1|

Mρ
.

(ii) If KT
M ∈ Z, efficiency of an RR policy with quantum=1 TS satisfies

η(πRR) ≤ 1−
∑
i∈H

(ρi − 1)

Mρ
.

Proof. Please see Appendix B.

From Theorem 2, we derive the following corollaries.

Corollary 1. For sufficiently large T, we have M � KT. By the definition, |H1| < ∑i∈H1
ρi ≤ Mρ so

|H1|
KTρ � 1. Hence, upper bound of efficiency of an RR policy with quantum=1 TS can approximately be written

as 1− ∑i∈H(ρi−1)
Mρ .

Corollary 2. For sufficiently large T, |H1| < Mρ� KTρ. If |H1|
KTρ in part (i) of Theorem 2 is neglected and

(i) If H = ∅, then η(πRR) ≤ 1.

(ii) If ρi = c, ∀i ∈ H and ρi = 0, ∀i ∈ S− H, then η(πRR) ≤ min
{

1, 1
c

}
where c ∈ R+.

3.2. Throughput Difference of RR Policies with Quantum = 1 TS

We will prove that the throughput difference between any two RR policies with quantum = 1 TS
cannot be greater than M− K in a time horizon. Recall that, for all RR policies with quantum = 1 TS,
the scheduling is periodic with a period of M

K TSs. The only difference between any two RR policies
with quantum = 1 TS is their initial scheduling time, t0; therefore, an RR policy with quantum = 1 TS
that starts to send first packet in TS t0 can be labeled as RRt0 , where 1 ≤ t0 ≤ M

K .

Lemma 2. The number of transmissions of sensor i can be varied at most one under two different RR policies
with quantum = 1 TS over the time horizon T, i.e.,

max
1≤t0≤M

K

V
RRt0
i (T)− min

1≤t0≤M
K

V
RRt0
i (T) ≤ 1.

Proof. Please see Appendix C.

The following example is given to illustrate Lemma 2.

Example 1. Assume that T = 14, M = 3 and K = 1. There are three RR policies with quantum=1 TS which
schedule the same sensor node i in different TSs as follows.

RR1: Sensor i is scheduled in TSs 1, 4, 7, 10, 13,
RR2: Sensor i is scheduled in TSs 2, 5, 8, 11, 14,
RR3: Sensor i is scheduled in TSs 3, 6, 9, 12.

Notice that sensor i have the chance of transmission five times under RR1 and RR2 while it has a chance
of transmission only four times under RR3. Denote the transmission times of sensor i under different RR
policies by tn

j where n = 1, 2, 3 are the indices (initial scheduling times) of RR policies and j = 1, . . . , 4
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or 5 are transmission times of sensor i under the applied RR policy in this example. Ei(t2
j ) ≥ Ei(t1

j ) for
j = 1, . . . , 5 and Ei(t2

j+1) ≥ Ei(t3
j ) for j = 1, . . . , 4 and Ei(t1

j+1) ≥ Ei(t3
j ) for j = 1, . . . , 4; therefore,

VRR2
i (14) ≥ VRR1

i (14) = VRR1
i (13) ≥ VRR3

i (14) = VRR3
i (12). On the other hand, Ei(t2

j ) ≤ Ei(t3
j ) for

j = 1, . . . , 4; therefore, VRR2
i (11) ≤ VRR3

i (12). The difference between the most and the least efficient RR
policies with quantum = 1 TS are

VRR2
i (14)−VRR3

i (14) = VRR2
i (14)−VRR3

i (12)

≤ VRR2
i (14)−VRR2

i (11)

≤ 1.

Hence, it is observed that throughput of a sensor i can be varied at most 1 under any RR policies with
quantum = 1 TS.

The following theorem is based on the extension of Lemma 2 for the whole network.

Theorem 3. An RR policy with quantum = 1 TS achieves at most M− K more throughput than another RR
policy with quantum = 1 TS over the time horizon T, i.e.,

max
πRR∈GRR

VRR(T)− min
πRR∈GRR

VRR(T) ≤ M− K,

where GRR is the set of all RR policies with quantum = 1 TS.

Proof. In this proof, we first consider the case of transmitting messages of M
K sensors over a single

channel under an RR policy with quantum = 1 TS. Then, we extend the result of Lemma 2 to the case
of multiple (K) channels. Notice that

t0 = mod( M
K )TI{mod

( M
K )

T 6=0
} +

M
K
I{

mod
( M

K )
T=0

}

is the best choice regardless of the sensor i and this most efficient RR policy must be applied to
one of the M

K sensors over a single channel. When K channels of the FC are considered, this most
efficient RR policy must be applied to K of M sensors. By considering this fact and Lemma 2, an RR
policy with quantum = 1 TS transmits at most M− K more data packets than another RR policy with
quantum = 1 TS.

Remark 2. From Theorem 3 and Definition 2,

max
πRR∈GRR

η(πRR)− min
πRR∈GRR

η(πRR) ≤ M− K
VFE(T)

=
M− K
ρKT

,

where GRR is the set of all RR policies with quantum = 1 TS.

As the MP in [34,35] is also an RR policy with quantum = 1 TS, from Remark 2, it has almost
same efficiency as another RR policy with quantum=1 TS for sufficiently large time horizon T, i.e.,
η(πMP) ≈ η(πRR) if K, M� T. For sufficiently large time horizons, these results can be extended for
RR policies with quantum = n > 1 TSs.

4. Numerical Results

In this section, efficiency of the myopic policy (MP) is evaluated for the cases of infinite battery
and finite battery with B = 50 (B = 50 implies that the battery of a sensor can store energy enough to
send 50 data packets since we assume that each data packet transmission requires one unit of energy)
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at the time horizons varying from 0 to 2000 TSs via simulations (as efficiency of a policy are defined
only for the time horizon, T, we obtain efficiency vs. time horizon figures in this section. Notice that
efficiency of the MP at T = 0 is taken as 0 for these simulations).

For each node i, the Markovian EH process is modelled by a state space {0, 1, 2} and a 3× 3

transition matrix

 0.90 0.05 0.05
0.05 0.90 0.05
0.05 0.05 0.90

. The harvested energy for sensor i in TS t is Eh
i (t) =

K
M × ρi ×

Mi(t) where EH state of sensor i in TS t is denoted by Mi(t) ∈ {0, 1, 2}.
Notice that efficiency of the MP in [34,35] is almost the same as efficiency of an RR policy with

quantum=1 TS since η(πRR) ≈ η(πMP) for sufficiently large T from Theorem 3 and Remark 2. We
observe efficiency of the MP under nonuniform EH processes (it is obvious that the MP achieve
efficiencies close to efficiency of an optimal policy for uniform EH processes. As this case is trivial, we
did not show the results for this case).

The simulations are made by taking M = 100 and K = 10 under Markovian and i.i.d EH processes
with various intensities which are adjusted by choosing intensities of some sensors as 3.0 and choosing
others as 0.3 as explained in Table 2 (In WSNs, it is highly possible that some EH sensors can harvest
energy much efficiently than others due to their energy harvesting resource (solar, piezoelectric, RF,
wind, etc.) and environmental conditions. For example, solar energy harvesting is generally more
efficient than the others. Therefore, we choose intensities of some sensors much larger than the others
(3.0 for some sensors and 0.3 for the remaining ones) in order to represent the difference between the
amount of energy harvested by sensors).

Table 2. W and L denote the numbers of sensors with ρi = 0.3 and ρi = 3.0, respectively. ρ denotes the
resultant intensity.

W 95 85 75 65 55
L 5 15 25 35 45
ρ 0.435 0.705 0.975 1.245 1.515

4.1. Infinite Capacity Battery

In Figure 2, for i.i.d. EH process with ρ ≤ 1, efficiencies of the MP at T = 2000 are 0.758, 0.564 and
0.469 for ρ = 0.435, ρ = 0.705 and ρ = 0.975, respectively. In Figure 3, for Markov EH process with
ρ ≤ 1, at T = 2000, the MP achieves efficiency of 0.758, 0.552 and 0.467 for ρ = 0.435, ρ = 0.705 and
ρ = 0.975, respectively. The dramatic difference between efficiencies of the MP in these three intensities
is expected since Theorem 2 and Corollary 1 state that, as the number of nodes with intensity ρi > 1
increases, the efficiency of RR policies with quantum = 1 TS decrease. Notice that, from Theorem 2
and Corollary 1, efficiencies of an RR policy with quantum = 1 TS at T = 2000 are expected to be
η(πRR) ≤ 0.770, η(πRR) ≤ 0.574 and η(πRR) ≤ 0.487 for ρ = 0.435, ρ = 0.705 and ρ = 0.975,
respectively. When EH processes have memory (Markov processes), we observe similar results to the
results in memoriless (i.i.d.) EH processes with same intensity.

In Figure 2, for i.i.d. EH process with ρ > 1, efficiencies of the MP at T = 2000 are 0.417 and
0.380 for ρ = 1.245 and ρ = 1.515, respectively. In Figure 3, for Markov EH process with ρ > 1,
at T = 2000, the MP achieves efficiency of 0.415 and 0.381 for ρ = 1.245 and ρ = 1.515, respectively.
From Corollary 1, efficiencies of an RR policy with quantum = 1 TS at T = 2000 are expected to be
η(πRR) ≤ 0.438 and η(πRR) ≤ 0.406 for ρ = 1.245 and ρ = 1.515, respectively. For EH processes with
ρ > 1, from Definitions 1–3, efficiency of an optimal policy is η(π∗) = V∗(T)

VFE(T) ≤
1
ρ . Hence, at T = 2000,

η(π∗) ≤ 0.803 and η(π∗) ≤ 0.660 for ρ = 1.245 and ρ = 1.515, respectively. Markov EH processes
have similar results to the results for i.i.d. EH processes with same intensity.
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Figure 2. Efficiency of the myopic policy (MP) for i.i.d. EH processes under infinite capacity
battery assumption.
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Figure 3. Efficiency of the myopic policy (MP) for Markov EH processes under infinite capacity
battery assumption.

4.2. Finite Capacity Battery

In this subsection, the simulations are made by considering a finite battery capacity with B = 50
under Markovian and i.i.d EH processes with the intensities in Table 2.

In Figure 4 (i.i.d. EH process), efficiencies of the MP at T = 2000 are 0.757, 0.555, 0.464, 0.415
and 0.380 for ρ = 0.435, ρ = 0.705, ρ = 0.975, ρ = 1.245 and ρ = 1.515, respectively. In Figure 5
(Markov EH process), at T = 2000, the MP achieves efficiency of 0.756, 0.564, 0.462, 0.414 and 0.380 for
ρ = 0.435, ρ = 0.705, ρ = 0.975, ρ = 1.245 and ρ = 1.515, respectively. From Corollary 1, efficiencies of
an RR policy with quantum = 1 TS at T = 2000 are expected to be η(πRR) ≤ 0.758, η(πRR) ≤ 0.564,
η(πRR) ≤ 0.469 η(πRR) ≤ 0.438 and η(πRR) ≤ 0.406 for ρ = 0.435, ρ = 0.705, ρ = 0.975, ρ = 1.245
and ρ = 1.515, respectively.
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Figure 4. Efficiency of the myopic policy (MP) for Markov EH processes under finite capacity (Bi = 50)
battery assumption.
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Figure 5. Efficiency of the myopic policy (MP) for i.i.d. EH processes finite capacity (Bi = 50)
battery assumption.

Markov EH processes have similar results to the results for i.i.d. EH processes with the
same intensity.

4.3. Discussion

In this subsection, the efficiencies of the myopic policy in both infinite and finite capacity
battery cases are compared with each other based on the numerical results in Table 3. Besides this,
these numerical results are compared with the expected upper bounds for efficiency of myopic policy.
Finally, the complexity of the Round-Robin based myopic policy is investigated.

From Table 3, it can observed that the maximum efficiency difference (0.009) occurs between
B = ∞ (0.564) and B = 50 (0.555) for i.i.d. EH processes with intensity ρ = 0.705. For this intensity,
the efficiency in finite battery case is 1.596% less than the efficiency in infinite battery case. Besides this,
the minimum difference (0.000) occurs between B = ∞ (0.380) and B = 50 (0.380) for i.i.d. EH processes
with ρ = 1.515. Therefore, the efficiency of MP for B = 50 is only 1.596% less than that for B = ∞ at
most. Hence, we can conclude that the MP can achieve almost the same throughput performance with
a reasonable finite capacity (B = 50) battery as that with infinite capacity battery.
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Table 3. Efficiency of MP for IID and Markov EH processes under both infinite and finite capacity
battery assumptions B = ∞ and B = 50 stands for infinite and finite capacity batteries, respectively.
ρ denotes the intensity. Max. efficiency difference between B = ∞ and B = 50 represents the efficiency
difference between B = ∞ and B = 50 cases for the same intensity. Max. efficiency difference (%) btw.
B = ∞ and B = 50 represents the percentage of efficiency difference between B = ∞ and B = 50
cases over the efficiency in B = ∞ case for the same intensity. Max. deviation between the bound and
efficiency of MP represents the difference between the upper bound of efficiency of MP and minimum
efficiency result of MP for the same intensity.

ρ 0.435 0.705 0.975 1.245 1.515
Efficiency of MP for Markov EH process, B = ∞ 0.758 0.562 0.467 0.415 0.381
Efficiency of MP for Markov EH process, B = 50 0.756 0.561 0.462 0.414 0.380
Efficiency of MP for IID EH process, B = ∞ 0.758 0.564 0.469 0.417 0.380
Efficiency of MP for IID EH process, B = 50 0.757 0.555 0.464 0.415 0.380
Max. efficiency difference between B = ∞ and B = 50 0.002 0.009 0.005 0.002 0.001
Max. efficiency difference (%) btw. B = ∞ and B = 50 0.264 1.596 1.071 0.480 0.262
Upper bound for efficiency of MP 0.770 0.574 0.487 0.438 0.406
Max. deviation between the bound and efficiency of MP 0.014 0.019 0.025 0.024 0.026

Moreover, from Table 3, it can observed that the maximum deviation (difference) occurs between
the upper bound (0.406) and efficiency of MP for i.i.d. EH processes (0.380) with intensity ρ = 1.515.
For this intensity, the efficiency is 6.40% less than the upper bound. Besides this, the minimum
deviation occurs between the upper bound (0.770) and efficiency of MP for i.i.d. EH processes (0.758)
with ρ = 0.435. For this intensity, the efficiency is only 1.56% less than the upper bound. Based on
these results, we can say that the upper bounds for efficiency of the MP are generally tight.

In addition, the Round Robin based myopic policy is a simple policy for this problem. There is an
initial ordering and the order is kept during the time interval when Round Robin based scheduling
is performed. Sorting algorithms that are required for initial ordering has a worst case complexity
of O(M2) and Round Robin algorithm has a complexity of O(1). Therefore, the myopic policy is a
low-complexity solution for the problem at hand.

5. Conclusions

This paper investigates a problem occurring in a single-hop WSN where an FC schedules a set
of EH sensors to collect data from them. The FC does not know the instantaneous battery states or
the statistics of EH processes at sensors that are data backlogged and the communication is error-free.
There is no leakage from the infinite-capacity batteries. The problem at hand is set up as an average
throughput (reward) maximization problem. The myopic policy in [34,35] that has an RR structure is
applied to this problem as a solution. It is shown that RR policies with quantum = 1 TS are suboptimal
for a broad class of EH processes. Next, an upper bound is obtained for efficiencies of RR policies with
quantum = 1 TS. Then, it is shown that the myopic policy have almost equal efficiency as another RR
policy with quantum = 1 TS. Furthermore, numerical results show that the myopic policy is suboptimal
for a broad class of EH processes although it achieves optimality for certain specific cases.

As a future work, we search for a simple, optimal solution to this problem for quite general EH
processes. As another future work, we look for extending the single hop problem to multi hop case.
Moreover, we plan to investigate the same problem under finite capacity battery case and make the
throughput performance analysis of the myopic policy under finite capacity battery case. In addition,
we will work to extend the problem in our future works such that we can consider the network lifetime
as a performance metric. We believe that novel approaches and concepts in this paper will give insight
to the researchers who study similar scheduling problems.
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The following abbreviations are used in this manuscript:

IoT Internet of Things
WSN Wireless sensor network
EH Energy harvesting
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POMDP Partially Observable Markov Decision Processes
DP Dynamic Programming
RMAB Restless Multi Armed Bandit
PSPACE Polynomial Space
MP Myopic policy
RR Round-Robin
IID independent and identically distributed

Appendix A. Proof of Lemma 1

Define a new function, ρi(t), for a sensor i as

ρi(t) ,
VFE

i (T)− max
πRR∈GRR

VRR
i (t)⌈

K(T−t)
M

⌉ , (A1)

where GRR is the set of all RR policies with quantum = 1 TS.
Assume ρi(t) > 1 > ρi for some sensor i and t. From Label (A1),

VFE
i (T)− max

πRR∈GRR
VRR

i (t)⌈
K(T−t)

M

⌉ > 1, τ ≤ t < T,

VFE
i (T)− max

πRR∈GRR
VRR

i (t) >

⌈
K(T − t)

M

⌉
, τ ≤ t < T, (A2)

where τ = min
ρi(t)>1

t.

In the interval, τ ≤ t < T, sensor i can send at most
⌈

K(T−t)
M

⌉
data packets under an RR policy

with quantum = 1 TS. Therefore, Label (A2) implies that min {Yi(0), qi} = Yi(0) packets cannot be
sent by sensor i over a time horizon, T, where qi ∈

{⌊
KT
M

⌋
,
⌊

KT
M

⌋
+ 1
}

. If the EH process at sensor i
were a constant EH process with intensity ρi < 1 (for these EH processes, ρi(t) = ρi for all 1 ≤ t < T),
then sensor i would send min {Yi(0), qi} = Yi(0) packets over a time horizon, T, from Definition 5
and Remark 1. Hence, efficiencies of RR policies with quantum=1 TS under such an EH process that
ρi(t) > 1 > ρi for some sensor i and t become lower than they do under a constant EH process with
intensity ρi. This implies that there exists a class of EH processes for which some sensor i cannot
achieve the throughput of min {Yi(0), qi} packets over time horizon, T.
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Appendix B. Proof of Theorem 2

Define
q ,

KT
M
− m

M
, (A3)

where q and m are integers and 0 ≤ m ≤ M− K. Recall M
K ∈ Z for applicability of RR policies with

quantum = 1 TS.
Case i: Assume KT

M /∈ Z and the RR policy with quantum = 1 TS starts to scheduling with sensor 1
without loss of generality. Notice that K ≤ m ≤ M− K if KT

M /∈ Z. If the order 1, 2, . . . , M is followed
by the RR policy with quantum=1 TS for the scheduling, sensors 1, . . . , m are scheduled q + 1 times
and sensors m + 1, . . . , M are scheduled q times over a time horizon, T. From Lemma 1, for some
EH processes,

VRR(T)<
m

∑
i=1

min {Yi(0), q + 1}+
M

∑
i=m+1

min {Yi(0), q} ; (A4)

otherwise, Label (A4) becomes equality for other EH processes. Hence,

VRR(T)≤
r

∑
i=1

min {Yi(0), q + 1}+
M

∑
i=r+1

min {Yi(0), q} . (A5)

Let S = H1 ∪ H2 ∪ (S− H1 − H2) , where H1 ⊂ {1, . . . , m} and H2 ⊂ {m + 1, . . . , M} are the
index sets of sensors that have enough energy to send more than q + 1 and q data packets, respectively.
With this specification, the total throughput is

VRR(T) ≤ ∑
i∈H1

(q + 1) + ∑
i∈H2

q + ∑
i∈S−(H1∪H2)

Yi(0). (A6)

From Label (A6) and Definition 3,

η(πRR) =
VRR(T)

Y(0)

≤
∑

i∈H1

(q + 1) + ∑
i∈H2

q + ∑
i∈S

Yi(0)− ∑
i∈H1∪H2

Yi(0)

∑
i∈S

Yi(0)

= 1−
∑

i∈H1∪H2

Yi(0)− ∑
i∈H1

(q + 1)− ∑
i∈H2

q

∑
i∈S

Yi(0)
. (A7)

If the numerator and denominator of the second term of the right-hand side in Label (A7) are
normalized by KT

M ,

η(πRR)≤1−
∑

i∈H1∪H2

MYi(0)
KT

− ∑
i∈H1

M (q + 1)
KT

− ∑
i∈H2

Mq
KT

∑
i∈S

MYi(0)
KT

. (A8)

From Definition 4, ρi =
MYi(0)

KT . Labels (A3) and (A8) yields

η(πRR) ≤ 1− A
∑i∈S ρi

, (A9)
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where

A = ∑
i∈H1∪H2

ρi − ∑
i∈H1

(
1 +

M−m
KT

)
− ∑

i∈H2

(
1− m

KT

)
= ∑

i∈H1∪H2

(ρi − 1)− ∑
i∈H1

M
KT

+ ∑
i∈H1∪H2

m
KT

≥ ∑
i∈H1∪H2

(ρi − 1)− M
KT
|H1| .

Hence, efficiencies of RR policies with quantum = 1 TS satisfy

η(πRR) ≤ 1−
∑
i∈H

(ρi − 1)− M
KT
|H1|

Mρ
.

Case ii: If KT
M ∈ Z, then q = KT

M since m = 0 in Label (A3) in this case. Let S = H2 ∪ (S− H2)

where H2 is index set of sensors that have enough energy to send more than q data packets. (Notice
that H1 = ∅ and H = H1 ∪ H2 = H2 if KT

M ∈ Z.) By following similar steps in part (i), we obtain

VRR(T) ≤
M

∑
i=1

min {Yi(0), q}

≤ ∑
i∈H2

q + ∑
i∈S−H2

Yi(0). (A10)

From Label (A10) and Definition 3, efficiency of RR policies with quantum = 1 TS can be expressed
as

η(πRR) =
VRR(T)

Y(0)

=

∑
i∈H1

(σ + 1) + ∑
i∈H2

σ− ∑
i∈H1∪H2

Wi(0) + ∑
i∈H1∪H2

Wi(0) + ∑
i∈S−H1−H2

Wi(0)

∑
i∈S

Wi(0)

≤
∑

i∈H1∪H2

q + ∑
i∈S

Yi(0)− ∑
i∈H1∪H2

Yi(0)

∑
i∈S

Yi(0)

≤ 1−
∑

i∈H2

MYi(0)
KT

− ∑
i∈H2

Mq
KT

∑
i∈S

MYi(0)
KT

. (A11)

From Label (A3), Definitions 4 and 5, we obtain

η(πRR) ≤ 1−
∑
i∈H

(ρi − 1)

Mρ
.

Appendix C. Proof of Lemma 2

Recall that M
K ∈ Z for applicability of RR policies with quantum = 1 TS. There are M

K RR policies
with quantum=1 TS which start to schedule a sensor i in different TSs. Recall that 1 ≤ t0 ≤ M

K where t0

is initial time for RRt0 policy to schedule the sensor i. The proof is divided into two cases:



Sensors 2017, 17, 2206 17 of 20

Case i: Assume that KT
M /∈ Z. Then, KT

M , q + Kr
M where q and r are integers such that

1 ≤ r ≤ M
K − 1 and M

K ∈ Z. Some of the RR policies with quantum=1 TS schedules a sensor i q + 1
times, whereas the other RR policies schedules the sensor i q times. The set of initial times of the
RR policies which scheduled sensor i q + 1 times is denoted by PRR

q+1 = {1, . . . , r} , whereas the set of

others is denoted by PRR
q =

{
r + 1, . . . , M

K

}
. tn

j denotes the jth transmission time of sensor i under an
RR policy, RRn, which starts to schedule sensor i in TS n, where j = 1, . . . , q or q + 1 are transmission
times of sensor i under the applied RR policy, RRn. By definition,

Ei

(
ta

j+1

)
≥ Ei

(
tb

j

)
, ∀a ∈ PRR

q+1, ∀b ∈ PRR
q , ∀j ∈ {1, . . . , q} ,

which yields
VRRa

i (T) ≥ VRRb
i (T), ∀a ∈ PRR

q+1, ∀b ∈ PRR
q . (A12)

Notice that r = mod( M
K )T ∈ PRR

q+1 (in fact, r = max
n∈PRR

q+1

n). Therefore,

Ei

(
tr

j

)
≥ Ei

(
ta

j

)
, ∀a ∈ PRR

q+1, ∀j ∈ {1, . . . , q + 1} ,

which yields
VRRr

i (T) ≥ VRRa
i (T), ∀a ∈ PRR

q+1. (A13)

Similarly, r + 1 = min
n∈PRR

q

n. Therefore,

Ei

(
tr+1

j

)
≤ Ei

(
tb

j

)
, ∀b ∈ PRR

q , ∀j ∈ {1, . . . , q} ,

which yields
VRRr+1

i (T) ≤ VRRb
i (T), ∀b ∈ PRR

q . (A14)

From Labels (A12)–(A14),

VRRr
i (T) ≥ VRRa

i (T) ≥ VRRb
i (T) ≥ VRRr+1

i (T),

∀a ∈ PRR
q+1, ∀b ∈ PRR

q . (A15)

Furthermore,
Ei

(
tr+1

j

)
≥ Ei

(
tr

j

)
, ∀j ∈ {1, . . . , q} ,

which yields
VRRr+1

i (tr+1
j ) ≥ VRRr

i (tr
j ), ∀j ∈ {1, . . . , q} . (A16)

From Label (A16),

VRRr+1
i (T) = VRRr+1

i

(
T − M

K
+ 1
)

≥ VRRr
i

(
T − M

K

)
. (A17)

From Labels (A15) and (A17),

max
n

VRRn
i (T)−min

n
VRRn

i (T) = VRRr
i (T)−VRRr+1

i (T)

≤ VRRr
i (T)−VRRr

i

(
T − M

K

)
≤ 1. (A18)
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Hence, the lemma is proved for the first case, KT
M /∈ Z.

Case ii: If KT
M ∈ Z, each of M

K RR policies with quantum=1 TS schedules a sensor i q = KT
M

times. The set of initial times of RR policies with quantum=1 TS is denoted by PRR
q =

{
1, 2, . . . , M

K

}
.

tn
j denotes transmission time of sensor i under an RR policy, RRn, where j = 1, . . . , q are transmission

times of sensor i under the applied RR policy, RRn, in this case

Ei

(
t

M
K
j

)
≥ Ei

(
tn

j

)
≥ Ei

(
t1

j

)
, ∀n ∈ PRR

q , ∀j ∈ {1, . . . , q} ,

which yields

V
RR M

K
i (T) ≥ VRRn

i (T) ≥ VRR1
i (T), ∀n ∈ PRR

q . (A19)

Moreover,

Ei

(
t

M
K
j−1

)
≤ Ei

(
tn

j

)
, ∀n ∈ PRR

q , ∀j ∈ {2, . . . , q} ,

which yields

V
RR M

K
i

(
T − M

K

)
≤ VRRn

i (T), ∀n ∈ PRR
q . (A20)

From Labels (A19) and (A20),

max
n

VRRn
i (T)−min

n
VRRn

i (T) =V
RR M

K
i (T)−VRR1

i (T)

≤V
RR M

K
i (T)−V

RR M
K

i

(
T−M

K

)
≤ 1. (A21)

Hence, the lemma is proved for the second case, KT
M ∈ Z.
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