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Abstract: The derivation of a conventional error model for the miniature gyroscope-based
measurement while drilling (MGWD) system is based on the assumption that the errors of attitude
are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by
the errors of small-angle attitude. However, the simplification of the DCM would introduce errors
to the navigation solutions of the MGWD system if the initial alignment cannot provide precise
attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in
harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear
error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the
propagated errors under large-angle attitude error conditions. The zero velocity and zero position
are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman
filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF
with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity,
and height in the quasi-stationary condition.
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1. Introduction

Horizontal drilling (HD), especially reentry multilateral horizontal well drilling (RMHWD),
receives considerable attention because it provides great economic value in the oil and gas industry.
The RMHWD technology was originally proposed in an industry consortium of operators and
service companies in 1997 [1] and RMHWD can significantly increase the production of oil and
gas by extending the contact areas between oil and gas reservoirs and the well drilling equipment
and by revisiting the existing wellbores [2]. RMHWD is also readily available under challenging
drilling sites such as offshore zones, mountain areas, and downtown centers [3]. The branches
of the drill pipe in RMHWD radiate from the main wellbore to the targeted reservoir sections [4].
The high pressure waterjet drilling technology promotes the development of RMHWD since the
conventional large rotary drill bit can be replaced by a small-diameter waterjet drill bit. The
conventional measurement-while-drilling (MWD) tool combines three-axis gyroscopes and three-axis
magnetometers to provide the attitude (tool face, inclination, and azimuth) of the drill bit. However,
the performance of the MWD tools would deteriorate under the strong magnetic interference caused by
the following factors: (1) flow of currents in the atmosphere and moving of solar wind [5]; (2) existing
drilling fluid and debris [6,7]; (3) ferromagnetic deposits in the proximity of bottom hole assembly
(BHA) [8]. Non-magnetic drill collars can effectively eliminate the magnetic disturbance; however, the
high cost, high weight, and weak fracture drill collars fail to be widely used.
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Alternatively, gyroscope-based MWD (GWD) tools can continuously provide the attitude, velocity,
and position of the drill bit regardless of the strong magnetic interferences. GWD tools with pure
strapdown inertial navigation algorithm were proposed in [9,10] and the tools can save considerable rig
time and remove the blind during the kickoff [11]. The size of the fiber optic gyroscope or the laser optic
gyroscope limits their application to the surveying of downhole drilling. The emergence of a low-cost,
small-size, and high-performance MEMS sensor brings the gyroscopes to the small-diameter RMHWD.
The MGWD device with two-axis gyroscopes and three-axis accelerometers in the application of
small-diameter space (less than 24 millimeters) was proposed in [12], in which the angular rate
(Y-axis) of MGWD tools is calculated by the accelerometers in the horizontal plane when the drilling
equipment is under quasi-stationary conditions. The MGWD system can provide high-precision
navigation solutions in short-term [13] and can perform real-time data transmission between the
MGWD tools and the ground operation center. However, the integration calculation within resolving
the mechanization of navigation solutions accumulates large errors because of biases of gyroscopes
and accelerometers. The errors of inertial sensors are composed of two parts: deterministic errors and
stochastic errors [14]. The deterministic errors can partially be reduced by the calibration approach.
Therefore, the residual of deterministic errors and the stochastic errors are main error sources of inertial
sensors. To sum up, the problems should be solved for MGWD system are the elimination of the
residual of deterministic errors and stochastic errors.

The stochastic errors of inertial sensors can be modeled by the first-order Gaussian–Markov (GM)
model or the high-order autoregressive (AR) model [15]. The Levenberg–Marquardt iterative least
squares can fit the nonlinear parametric model of stochastic errors as well [16]. The traditional error
models of the MGWD system, such as the Phi-angle or Psi angle model, are based on the assumption
that the attitude errors are small enough that the DCM can be simplified by the small-angle attitude
errors. The linear modified error model for large heading uncertainty was proposed in [17] and
the model of moving alignment with large errors was put forward in [18]. In the application of the
Kalman filter (KF), both error models neglect the high-order error terms that may introduce errors
when the attitude errors are large. In addition, the system noises and the observation noises are not
Gaussian for MGWD system in sophisticated downhole drilling environments (high temperature
and high pressure). Therefore, the KF is suboptimal compared with the particle filter (PF), which
is the recursive approximation of the posterior probability density function (pdf) with particles and
weights [19]. The conventional in-drilling alignment (IDA) approaches include the zero velocity
update (ZUPT) alignment, velocity matching alignment, rotary modulation alignment, etc. The ZUPT
alignment can limit the position errors up to 40 m during a 90-min experiment by using a Litton
LTN90-100 inertial measurement unit (IMU) [20]. The velocity matching alignment merges velocity
from global positioning system (GPS) or other velocity sensors to the filtering for compensating the
errors [21]. An IDA approach was introduced to restrict the azimuth error of the drill bit in [22,23]; the
azimuth error was reduced 25 times smaller than the conventional magnetometer based MWD tools.
The rotary-in-drilling alignment (RIDA) was proposed in terms of the theory of rotary modulation
alignment in an inertial navigation system (INS) to minimize the dynamic position errors and the
azimuth error of the MWD system [24,25]. However, GPS signals cannot reach to a deep downhole
and the size of IDA or RIDA is beyond the dimension requirements of the RMHWD.

This paper proposes a NNEM for the MGWD system under large-angle attitude error conditions.
The error matrix of DCM is introduced to represent the attitude errors. Because of the nonlinearity
of the system state space model (SSM), the PF is selected as the state estimation approach. The body
frame is the right, forward, and up direction of the MGWD system and the navigation frame is the
north, east, and down direction in this paper.

In Section 2, the NNEM of the MGWD system is proposed. Sections 3 and 4 introduce the
recursive Bayesian estimation theory and PF algorithm, respectively. Results and experiments are
explained in Section 5. Eventually, conclusions are presented in Section 6.
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2. NNEM of the MGWD System

The error model of the strapdown inertial navigation system (SINS), based on the discrete time
differential equation and the error model, plays a fundamental role in the estimation of system
states. Conventional linear error models (LEM) of SINS, such as the Phi-angle model, the Psi-angle
model [26,27], and the quaternion error model [28] are widely used in aerospace and marine navigation.
The Phi-angle error model analyzes the SINS in the true navigation frame while the Psi-angle model is
performed in the computer frame. In this paper, the Psi-angle model is selected for the states estimation
of KF while the error model in [29] is used as the NEM for the states estimation of the PF.

The derivation of a linear model by the perturbation method alone can be implemented in light of
the assumption that the attitude errors are small enough. The initial alignment of the MGWD system
cannot provide an accurate attitude because of the low performance of the MEMS sensors and the
sophisticated downhole drilling environments. Therefore, this paper proposes an accurate NNEM of
the MGWD system under large-angle attitude error conditions.

The key variable for the derivation of the SINS error model is the rotation vector, which is the
eigenvector of the DCM associated with eigenvalue 1. The eigenvector of the DCM can be expressed
as follows [30,31]:

pRn
b ´ IqΦ “ 0 (1)

where Rn
b is the DCM from the body frame to the navigation frame, Φ is the rotation vector, and I is a

3ˆ 3 identity matrix. The rotation vector is proposed in [32], and the relationship between rotation
vector and DCM can be expressed as:

Rn
b “ I`

sinΦ
Φ

pΦˆq`
1´ cosΦ

Φ2 pΦˆq2 (2)

where pΦˆq is the skew symmetric matrix of Φ, i.e.,:

pΦˆq “

»

—

–

0 ´Φz Φy

Φz 0 ´Φx

´Φy Φx 0

fi

ffi

fl

(3)

where Φx, Φy, and Φz are the components of Φ projected in X-axis, Y-axis, and Z-axis.
The magnitude of Φ equals:

Φ “

´

ΦTΦ
¯1{2

(4)

So far, the problem of seeking an attitude solution equates to seeking a solution for the rotation
vector. The derivation of the kinematic equation of rotation vector was reviewed in [33], and the
conventional differential equation of rotation vector was given by [34]:

.
Φ “

ˆ

I`
1
2
pΦˆq`

1
Φ2

ˆ

1´
ΦsinΦ

2 p1´ cosΦq

˙

pΦˆq2
˙

ωb
nb (5)

whereωb
nb is the angular rate of the body frame with respect to the navigation frame resolved in the

body frame.
This section reviews the nonlinear error model of MGWD according to [27], in which the attitude

error model is derived according to the linear quaternion error model. The attitude errors are defined
in terms of the rotation vector:

Φ “ pδφ, δθ, δψq (6)
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where δφ, δθ, and δψ are the roll error, pitch error, and azimuth error. The NNEM of the attitude can
be expressed as follows:

.
Φ “

´

I´ cnΦΦT
¯´1

ˆ

´ωn
in ˆΦ´

1
2sn

´

Rn
bω

b
ib ´ δω

n
in

¯

˙

(7)

where cn and sn are defined parameters that can be expressed as:

cn “ cos
ˆ

Φn

2

˙

´ 1 (8)

sn “
1

Φn
sin

ˆ

Φn

2

˙

(9)

Φn “

b

δφ2 ` δθ2 ` δψ2 (10)

whereωb
ib is the angular rate obtained from the gyroscope,ωn

in is the angular rate of the navigation
frame with respect to the inertial frame resolved in the navigation frame, andωn

in can be expressed as:

ωn
in “ ω

n
ie `ω

n
en

whereωn
ie is the Earth rotation rate in the navigation frame andωn

ie can be written as follows:

ωn
ie “

”

ωiecosϕ 0 ´ωiesinϕ
ıT

(11)

whereωie is the Earth rotation rate 7.292115ˆ 10´5rad{s « 15.041067˝{h; ϕ is the latitude;ωn
en is the

angular rate of the navigation frame with respect to the Earth frame resolved in the navigation frame;
andωn

en can be written as:

ωn
en “

„

VE

RN ` h
´

VN

RM ` h
´

VEtanϕ
RN ` h

T
(12)

where VE and VN represent the east velocity and north velocity, respectively, in the navigation frame;
h is the ellipsoidal height; RN and RM are the radii of curvature in the meridian and the prime vertical,
respectively; and RN , RM can be expressed as follows [35]:

RN “
R

´

1´ e2sin2ϕ
¯1{2

(13)

RM “
R
`

1´ e2˘

´

1´ e2sin2ϕ
¯3{2

(14)

where R , e are the semi-major axis and linear eccentricity of the reference ellipsoid, respectively, in
which R “ 6378137 m and e “ 0.0818191908426.

The output errors of accelerometers and gyroscopes (δfb
ib and δωb

ib) can be expressed as [36]:

δωb
ib “

»

—

–

´∆SFx,g ∆δxz,g ´∆δxy,g

´∆δyz,g ´∆SFy,g ∆δyx,g

∆δzy,g ´∆δzx,g ´∆SFz,g

fi

ffi

fl

ωb
ib `

»

—

–

εx,g

εy,g

εz,g

fi

ffi

fl

(15)

δfb
ib “

»

—

–

´∆SFx,a ∆δxz,a ´∆δxy,a

´∆δyz,a ´∆SFy,a ∆δyx,a

∆δzy,a ´∆δzx,a ´∆SFz,a

fi

ffi

fl

fb
ib `

»

—

–

εx,a

εy,a

εz,a

fi

ffi

fl

(16)
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where ∆SFx,g and ∆SFz,g are the scale factor errors of X-axis gyroscope and Z-axis
gyroscope. ∆SFy,g is defined as the scale factor error of a virtual gyroscope along the
Y-axis. ∆δxy,g, ∆δxz,g, ∆δyz,g, ∆δyx,g, ∆δzy,g, and ∆δzx,g are non-orthogonal gyroscope errors
along the X-axis, Y-axis, and Z-axis. ∆SFx,a, ∆SFy,a, and ∆SFz,a are the scale factor
errors of the X-axis accelerometer, Y-axis accelerometer, and Z-axis accelerometer, respectively.
∆δxy,a, ∆δxz,a, ∆δyz,a, ∆δyx,a, ∆δzy,a, and ∆δzx,g are non-orthogonal acceleration errors along the
X-axis, Y-axis, and Z-axis. εx,g, εy,g, εz,g and εx,a, εy,a, εz,a are the angular drift errors of gyroscopes
and drift errors of accelerometers along the X-axis, Y-axis, and Z-axis, respectively.

Through differentiating the Equations (11) and (12), δωn
in can be written as [37]:

δωn
in “ δω

n
ie ` δω

n
en (17)

δωn
ie “

»

—

–

´ωiesinϕδϕ
0

´ωiecosϕδϕ

fi

ffi

fl

(18)

δωn
en “

»

—

—

—

—

—

—

–

1
RN ` h

δVE ´
VE

pRN ` hq2
δh

´
1

RM ` h
δVN `

VN

pRM ` hq2
δh

´
tanϕ

RN ` h
δVE ´

VEsec2ϕ

RN ` h
δϕ`

VEtanϕ

pRN ` hq2
δh

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(19)

where δVE and δVN are the errors of east velocity and north velocity, respectively; δϕ and δh are the
errors of latitude and height, respectively; and δωn

ie and δωn
en are the errors ofωn

ie andωn
en, respectively.

The conventional velocity update equation can be written as follows [21]:

.
V

n
“ Rn

bfb
ib ´ p2ω

n
ie `ω

n
enqVn ` gn (20)

where Vn is the velocity in the navigation frame; fb
ib is the output of accelerometers; and gn is the

gravity expressed in the navigation frame (the model of gn is proposed in [38]).
The velocity error model can be obtained by perturbing Equation (20), and the DCM can be

approximated by the following expression:

rR
b
n “ Rb

n pI´ Ξq (21)

where the designator „ in the above variables represents variables with errors. Ξ is a skew symmetric
matrix of attitude error and Ξ is given by:

Ξ “

»

—

–

0 ´δψ δθ

δψ 0 ´δφ

´δθ δφ 0

fi

ffi

fl

(22)

However, the above equation may introduce errors if large attitude errors exist, so the error matrix
of DCM p∆Rn

bq is introduced for the derivation of velocity error equation. The DCM in Equation (21)
can be replaced by:

rR
b
n “ Rb

n ´Rb
n∆Rn

b (23)

The velocity update equation with error interferences can be written as:

.
rV

n
“ rR

n
b
rf

b
ib ´

`

2rωn
ie ` rωn

en
˘

rV
n
` rgn (24)
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The velocity errors
´

δ
.

V
n¯

can be obtained by the difference between Equations (20) and (24),

ignoring the second-order error product Rb
n∆Rn

bδf
b
ib and

`

2δωn
ie ` δω

n
en
˘

δVn, yields:

δ
.

V
n
“

.
rV

n
´

.
V

n
“ Rn

bδf
b
ib ´Rn

b∆Rn
bfb

ib ´ p2ω
n
ie `ω

n
enq δV

n ´ p2δωn
ie ` δω

n
enqVn ` δgn (25)

The only unknown parameter in Equation (25) is ∆Rn
b, which can be obtained in terms of Φ, and

the relationship between ∆Rn
b and Φ can be expressed as [27]:

∆Rn
b “ 2

»

—

—

—

–

´s2
n

´

pδθq2 ` pδψq2
¯

sn p1` cnq δψ` s2
nδφδθ ´sn p1` cnq δθ` s2

nδφδψ

´sn p1` cnq δψ` s2
nδφδθ ´s2

n

´

pδφq2 ` pδψq2
¯

sn p1` cnq δφ` s2
nδθδψ

sn p1` cnq δθ` s2
nδφδψ ´sn p1` cnq δφ` s2

nδθδψ ´s2
n

´

pδφq2 ` pδθq2
¯

fi

ffi

ffi

ffi

fl

(26)

The velocity error equation is obtained by inserting Equation (26) into Equation (25). There is no
relationship between the model position error

´

δ
.
P
¯

and the attitude, so the position error model is
still linear as [39]:

δ
.
P “

»

—

—

—

—

–

δVN

RM ` h
´

VN

pRM ` hq2
δh

δVE

pRN ` hq cosϕ
´

VEδh

pRN ` hq2 cosϕ
´

VEδϕ

pRN ` hq cos2ϕ

´δVD

fi

ffi

ffi

ffi

ffi

fl

(27)

where δVD is the error of the down velocity.
The nonlinear error model of the MGWD system can be achieved through Equations (7), (25) and

(27). The observation equation is the linear ZUPT equation, which is expressed as follows:

Zk “ HXk ` vk (28)

where Zk is the difference between the estimate state pVN, VE, VD, ϕ, λ, hq and the zero velocity and
zero position (VN,0, VE,0, VD,0, ϕ0, λ0, h0):

Zk “

»

—

—

—

—

—

—

—

–

VN ´VN,0

VE ´VE,0

VD ´VD,0

ϕ´ϕ0

λ´ λ0

h´ h0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(29)

H “

«

H11 H12 H13

H21 H22 H23

ff

(30)

where λ is the longitude and VN,0, VE,0, VD,0, ϕ0, λ0, and h0 represent the zero velocity and zero
position. H12, H13, H21, and H23 are a 3 ˆ 3 zero matrix; H11, H22 are a 3 ˆ 3 identity matrix.

3. Recursive Bayesian Estimation

In this section, we briefly review the theory of the recursive Bayesian estimation. The system is
generally modeled as an SSM, which includes a system equation and an observation equation in the
discrete time domain; the SSM can be written as follows:

xk “ fk´1 pxk´1,$k´1q (31)
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zk “ hk pxk, vkq (32)

where fk´1 : Rn
ˆRm

Ñ Rn is the system nonlinear function; $k´1 P Rm is a zero mean, white
noise with known pdf p p$k´1q; xk and xk´1 are the system state vectors at present time k and
previous moment k-1; zk P Rn is the measurement from external reference; hk : Rn

ˆRr
Ñ Rp is the

measurement function; and vk P Rr is a zero mean, white noise with known pdf p pvkq. Figure 1
illustrates the recursive Bayesian estimation model in graphical form [40,41].
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Figure 1. Recursive Bayesian estimation model. The first horizontal row represents the states of the
system, which propagate in terms of Equation (31), and the column represents the measurement
process, which is formulated by Equation (32). x0, x1, xk´2, xk´1, xk are the system states from time 0
to time k and z1, zk´2, zk´1, zk are the measurements from time 1 to time k.

A more general system model (Markov model) and observation model corresponding to the
Equations (31) and (32) can be given by the following expressions:

xk „ p pxk|xk´1q (33)

zk „ ppzk|xkq (34)

The definition of SSM in Equations (33) and (34) are based on the prior function and
likelihood function. Both models are equivalent, but the general model is more convenient for
the theoretical derivation.

The assumptions of recursive Bayesian estimation are that (1) the state vector xk is a hidden
Markov process with initial distribution p px0q and xk is independent of the other state vectors except
xk´1, i.e., the conditional pdf p pxk|x0:k´1q “ p pxk|xk´1q; (2) the measurement process zk only depends
upon xk, i.e., the conditional pdf p pzk|xk, z1:k´1q “ p pzk|xkq.

To sum up, the evaluation of the Bayesian estimation is given by the following steps.

(1) Prediction: evaluating the prior pdf p
`

xk|z1:k´1
˘

by the knowledge of the observation before
time k in the light of the Chapman–Kolmogorov equation [42]:

p
`

xk|z1:k´1
˘

“

ż

p
`

xk|xk´1
˘

ppxk´1|z1:k´1qdxk´1 (35)

where the pdf of initial state ppx0|z0q can be assigned by p px0|z0q “ p px0q. p
`

xk|xk´1
˘

is the
prior distribution, which is given by [43]:

p
`

xk|xk´1
˘

“

ż

δ pxk ´ fk´1 pxk´1, wk´1qqp p$k´1qd$k´1 (36)

where δ p¨q is the Dirac delta function.
(2) Updating: the posterior pdf p pxk|z1:kq can be updated with the new measurement zk at time k in

terms of the Bayes rule as follows [44]:

p pxk|z1:kq “
ppzk|xkqp

`

xk|z1:k´1
˘

p
`

zk|z1:k´1
˘ (37)
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where p pzk|xkq is the likelihood function, which is written by the following equation [43]:

p pzk|xkq “

ż

δ
`

yk ´ hk pxk, vkq
˘

p pvkqdvk (38)

(3) State estimation: once the posterior is obtained, the estimation of state px̂kq and the covariance
matrix of estimation error (Px̂k ) are given by [45]:

x̂k “ E pxk|z1:kq “

ż

xkp pxk|z1:kqdxk (39)

Px̂k “ E
´

rxkrx
T
k

¯

“

ż

rxkrx
T
kp pxk|z1:kqdxk (40)

where rxk “ xk ´ x̂k is the estimation error and E p¨q is the expectation of the random variables.

4. PF Algorithm

Because the function p
`

zk|z1:k´1
˘

in Equation (37) cannot typically be computed analytically,
sequential Monte Carlo (SMC) approximation, the key idea of the PF, was proposed for the hidden
states estimation of the dynamic systems [46,47]. The PF uses a finite set of weighted particles or
samples to reconstruct the posterior pdf p px0:k|z1:kq of the state vectors regardless of the nonlinear or
non-Gaussian systems [48,49]. The implementation of the PF can be summarized in three main steps:
sequential importance sampling (SIS), resampling, and roughening. The SIS plays a fundamental
rule in the iteration of the PF since searching proper importance function decides the success of PF.
Resampling aims at alleviating the particles’ or samples’ degeneracy and the roughing approach can
be utilized to avoid the particles’ or samples’ impoverishment.

4.1. SIS Algorithm

The SIS algorithm steps from the literature [50,51]. The basic idea of SIS is the selection of
particles or samples with weights to represent the complicated high dimensional distributions [52].
The posterior pdf ppx0:k|z1:kq is approximated by the random particles or samples and weights
!

xi
0:k, wpiqk |i “ 1, 2, ¨ ¨ ¨N

)

at time k as:

ppx0:k|z1:kq “

N
ÿ

i“1

wpiqk δ
´

x0:k ´ xi
0:k

¯

(41)

where N is the number of particles and x0:k is the system state.
The first task to implement the SIS is the selection of the importance function π px0:k|z1:kq , which

is proportional of the posterior pdf ppx0:k|z1:kq and is easy to draw samples compared with ppx0:k|z1:kq.
The weights can be updated in terms of the following equation:

wpiqk “
p px0:k|z1:kqp pz1:kq

π px0:k|z1:kq
9

p px0:k|z1:kq

π px0:k|z1:kq
(42)

Generally, the importance function is selected such that [53]:

π px0:k|z1:kq “ π
`

xk|xk´1, zk
˘

π px0:k´1|z1:kq (43)

Note that the Equation (41) can be factored as following equation according to the Bayesian
rule [54]:

p px0:k|z1:kq9p pzk|x0:kqp pxk|xk´1qp
`

x0:k´1|z1:k´1
˘

(44)
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Therefore, the weights can be updated by substituting Equations (43) and (44) into
Equation (42), yielding:

wpiqk 9wpiqk´1

p
`

zk|xi
k

˘

p
´

xi
k|x

i
k´1

¯

π
´

xi
k|x

i
k´1, zk

¯ (45)

where xi
k is the variable obtained by the evaluation of xi

k´1 in the system model and xi
k´1 is the

samples drawn from the importance function π
´

xi
k|x

i
k´1, zk

¯

, which is related to the previous state

xi
k´1 and current observation zk. In the application of the MGWD system, the estimation of the current

state is more important than the previous states, so Equation (41) can be rewritten as:

ppxk|z1:kq “

N
ÿ

i“1

wpiqk δ
´

xk ´ xi
k

¯

(46)

As indicated in Equations (45) and (46), the posterior pdf depends on the likelihood function,
the priori pdf, and the importance function. Since the likelihood function and the priori pdf can be
obtained in terms of the SSM, the choice of importance function is essential for PF. The optimal function,
the likelihood function, and the priori function are the components of the importance function [54].

The optimal function p
´

xi
k|x

i
k´1, zk

¯

was proposed as the importance function in [41]:

p
´

xi
k|x

i
k´1, zk

¯

“ p
´

xk|x
i
k´1

¯

(47)

Substituting Equation (47) into Equation (45) yields:

wpiqk 9wpiqk´1p
´

zk|x
i
k´1

¯

(48)

The drawbacks of using optimal importance function are: (1) it is difficult to draw samples from
the optimal function p

´

xi
k|x

i
k´1, zk

¯

; (2) it needs the integration calculation to update the weights. The
optimal function can be factorized as the following format based on the Bayesian rule:

p
´

xi
k|x

i
k´1, zk

¯

“
p
`

zk|xi
k

˘

p
´

xi
k|x

i
k´1

¯

p
´

zk|xi
k´1

¯ (49)

As indicated in Equation (49), p
´

xi
k|x

i
k´1, zk

¯

9p
`

zk|xi
k

˘

if the likelihood function p
`

zk|xi
k

˘

is

more noisy and it is integral in xi
k [55]. In this case, the importance function can be presented by the

likelihood function, namely:
π
´

xi
k|x

i
k´1, zk

¯

“ p
´

zk|x
i
k

¯

(50)

Then, the weight in Equation (45) can be updated by the following equation:

wpiqk 9wpiqk´1p
´

xi
k|x

i
k´1

¯

(51)

However, the likelihood function as the importance function can only be used in the high
signal-to-noise ratio (SNR) case. In this paper, the priori function is selected as the importance function
because of the tradeoff between computational complexity and the feasibility of implementation. The
importance function is written by:

π
´

xi
k|x

i
k´1, zk

¯

“ ppxi
k|x

i
k´1q (52)
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Then, the weights can be updated by:

wpiqk 9wpiqk´1p
´

zk|x
i
k

¯

(53)

The above equation shows that the weights only depend on the previous weights and the
likelihood function, which are available from the knowledge of the observation equation and the pdf
of the observation noise. In this application, we assume that the measurement noise of the MGWD
system is additive, Gaussian white noise, so the likelihood function can be evaluated in a simple
way [56]:

P
´

zkxpiqk

¯

«
1

2π|R|1{2
exp

ˆ

´

´

zk ´ h
´

xi
k

¯¯T
R´1

´

zk ´ h
´

xi
k

¯¯

˙

(54)

where R is the covariance matrix of measurement noise vk.
The normalization of the particle weights are performed to guarantee the sum of the particle

weights equal to 1, and the normalization of the weights can be expressed as follows:

wpiqk “
wpiqk

řN
i“1 wpiqk

(55)

Under the premise that the initial pdf ppx0|z0q is known, drawing particles xi
0 „

ppx0|z0q, where i “ 1, 2, N, as:
xi

k´1 “ fk´1

´

xi
0,$i

0

¯

(56)

where xi
0 is the initial particles and $i

0 is the noise vector which is drawn from the pdf of system noise
p p$k´1q. The initial weights are given by:

wi
0 “ p

´

z0|xi
0

¯

(57)

The SIS algorithm can only be implemented in special cases because the variance of the importance
weights only increase over time; eventually, they give rise to particle degeneracy. Particle degeneracy
means that the updating particles are useless for the approximation of a posterior pdf. In order to
solve the particles degeneracy problem, a resampling method is described in next section.

4.2. Resampling Algorithm

The PF would suffer from the particle degeneracy without a resampling algorithm. Figure 2
shows the principle of the particle resampling.
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The key of the resampling algorithm is that particles with large weights are replicated and particles
with small weights are discarded [57]. The effective sample size Neff is an indicator of the degree of
the particles’ degeneracy and a metric of employing the particles’ resampling. Neff is provided by the
following equation [58]:

Neff “
N

1`N2var
´

wpiqk

¯ «
1

řN
i“1

´

wpiqk

¯2 (58)

where var
´

wpiqk

¯

is the variation of the weight.
The particles should be resampled if Neff is less than resample threshold pNthq, which equals 4N{5

in this paper. Equation (58) shows that Neff approaches 1 if the particles are severely degenerated;
on the other hand, Neff approaches N if the particles have equal weight p1{Nq. The number of the
resampled particles is not necessarily the same as the propagated particles N; however, the number of
particles can be the same for computational convenience. Therefore, the total resampling particles are
unchanged, still N, so the resampled particles have the same weight p1{Nq.

There are several ways to implement the resampling algorithm such as systematic resampling [59],
multinomial resampling [60], residual resampling [61], etc. The resampling strategy in PF is sampling
with replacement, that is, the particles drawn from the box will be replaced after the decimation.
In this paper, the multinomial resampling approach is selected to alleviate particles’ degeneracy.
The multinomial resampling can be considered as a series of Bernoulli trials. N random samples
upnq, n “ 1, 2, ¨ ¨ ¨N are generated from the uniform distribution over p0, 1s and the probabilities of
resampling the particles is the same as upnq when the following inequality is satisfied:

N´1
ÿ

i“1

wpiqk ă upnq ď
N
ÿ

i“1

wpiqk (59)

Then, the nth particle xpnqk with the nth weight is the selection of the new samples or particles xpiqk
of the resampling.

4.3. Roughing Strategy

The problem of resampling is that only a few particles are drawn, which is also referred to as
samples impoverishment. Therefore, the particles lack diversities because the selection may include
many repeated particles. In order to address the samples impoverishment problem, the random noise
is added to the particles after resampling. The posterior particles xpiq`k are written as:

xpiq`k “ xpiqk ` ρ
piq
k (60)

where ρpiqk is a zero mean random noise.
At this point, the particles after the roughing step can be propagated for the update of the weights

and the posterior pdf in the next time cycle. The first two moments of estimation derived from the
particles can be approximated by the following equations:

x̂k “ E rxks «

N
ÿ

i“1

wi
k

´

xpiq`k

¯

(61)

Px̂k “ E
”

pxk ´ x̂kq pxk ´ x̂kq
T
ı

«

N
ÿ

i“1

wi
k

´

xpiq`k

¯´

xpiq`k

¯T
(62)
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5. Results and Discussion

The objectives of the designed experiments are to demonstrate that: (1) the performance of the
PF with NEM or NNEM is better than KF with LEM under small-angle attitude error condition
(Experiment 1); (2) PF with NNEM can provide more accurate states estimation for the MGWD system
with large-angle attitude error (Experiment 2). The configuration of the MGWD device and the details
of the experimental data collection are briefly described in the first part of Section 5.

5.1. MGWD Device for Validation of Experimental Results

The MGWD device consists of the azimuth MEMS sensor, the pitch MEMS sensor, and the
microcontroller. Figure 3 shows the configuration of the MGWD device. Azimuth MEMS sensor
provides the angular rate of the drill bit along the Z-axis while the angular rate along the X-axis is
obtained from the pitch MEMS sensor. For implementation of the pure INS algorithm, the angular rate
along the Y-axis is evaluated by the specific force obtained from the pitch MEMS sensor [12].
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Figure 3. Configuration of the MGWD device. Each MEMS sensor is composed of a single-axis
gyroscope and three-axis accelerometers. The body frame is the right (X-axis), forward (Y-axis) and up
(Z-axis) direction.

The MEMS sensor (SCC1300-D04, Murata Manufacturing Co., Ltd, Kyoto, Japan) is a combined
gyroscope and accelerometer component and the sensor is characterized by low cost, small diameter,
and high performance. The microcontroller (CC2538, Texas Instruments, Dallas, TX, USA) is a
high-speed System-on-Chip (SoC) combined with ARM cortex-M3 processor. Tables 1 and 2 provide
the technical specification of the MEMS sensor and the microcontroller, respectively.

Table 1. Technical specifications for SCC1300-D04.

Parameters Gyroscope Parameters Accelerometer

Offset Short Term Instability <2.1 ˝/h Offset Error ˘70 mg
Angular Random Walk 0.86 ˝/

?
h Linearity Error ˘40 mg

Noise Density 0.02 (˝/s/
?

hq Noise 5 ~ 7 mg
Temperature ´40 ~ +125 ˝C Temperature ´40 ~ +125 ˝C

Table 2. Technical specifications for CC2538.

Parameters Values Parameters Values

Processor ARM Cortex-M3 Debugging cJTAG and JTAG
Frequency 24 MHz RF 2.4 GHz IEEE 802.15.4 Transceiver
Peripherals USB/I2C/SSI/UART Size 8 mm ˆ 8 mm

Temperature ´40 ~ +125 ˝C Voltage 2 V ~ 3.6 V
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The types of data communication between the MEMS sensor and microcontroller is the serial
peripheral interfaces (SPI) interface with 115,200 bit/s data transmission rate. The data collection
software evaluates the navigation solutions with angular rate and specific force received from MGWD
device through the universal serial bus (USB) with 20 Hz sample rate.

Figure 4 shows the process of the data collection and the contents of the experiments. The
computer continuously reads the angular rate and the specific force of the drill bit from the static
MGWD device. Therefore, the zero velocity and zero position are readily available as the reference of
experiments, designed in terms of the size of attitude error.
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Figure 4. Process of data collection and contents of experiments. The MEMS sensors sense the angular
rate and specific force of the drill bit and then transfer the data to the computer through a USB interface
for evaluation of navigation solutions. The proposed algorithm would be verified by two groups
of designed experiments with the reference of zero velocity and zero position. The design rule of
experiments is based on the initial attitude error.

In the experiment, we collect original data from the static MGWD device for the period of 10 min
to demonstrate the performance of the PF and the accuracy of the proposed NNEM. Figure 5 shows
the original data from two-axis gyroscopes and three-axis accelerometers. The outputs of gyroscopes
include the noise and the angular rate of the Earth projected onto the X-axis and Z-axis of the MGWD
device. The X-axis and the Y-axis outputs of accelerometers are only the noise since the device is under
static condition while the Z-axis output of accelerometer consists of the noise and gravity.
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Figure 5. Original data obtained from experiments using the MGWD device. (a) Original data from
two-axis gyroscopes; (b) original data from three-axis accelerometers. The length of experimental data
is 600 s in quasi-stationary conditions.
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5.2. Experiment 1: Comparison of KF with LEM and PF with NEM under Small-Angle Attitude
Error Condition

The aim of Experiment 1 is to confirm that the performance of the PF with NEM is better than the
performance of KF with LEM under small-angle attitude error conditions. The assumption of KF is
that all the states are Gaussian and the SSM is linear. However, the complicated drilling environments
introduce such strong interference to the MGWD device that the linear SSM and Gaussian states
are impossible.

The first 50 s are utilized for initial alignment; the results of the initial alignment for roll, pitch,
and azimuth are ´0.022108˝, 0.180922˝, and ´10.351435˝, which are also set as the initial attitude in
this experiment. Therefore, the initial attitude error is so small that the DCM can be approximated by
the attitude. The rest of parameters related to the KF and PF are given as follows:

‚ Initial covariance matrix of system noise: R = diag([0.1,0.1, 0.1,0.1, 0.1, 0.1]);
‚ Initial covariance matrix of observation noise: Q = diag([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]);
‚ Initial position: latitude 126.6879˝; longitude 45.7776˝; height 124 m;
‚ Initial velocity: 0.

Figure 6 illustrates the initial particles and initial weights.
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Figure 6. Initial particles p px0|z0q and initial weights wi
0 for the PF. The initial particles and weights

of attitude errors pδφ, δθ, δψq, velocity errors pδVN, δVE, δVDq, and position errors pδϕ, δλ, δhq are
identical because the initial parameters (initial states and initial estimation errors) to evaluate the initial
particles and initial weights are the same.

Figure 7 a1, a2, b1, b2, c1, c2 show the particles of the state errors together with the corresponding
weights drawn from the priori pdf

!

p
´

xi
k|x

i
k´1

¯)

at time k. The posterior pdf tp pxk|zkqu can be
evaluated by the Equation (46) after the particles and the corresponding weights are obtained. The
number of the particles and weights for each state are 200. The particles and weights are updated at
every time circle; meanwhile, the posterior pdf is updated.
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Figure 7. Particles or samples, along with the corresponding weights for evaluation of the posterior
function. (a1) and (a2) are particles of velocity errors and the corresponding weights; (b1) and (b2)
are the particles of attitude errors and the corresponding weights; (c1) and (c2) are the particles of
positon errors and the corresponding weights. The priori pdf is the importance density function. The
designator δL, the same as δϕ, is the latitude error.

Figure 8 presents the evaluation of state density in terms of the updated pdf; the results illustrates
that the pdf of states are partially Gaussian. Therefore, the KF is suboptimal since the assumption is
that all states are Gaussian in KF while the PF would not be limited by the non-Gaussian assumption.
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Figure 8. Evaluation of state density.

Figure 9 gives a performance comparison of the KF with LEM and PF with NEM or NNEM under
small-angle attitude error. Figure 9 a1, a2 show that both the latitude and the longitude estimated
by KF and PF converge to 45.7776˝ and 126.6879˝, which are the same as the reference values (initial
latitude and initial longitude). However, the height estimated by KF is 132.0782 m while the height
estimated by PF is 123.9999 m, which is almost the same as the reference height (124 m). Therefore, the
NEM or NNEM can restrain the errors of height effectively under small-angle attitude error conditions.
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Figure 9. Cont.
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Figure 9. Comparison of the performance of KF with LEM and PF with NEM or NNEM under
small-angle attitude errors conditions. (a1) and (a2) are the estimated attitude and the corresponding
estimation error; (b1) and (b2) are the estimated velocity and the corresponding estimation error; (c1)
and (c2) are the estimated position and the corresponding estimation error. Plotting the figure uses the
double Y-axis plotting approach because the results are in different orders of magnitude.

In Figure 9 b1, b2 the north velocity, east velocity, and down velocity estimated by PF are close
to zero (0.0002 m/s, 0.0001 m/s, and 0.0001 m/s) while the errors of north velocity, east velocity,
and down velocity estimated by KF are up to 0.3702 m/s, 0.2839 m/s, and 2.2953 m/s respectively.
Therefore, the PF with NEM or NNEM gives better performance than KF with LEM does for the
velocity estimation under small-angle attitude error.

In Figure 9 c1, c2 the roll, pitch, and azimuth of MGWD system estimated by PF with NEM
or NNEM largely converge to ´0.022125˝, 0.180922˝, and ´10.353632˝, respectively, which are the
same as the reference points provided by the initial alignment, while the results of pitch and azimuth
estimated by KF deviate from the reference values by about 8˝ and 10˝, respectively. Therefore, the PF
with NEM or NNEM can restrain the pitch and azimuth error effectively.

5.3. Experiment 2: Validation of the Performance of NNEM with Large-Angle Attitude Error

The objective of Experiment 2 is the validation of the performance of NNEM with large-angle
attitude error. The experimental data used in this section are the same as those in Experiment 1 and
the initial parameter settings are also the same as in experiment 1 apart from the initial attitude. The
assumption of this experiment is that the initial alignment fails to provide an accurate initial attitude.
We set the initial roll, pitch, and azimuth as 0˝. The experiment is practical since the initial attitude is
generally difficult to obtain in the application of downhole drilling.

Figure 10 a1, a2, b1, b2, c1, c2 show the estimation of roll, pitch, and azimuth of the MGWD
system and the corresponding estimation errors. The roll, pitch, and azimuth converge to ´0.021976˝,
0.184392˝, and ´9.893302˝, respectively, which are close to the reference values for initial alignment.
The selection of initial attitude has little influence on the convergence of the attitude estimation by
PF with NNEM since the roll converges to the reference value at around 320 s, the pitch converges
to the reference value at around 180 s, and the azimuth converges to the reference value at around
360 s, as illustrated in Figure 10 a1, b1, and c1. Figure 10 a2, b2, c2 show that the error of roll and
error of pitch estimated by PF with both NNEM and NEM are less than 0.0001˝ and 0.001˝. The
error of azimuth estimated by PF with NEM is 2.459532˝ while the estimation error of azimuth with
NNEM is 2.5ˆ 10´5˝. In addition, the accurate solutions of roll and pitch presented in Figure 10
demonstrate that the error of roll and error of pitch couple with the accuracy of east velocity and
north velocity. Therefore, the PF with NNEM can greatly restrain the azimuth error under large-angle
latitude error conditions.
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Figure 10. Results of attitude and estimation error of attitude by KF with LEM, PF with NEM, and PF
with NNEM under large-angle attitude error conditions. (a1) and (a2) are the estimation of roll and
estimation error of roll; (b1) and (b2) are the estimation of pitch and estimation error of pitch; (c1) and
(c2) are the estimation of azimuth and estimation error of azimuth. Plotting the figure uses the triple
Y-axis plotting approach because the results are in different orders of magnitude.

Figure 11 a1, a2, b1, b2, c1, c2 illustrate the results of the north velocity, east velocity, and down
velocity and the corresponding estimation errors of the MGWD system. The velocity estimated by PF,
regardless of NEM or NNEM, apparently converges to zero velocity while the velocity error estimated
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by PF with NNEM is approximately 10 times smaller than KF with LEM. Therefore, the velocity errors
estimated by PF with NNEM can be reduced effectively.Sensors 2016, 16, 371 18 of 23 
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Figure 11. Results of estimation of velocity and estimation error of velocity by KF with LEM, PF with
NEM, and PF with NNEM under large-angle attitude error conditions. (a1) and (a2) are the estimation
of north velocity and estimation error of north velocity; (b1) and (b2) are the estimation of east velocity
and estimation error of east velocity; (c1) and (c2) are the estimation of down velocity and estimation
error of down velocity.
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Figure 12 a1, a2, b1, b2, c1, c2 describe the estimation of latitude, longitude, and height of the
MGWD system and the corresponding estimation errors. The latitude and longitude estimated by KF
with LEM, PF with NEM, and PF with NNEM are almost close to the reference values 45.7776˝ for
latitude, 126.6879˝ for longitude. The height estimated by PF with NNEM is 123.9996 m (reference
height: 124 m) while the error of height estimated by KF with LEM is about 5 m and the error of height
estimated by PF with NEM is approximately 3 m. The results demonstrate that the PF with NNEM can
constrain the error growth of height effectively. Table 3 lists the results of Experiment 2.
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Figure 12. Results of estimation of position and estimation error of position by KF with LEM, PF with 

NEM, and PF with NNEM under large-angle attitude error condition. (a1) and (a2) are the estimation 
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6. Conclusions 

This paper proposes a NNEM for MGWD system under large-angle attitude error conditions. 

The error of DCM as the intermediate variable is introduced for the derivation of NNEM, which can 

effectively eliminate the approximation of errors existing in the derivation of conventional NEM. The 

evaluation of the state density shows that the system states are partially Gaussian, so the KF is 

suboptimal in this application. PF can improve the estimation performance of nonlinear problems by 

approximating the posterior pdf with the particles and weights. The PF with NEM gives a better 

performance than KF with LEM for the estimation of height, velocity, pitch, and azimuth in 

Experiment 1. The NNEM of the MGWD system provides an accurate estimation of position, velocity, 

and attitude compared with PF with NEM and KF with LEM in Experiment 2. 
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Figure 12. Results of estimation of position and estimation error of position by KF with LEM, PF with
NEM, and PF with NNEM under large-angle attitude error condition. (a1) and (a2) are the estimation
of latitude and estimation error of latitude; (b1) and (b2) are the estimation of longitude and estimation
error of longitude; (c1) and (c2) are the estimation of height and estimation error of height.
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Table 3. Navigation solutions and corresponding errors estimated by PF with NNEM, PF with NEM,
and KF with LEM in Experiment 2.

Parameters PF ` NNEM PF ` NEM KF + LEM

ϕ 45.777664˝ 45.777613˝ 45.777935˝

λ 126.687953˝ 126.687934˝ 126.688326˝

h 123.999686 m 123.652484 m 120.945752 vm
VN 0.002984 m/s 0.0197424 m/s 0.983472 m/s
VE ´0.000019 m/s ´0.234530 m/s 1.342358 m/s
VD 0.005637 m/s 0.287584 m/s 1.846332 m/s
φ ´0.021976˝ ´0.034748˝ ´0.053672˝

θ 0.184392˝ ´0.068584˝ ´0.026478˝

ψ ´9.893302˝ ´2.527547˝ ´2.599384˝

δϕ ´0.362394 ˆ 10´7 ´0.000014˝ ´0.000238˝

δλ ´0.457395 ˆ 10´8 ´0.000106˝ ´0.000056˝

δh ´0.000348 m ´0.196528 m ´8.872501 m
δVN 0.075922 m/s 0.128473 m/s 0.248382 m/s
δVE 0.048975 m/s 0.056483 m/s 0.287349 m/s
δVD ´0.00648 m/s ´0.039320 m/s 0.877265 m/s
δφ ´0.000464˝ 0.003502˝ 0.004882˝

δψ 0.000353˝ 0.004528˝ 0.005216˝

δψ ´0.000025˝ 2.459532˝ 1.879347˝

6. Conclusions

This paper proposes a NNEM for MGWD system under large-angle attitude error conditions.
The error of DCM as the intermediate variable is introduced for the derivation of NNEM, which
can effectively eliminate the approximation of errors existing in the derivation of conventional NEM.
The evaluation of the state density shows that the system states are partially Gaussian, so the KF is
suboptimal in this application. PF can improve the estimation performance of nonlinear problems
by approximating the posterior pdf with the particles and weights. The PF with NEM gives a better
performance than KF with LEM for the estimation of height, velocity, pitch, and azimuth in Experiment
1. The NNEM of the MGWD system provides an accurate estimation of position, velocity, and attitude
compared with PF with NEM and KF with LEM in Experiment 2.
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