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Abstract: Hyperspectral imaging which combines imaging and spectroscopic technology is 

rapidly gaining ground as a non-destructive, real-time detection tool for food quality and 

safety assessment. Hyperspectral imaging could be used to simultaneously obtain large 

amounts of spatial and spectral information on the objects being studied. This paper provides 

a comprehensive review on the recent development of hyperspectral imaging applications in 

food and food products. The potential and future work of hyperspectral imaging for food 

quality and safety control is also discussed. 
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1. Introduction 

With the current growing need for low production costs and high efficiency, the food industry is faced 

with a number of challenges, including maintenance of high-quality standards and assurance of food 

safety while avoiding liability issues. Meeting these challenges has become crucial in regards to grading 

food products for different markets. Food companies and suppliers need efficient, low-cost, and 

non-invasive quality and safety inspection technologies to enable them to satisfy different markets’ 

needs, thereby raising their competitiveness and expanding their market share.  

Quality and safety of food are usually defined by physical attributes (e.g., texture, color, marbling, 

tenderness), chemical attributes (e.g., fat content, moisture, protein content, pH, drip loss), and 
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biological attributes (e.g., total bacterial count). Traditionally, assessment of quality and safety involves 

human visual inspection, in addition to chemical or biological determination experiments which are 

tedious, time-consuming, destructive, and sometimes environmentally unfriendly. These necessitate the 

need for accurate, fast, real-time and non chemical detection technologies, in order to optimize quality 

and assure safety of food.  

With recent advancements in computer technology and instrumentation engineering, there have been 

significant advancements in techniques for assessment of food quality and safety. Machine vision and 

NIR spectroscopy are two of the more extensively applied methods for food quality and safety 

assessment. Machine vision techniques based on red-green-blue (RGB) color vision systems have been 

successfully applied to evaluate the external characteristics of foods [1–6]. Normal machine vision 

systems are not able to capture broad spectral information which is related to internal characteristics, 

hence computer vision has limited ability to conduct quantitative analysis of chemical components in 

food. Spectroscopy is a popular analytical method for quantification of the chemical components of food. 

The tight relationship between NIR spectra and food components makes NIR spectroscopy more 

attractive than the other spectroscopic techniques. However these spectral methods were proved inefficient 

when it comes to heterogeneous materials such as meat, owing to the fact that they are not capable of 

obtaining any spatial information about objects [7–10]. To solve the problem, repeated detection or ground 

of objects were recommended, which would raise the error or make the techniques destructive. 

Due to the limitations of regular machine vision and spectroscopic techniques, hyperspectral imaging 

was developed. Hyperspectral imaging was originally developed for remote sensing applications [11].  

It can be used to obtain spectral and spatial information of an object over the ultraviolet, visible, and 

near-infrared spectral regions (300 nm–2,600 nm) [12]. According to Gowen et al. [13], hyperspectral 

imaging has several merits over RGB imaging, NIR spectroscopy and multispectral imaging, including 

the ability to collect large and detailed spectral and spatial information. Because of the inherent merits of 

this technique, it has been put to application in a number of fields including agriculture [14,15], 

pharmaceutical [16,17], and material science [18]. Applications of hyperspectral imaging in food quality 

and safety include detection of contaminations [19,20], identification of defects [21,22] and 

quantification of constituents [23]. Recently, the technique has become more and more popular in food 

quality control in order to meet consumer demands and the challenge of market segmentation and legal 

restrictions. Publications in this research area have greatly increased in number since 2008, as shown in 

Figure 1, which implies the strong potential of hyeprspectral imaging as a promising detection technique 

for food quality and safety control.   

In this paper, a comprehensive review of the recent developments in hyperspectral imaging systems 

and applications in food and food products is provided. Compared to other recently published review 

articles [24–27] which focused on the applications of hyperspectral imaging in food quality inspection, 

this paper highlights the optical fundamentals of hyperspectral imaging and the most recent advances in 

the configurations and applications of hyperspectral imaging in food quality and safety control.  
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Figure 1. The number of publications about hyperspectral imaging applications in food. 

 

2. Hyperspectral Imaging 

2.1. Optical Fundamentals of Hyperspectral Imaging 

At the molecular level, all food samples continuously emit and absorb energy by lowering or raising 

their molecular energy levels. The wavelengths at which molecules absorb, reflect, and transmit 

electromagnetic radiation are characteristics of their structure [28]. Electromagnetic waves usually 

include ultraviolet radiation (UV), visible light (VIS), NIR, mid-infrared, and far-infrared (FIR). Each 

region is related to a specific kind of atomic or molecular transition corresponding to different 

frequencies. As with any biological material, food tissues are held together by several different 

molecular bonds and forces. Water, carbohydrates and fats are rich in O-H or C-H bonds. Organic 

compounds and petroleum derivatives are rich in C-H or N-H bonds. When a food sample is exposed to 

light, electromagnetic waves are transmitted through it, the energy of incident electromagnetic wave 

changes because of the stretching and bending vibrations of chemical bonds such as O-H, N-H and C-H. 

This makes spectroscopy able to provide characteristic and detailed fingerprints of food samples by 

using these observed changes in molecular energy levels.  

At the macro level, the electromagnetic wave is observed as light, and the transitioning of the incident 

electromagnetic wave is shown as the reflection, scattering, and transmission of light. Since the absorbed 

part of light penetrates into the tissue of samples, the strength and wavelengths of emission and 

absorption depends on the physical and chemical states of the objective material. The emerging light 

obtained is converted to a spectrum and reshaped to images by hyperspectrometers with high 

signal-to-noise ratios. These obtained images, i.e., hyperspectral images, could indicate the chemical 

constituents and physical properties of the food samples. 

2.2. Acquisition of Hyperspectral Images 

Hyperspectral imaging systems provide hyperspectral images consisting of numerous spatial image 

planes of the same object at different wavelengths. The resulting hyperspectral image is achieved 

through the superimposition of the spatial images collected by the hyperspectral sensors, thus creating a 
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three-dimensional data cube called hypercube which is then further analyzed and illustrated. These 

images are composed of vector pixels, and represent the composition and appearance of that particular 

food sample. Spectra from the data cube of different samples can be compared. Similarity between the 

image spectra of two samples indicates similarity of chemical composition and physical features.  

The hypercube usually can be constructed in three ways: area scanning, point scanning, and line 

scanning [13]. Due to the presence of conveyor belts (for in-line inspection) in most food processing 

plants, line scanning (or pushbroom) is the preferred image acquisition method. The hypercube of line 

scanning is acquired by composing several whole lines of an image instead of a single pixel at a time, 

and it is stored in the format of Band Interleaved by Line (BIL) which is a scheme for storing the actual 

pixel values of an image in a file band by band for each line or row of the image. The spatial and spectral 

information stored in BIL are analyzed simultaneously. 

Hyperspectral imaging systems can be operated either in reflectance or transmittance modes. To 

acquire images in transmittance mode, thin sample sizes are usually used to allow light to travel through 

the sample. Thicker samples can be used in reflectance hyperspectral imaging measurements. Thus, food 

materials can be inspected as a whole in reflectance mode without the need to make slices. Examples 

include apples [29], cucumbers [30], mushrooms [31], and chickens [32].  

Light penetration depth is defined as the depth at which the incident light was reduced by 99%. It can 

vary according to the status, type of sample, and the detection waveband. Optical features of the light 

penetration depths are mainly determined by strong absorbing constituents in the sample. Research 

regarding the penetration depth of light in VIS and NIR range is very limited. Lammertyn et al. [33] 

proved that light penetration depth in apples was dependent on the detection wavelength by putting 

forward a non-linear model describing the correlation between the reflectance and thickness of apple 

slices. The penetration of apple is up to 4 mm in the 700–900 nm range and between 2 and 3 mm in the 

900–1,900 nm range. In the research of Qin and Lu [34], the light penetration depth in tissues of apple, 

peach, pear, kiwifruit, tomatoes, zucchini, cucumber, and plum were calculated according to the 

absorption and reduced scattering spectra of the test samples at different wavelengths. The minimum 

light penetration depths ranged from 7.1 mm at 535 nm for the plum to 13.8 mm at 720 nm for the 

zucchini. The wavelengths were correlated to the absorption peaks of the major pigments in the fruits 

and vegetables. The maximum penetration depths ranged from 18.3 mm for the apple to 65.2 mm for the 

zucchini. This study highlighted that penetration depth varies a great deal depending on the type of 

object being studied and the applied depth. The penetration depth could have effects on the hyperspectral 

imaging detection. Most of the studies about penetration depth were conducted on fruits. Further 

research concerning penetration depth would prove beneficial by providing references for thickness 

determination and could be valuable for designing an appropriate and accurate sensing configuration, 

especially in meat products. 

2.3. Configuration of Hyperspectral Imaging System 

Typical hyperspectral imaging systems comprise hardware and software. The specific configuration 

may vary depending on the object to be assessed and the image acquisition technique used. Most 

hyperspectral imaging systems hardware platforms share common basic components (shown in Figure 2): 

a light source  to provide illumination, usually produced by halogen-tungsten lamps; light irradiation of 

samples either directly or delivered by an optical fiber; a detector which obtains both spectral and spatial 
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information simultaneously; a hyper-spectrograph to disperse the wavelengths of the reflected, 

transmitted, or scattered light and deliver signals to the photosensitive surface of the detector; an 

objective lens to adjust the range of light acquisition; an objective table fixed to a conveyer belt to hold 

and transport the sample and finally a computer to compose and store the three-dimensional hypercube. 

Figure 2. Configuration of a hyperspectral imaging system. 

 

For the hyperspectral imaging system detector, there are three basic choices of cameras for this 

application, including silicon (Si)-based charge-coupled device (CCD) or complementary metal oxide 

semiconductor (CMOS) cameras, indium gallium arsenide (InGaAs)-based array detectors, and mercury 

cadmium telluride (HgCdTe)-based array detectors. The choice of the camera in a particular 

hyperspectral imaging system depends on the required wavelength, the quantum efficiency (QE) 

representing the sensitivity, and the cost. At present, the CCD camera (300–1,100 nm) is the most widely 

used VIS/NIR detector in food quality and safety analysis, with the advantage of lower cost and potential 

wider availability (compared to InGaAs and HgCdTe). The QE of a typical Si based sensor is shown in 

Figure 3. The higher QE indicates higher sensitivity. The QE of Si cameras between 420 and 560 nm is 

above 50%, but falls to less than 1% over 1,000 nm. This strongly indicates that to use these sensors for 

imaging in the NIR region, a powerful light source is required to offer very powerful output, which can 

be extremely expensive and run the risk of overheating the samples during imaging.  

The development of advanced instrumentation enabled the application of near infrared cameras in food 

processing, including the InGaAs array detector (900–1,700 nm, 1,000–2,200 nm, and 1,200–2,500 nm) 

and the HgCdTe array detector (1,000–2,600 nm). Figure 4 shows a comparison of the QE of Si-based 

and InGaAs-based detectors. Three types of InGaAs detectors were studied, including InGaAs1700 

(900–1,700 nm), InGaAs2200 (1,000–2,200 nm), InGaAs2500 (1,200–2,500 nm). An intersection point 

of the QE curves of InGaAs and Si based cameras was observed around 900 nm. The QE of InGaAs1700 

falls to under 40% below 900 nm, while the QE of Si based camera falls to 40% above 900 nm. If the 

required wave band is around 900 nm, the choice of camera may depend on whether it tends to VIS or 
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NIR. In contrast of three types of InGaAs detectors, a better choice would be the InGaAs1700, whose 

QE is higher than 50% above 950 nm and keep higher than 80% between 1,000–1,600nm, with an 

average QE of 60%. The InGaAs2200 and InGaAs2500 have average QE around 50% and 55% 

separately at the desired wavelength ranges, but not as good as InGaAs1700. All types of InGaAs 

cameras have better sensitivity than Si-based cameras in the NIR region especially above 900 nm. 

Hyperspectral imaging systems based on InGaAs camera may provide increased accuracy for 

assessment and analysis of food quality and safety [30,35,36], but the cost of NIR cameras is higher than 

for VIS/NIR cameras, which may affect the application of NIR hyperspectral imaing. 

Figure 3. QE of typical Si based camera. 

 

Figure 4. QE comparison of InGaAs detectors and Si-based cameras. 

 

The hyperspectral imaging system and components have developed along with imaging and 

instrument techniques. As these technologies advance, it is expected that there will be further 

improvements in hyperspectral imaging systems, particularly at the higher wavelengths for more 

detailed analysis of food quality and safety. Very recently, a hand-held hyperspectral imaging system 
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(400–720 nm) was proposed to assist in food processing facilities [37]. This system can be used to detect 

wear on HDPE surfaces as well as the presence of produce residues. Small amounts of juice released 

during the processing procedures of honeydew or cantaloupe melon can be detected using this handheld 

hyperspectral imaging system. This suggested that portable hyperspectral imaging equipment would be 

valuable in food quality and safety control. 

2.4. Spatial Resolution of Hyperspectral Imaging System 

The information that is acquired by a hyperspectral imaging system carries spatial information as 

well as spectral information. Spatial resolution is important for adjustment of the field of view and 

estimation of the scanning limit. From a practical point of view, a system with a proper spatial resolution 

should be selected according to the size and shape of the analyzed objects. Generally, the spatial 

resolution can be calculated by dividing the scanned spatial distance to the pixel numbers in each image. 

For point scanning system, the images are collected pixel by pixel. The spatial resolution depends on the 

pixel resolution of the camera. Similarly for an area scanning system, the images are collected area by 

area. The spatial resolutions in two spatial dimensions are the same. They are determined by the size of 

the detected area. For line scanning system, the dominated resolution refers to the one in the direction 

parallel to the slit, which is determined by several factors including zoom amount of lens, working 

distance, camera, imaging spectrograph, etc. [27]. In the study of Lara et al. [15], spatial resolution  

of 0.26 mm/pixel was used to study the shelf-life of spinach using a line scanning system.  

Kamruzzaman et al. [38] used a spatial resolution of 0.578 mm/pixel for visualization of minced lamb 

meat. Mendoza et al. [39] applied spatial resolution of 0.20 mm/pixel for image acquisition of apple 

fruit. For line scanning systems, different spatial resolutions were used in different studies and the most 

used one is at the millimetre level which was implied as the limitation of spatial resolution for line 

scanning system. It would be beneficial for food quality control if the spatial resolution of line scanning 

hyperspectral imaging could be reduced to the micron level.  

Figure 5. Flow diagram of hyperspectral data analysis process. 
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3. Analysis of Hyperspectral Images 

The data cube produced by hyperspectral imaging systems contains a mass of information with large 

dimensionality. The main purpose of hyperspectral data analysis is to reduce the dimensionality and 

retain the useful data for discrimination or measurement analysis of food quality and safety. 

Corresponding to image processing technique and chemometry, many methods could be adopted to 

reach the detection goal. There is a main criterion that these methods should follow as Figure 5 

describes, including reflectance calibration, image processing, spectral preprocessing, and qualitative 

analysis or quantitative analysis.  

3.1. Reflectance Calibration 

The purpose of reflectance calibration is to correct the acquired sample images from the dark current 

of the camera. The dark response D  is the background response of camera caused by dark current of the 

instrument. The dark response is obtained by turning off the light source, completely covering the lens 

with its cap, and recording the camera response. The bright response W  representing the total reflected 

light intensity from the illumination is obtained from a uniform high reflectance standard-a white 

ceramic tile, which reflects 99% light. After the optical reflected signal I  of sample is measured, the 

corrected reflectance value R  is calculated on a pixel-by-pixel basis as follows: 

DW

DI
R






 
(1) 

3.2. Image Processing 

In the hyperspectral data cube, grayscale images with intensity scaling have different values in 

different pixels. These values are commonly used to display the compositional contrast of measured 

objects. In a hyperspectral data cube, the intensity of every pixel in the hyperspectral image represents 

different light reflectance or transmittance. After the signals are calibrated by Equation (1), several 

image preprocessing sequences should be carried out to provide greater contrast between distinct regions 

of the sample and the background. The typical image preprocessing techniques include edge detection 

techniques, filters, trend removals, band ratio, grey-level segmentation or thresholding techniques, 

digital morphology, texture, thinning and skeletonization algorithms [40], etc. Thresholding is widely 

used as it is necessary to segment the targeted object from the image. Region of interest (ROI), excluding 

redundant background in combined or original calibrated image is obtained after image preprocessing. 

Image preprocessing is crucial in both spectral and image processing since the selected ROI is the basis 

of all followed analysis.  

After image preprocessing, many image analysis techniques can be used to extract useful image 

features for the further analysis. These include principal component analysis (PCA), minimum noise 

fraction, Gabor filter, wide line detector, grey level co-occurrence matrix (GLCM), variogram analysis, 

wavelet transform, etc. Some studies combined two or more methods to extract features more  

effectively [41–43]. 

Due to the abundance of information provided by three dimensional hyperspectral data, it is 

necessary to extract the important features on the sample images and to compare those feature with 



Sensors 2014, 14 7256 

 

targeted features of objects. Various feature extraction methods have been developed for feature 

detection and extraction in hyperspectral image processing. One example is the 2D Gabor filter. This 

method involves a Gaussian function modulated by a circularly symmetric sinusoidal function or 

oriented harmonic function, by which the spatial frequency and directional information of image texture 

are embodied. The Gabor filter technique was successfully applied to extract texture features from 

pork [41] and egg images [43] for pork quality classification and early embryo development detection, 

respectively. Figure 6 demonstrates an example of using Gabor filters to extract the texture feature from 

hyperspectral images of a pork image. ROI of pork was preliminary selected and applied to remove the 

useless information from original pork image. Gabor filters were performed on the hyperspectral images 

of the tested pork to extract the textural feature and obtain the filtered image. Finally, averaging was 

applied to images at all wavelengths to calculate the filtered mean spectra (shown as a plot). Useful 

information could be obtained by Gabor filters, which however, does not exclude redundant 

information. Hence, PCA, which is a technique that reduces the redundant features, was applied in the 

study of Liu et al. [41]. The principle of PCA was explained by Qin et al. [27]. PCA has been widely 

used to reduce dimension, compress data, extract feature, and even identify key wavelengths in the 

application of hyperspectral imaging for food quality and safety control [38,42,44–52]. 

Another method namely wide line detector was applied to extract the line feature from red-green-blue 

images of pork. The red, green, and blue images were acquired using a hyperspectral imaging system. 

Figure 7 shows examples of marbling extraction results, where lines with different width were 

efficiently extracted by wide line detector. According to Liu et al. [53], the wide line detector is 

insensitive to contrast between the object and surrounding pixels. Therefore, wide line detector is able to 

extract either narrow or wide lines from an image. The study is a good example of the application of 

pattern recognition techniques for hyperspectral analysis.  

Figure 6. Gabor filter for extracting texture features from a ROI of a pork image.  

(a) Selected ROI of pork, (b) applied Gabor filter, (c) Gabor filtered image, (d) extracted 

texture features.  

            

(a) (b) (c) (d) 
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Figure 7. Wide line detector for extracting line feature from red, green, and blue images  

of pork. 

 

3.3. Spectral Processing 

The basic spectral processing is spectral averaging. A mean spectrum is calculated by averaging the 

value of pixels included in the ROI. Individual output, i.e., an individual spectrum, corresponds to 

individual samples. Interference signal (baseline drift, particle deviation, surface heterogeneity) could 

exist in spectrum. Therefore, spectral preprocessing techniques should be used to remove these 

nonchemical biases from the spectral information. There are a number of preprocessing techniques in 

spectral processing, including Savitzky-Golay filter, multiple scattering correction (MSC) for particle 

scattering effect elimination, first or second derivative, smoothing, and standard normal variate (SNV) [54]. 

Signal to noise ratio could be strengthened and more effective signals could be distinguished by 

computing correction factors using different preprocessing techniques. Recently, a preprocessing 

method named Modified Lorentzian Distribution (MLD) function, which was proposed by Peng and  

Lu [55], was applied to create a curve fit for beef spectral information [29], by which the effective 

scattering information of beef tenderness and pH value was magnified and the prediction result was 

improved effectively. 

3.4. Qualitative Analysis and Quantitative Analysis 

Application of hyperspectral imaging in practice may be limited due to the resulting large and 

computationally excessive hypercube. Thus, it is necessary to extract the characteristic wavelength by 

operating qualitative or quantitative analysis. These analyses aim to identify or explore the relationship 

between food features and spectral characteristics. Another important part of spectral processing is the 

optimization of wavelengths. For qualitative analysis, discriminate analytical tools such as manual 

observation, principle component analysis (PCA), linear discriminant analysis (LDA), and k-means 

clustering are usually employed to classify or evaluate samples according to a selection criterion [26,56]. 
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Recently, Ariana and Lu [30] applied a hybrid approach, namely partial least squares discriminant 

analysis (PLSDA), which employs both partial least squares regression (PLSR) and LDA, to extract 

hyperspectral feature of defective cucumber and pickles (R > 0.80). In this study, K-nearest neighbor 

(KNN) was also applied to compare with PLSDA and the result indicated that PLSDA outperformed 

KNN. There were other reports of employment of PLSDA in image analysis of food, including pork, 

pickling cucumber, smoked salmon, and spinach leaves [57–60]. PLSDA was successfully practiced in 

those studies. However, the stability of PLSDA may be considered in further assessment [14].  

Another research group [61] developed a spectral information divergence ( SID )-based classification 

algorithm. SID  is a complex value calculated from X and Y :  

     XYDYXDYXSID ,  (2) 

where X  is a given hyperspectral pixel from the hyperspectral image; Y is another pixel with probability 

vector formed by matrix transformation from X [62]. After SID quantified the spectral discrepancy by 

making use of the relative entropy to account for the spectral information provided by each pixel, 

classification algorithm was applied to SID map to distinguish normal citrus from cankered citrus.  

For quantitative analysis prediction, multivariate analytical tools such as PCA, PLSR, stepwise 

multi-linear regression (SMLR), are usually employed for chemical content prediction [27,63]. PCA and 

PLSR are the mostly used modeling method. Another method, support vector machines (SVM) were 

applied in some studies of non-invasive food quality and safety control [14,40,64]. A research group 

practiced radial basis function (RBF) based on least square support vector machines (LS-SVM) in 

hyperspectral image processing [65]. As an improvement of support vector machines (SVM), LS-SVM 

was showed to have better performance. This indicated that LS-SVM is an efficient quantitative analysis 

tool for high dimensional data.  

4. Application of Hyperspectral Imaging in Food Analysis 

As an emerging process analytical tool, hyperspectral imaging is well suited for food quality and 

safety control. Rapid detection and monitoring of food quality and safety are required for online 

implementation in food processing system. hyperspectral imaging could be used as a powerful tool for 

the identification of key wavelengths in the development of online automated multispectral imaging 

systems. Consequently, hyperspectral imaging finds widespread use in research mainly as a tool to 

develop multispectral inspection equipment.  

Table 1 presents a summary of typical papers published in hyperspectral detection of food quality and 

safety since 2008. Over the past several years, intensive research has been carried with regards to the 

emerging potential for hyperspectral imaging application in the food industry. As shown in Table 1, 

reflectance mode and VIS/NIR (400–1,000 nm) region are the major application areas, while 

transmittance mode and NIR (900–1,700 nm) region is increasingly used to monitor external or internal 

features of different types of raw and processed food. Although the majority of publications on 

hyperspectral imaging were on fruits and vegetables, there have been growing reports of work on 

seafood and meat. Table 1 lists the recent advances in the application of hyperspectral imaging on 

quality and safety analysis of different food products. 
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Table 1. Summary of measurement mode, product type, analysis type, wavelength region, and modeling algorithm in representative papers 

published on hyperspectral imaging of food since 2008. 

Mode Camera Product 
Spectral Coverage 

(nm) 

Analysis 

Type 
Image Processing Modeling Reference 

Reflectance CCD Almond nut 
700–1,000, 

950–1,390 
Qualitative Not-mentioned 

Band ratio(BR), 

Support vector machines (SVM) 
[64] 

 CCD Apple 600–1,000 Quantitative Thresholding (TH) 
Partial least squares regression(PLSR), 

Partial least squares discriminant analysis (PLSDA) 
[66] 

 CCD Apple 450–1,000 Quantitative Not-mentioned Stepwise multi-linear regression(SMLR) [29] 

 CCD Apple 400–1,000 Qualitative TH Artificial neural networks (ANN) [67] 

 Not-mentioned Apple 600–1,000 Qualitative Locally linear embedding (LLE) SVM, PLSDA [68] 

 EMCCD Apple 400–1,000 Quantitative 

First derivative, and 

multi-resolution wavelet 

transform 

PLSR [69] 

 EMCCD Apple 500–1,000 Quantitative 

First order statistics, Fourier 

fractal texture, grey level 

co-occurrence matrix (GLCM), 

run length matrix (RLM),  

directional fractal dimension 

analysis, and multi-resolution 

wavelet transform 

PLSR [39]  

 Not-mentioned Apple 
400–1,000, 

1,000–2,500 
Qualitative 

PCA, minimum noise fraction 

(MNF) 

Soft independent modeling class analogy (SIMCA), 

linear discriminant analysis (LDA), SVM 
[42] 

 CCD 
Apple, peach, kiwifruit, 

plum 
500–1,000 Quantitative TH Manual analysis [34] 
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Table 1. Cont. 

Mode Camera Product 
Spectral Coverage 

(nm) 

Analysis 

Type 
Image Processing Modeling Reference 

 CCD Beef 400–1,000 Quantitative 
Co-occurrence matrix analysis, 

PCA 
Canonical discriminant [44] 

 CCD Beef 400–1,100 Quantitative MLD Multi-linear regression (MLR) [70] 

 CCD Beef 496–1,036 Quantitative MLD SMLR [71] 

 CCD Beef 910–1,700 Quantitative PCA PLSR [72] 

 CCD Beef 897–1,752 Quantitative TH PLSR [73] 

 EMCCD Blueberry 500–1,000 Quantitative TH PLSR [74] 

 CCD Chicken 389–744 Qualitative TH BR [32] 

 CCD Chicken breast fillets 910–1,700 Quantitative TH PLSR [75] 

 CCD Chicken fillets 930–1,450 Quantitative TH PLSR [76] 

 CCD Citrus 400–1,100 Qualitative 
Geometric factor 

correction(GFC) 
Digital elevation model (DEM) [77] 

 EMCCD Citrus 450–930 Qualitative TH Spectral information divergence (SID) mapping [61] 

 CCD Grape seed 914–1,715 Quantitative PCA PLSR [49] 

 CCD Lamb 910–1,700 Qualitative PCA PCA [46] 

 CCD Lamb 900–1,700  Quantitative TH PLSR [78] 

 CCD Minced lamb 890–1,750 Quantitative PCA PLSR, MLR [38] 

 CCD Ham 910–1,710 Qualitative PCA PCA [47] 

 CCD Dry-cured ham 760–1,040 Quantitative Not-mentioned PLSR [79] 

 CCD Mandarin 320–1,100 Qualitative GFC LDA, Classification and regression trees (CART) [80] 

 CCD Mushroom 400–1,000 Quantitative Not-mentioned PLSR [81] 

 CCD Mushroom 400–1,000 Quantitative TH PCA [82] 

 Not-mentioned Mushroom 400–1,000 Qualitative TH PCA [83] 
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Table 1. Cont. 

Mode Camera Product 
Spectral Coverage 

(nm) 

Analysis 

Type 
Image Processing Modeling Reference 

 Not-mentioned Mushroom 450–850 Quantitative Not-mentioned MLR, Principal components regression (PCR) [84] 

 Not-mentioned Mushroom 450–950 Qualitative Interactive selection PCA [31] 

 CCD Oranges 400–1,100 Qualitative PCA PCA, BR, TH [48] 

 CCD Pork 400–1,000 Quantitative Gabor-filter, TH PCA, K-means clustering, LDA [41] 

 CCD Pork 400-1,100 Quantitative Not-mentioned Least square support vector machines (LS-SVM) [65] 

 CCD Pork 460, 580, 720 Quantitative Wide line detector  MLR [53] 

 CCD Pork 900–1,700 Qualitative PCA PLS [50] 

 CCD Pork 900–1,700 Qualitative TH PLSDA [57] 

 Not-mentioned Pork 900–1,700 Qualitative TH PCA [85] 

 CCD Pork 900–1,700 Quantitative TH PLSR [86] 

 CCD 
Pickling cucumbers and 

whole pickles 
400–740 Qualitative TH PLSDA, K-nearest neighbor(KNN) [30] 

 CCD Pickling cucumbers 450–740 Qualitative TH PLSDA [58] 

 CCD Prawn 897–1,753 Quantitative TH 
Uninformation variable elimination, Ssuccessive 

projections algorithm, 
[87] 

 Not-mentioned Rice seed cultivar 874–1,734 Qualitative Not-mentioned PLSDA, SIMCA, KNN, SVM, random forest (RF) [88] 

 CCD Salmon 400–1,100 
Qualitative & 

Quantitative 
TH PCA, K-means clustering, MLR [89] 

 CCD Salmon 964–1,631 Quantitative 
Predictive effective 

wavelengths (PEW) 
Multiple linear regression (MLR) [90] 

 CCD Smoked salmon 400–1,000 Qualitative Quartiles segmentation, TH PLSDA [59] 

 EMCCD Spinach leaves 400–1,000 Qualitative TH 
Spectral angle mapper (SAM), PLSDA, Leafy Vegetable 

Evolution 
[60] 

 CCD Spinach 400–1,000 Qualitative Radiometric correction PCA, analysis of Variance [15] 
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Table 1. Cont. 

Mode Camera Product 
Spectral Coverage 

(nm) 

Analysis 

Type 
Image Processing Modeling Reference 

 Not-mentioned Wheat ears 400–1,000 Qualitative TH SAM [91] 

 FFT-CCD Wheat 700–1,100 Qualitative PCA 
LDA, Quadratic discriminant analysis (QDA), 

Mahalanobis discriminant classifier 
[92] 

 CCD Whole pickles 400–675 Qualitative TH PCA [93] 

 CCD Whole grape skin 400–1,000 Quantitative Not-mentioned PCA, Adaboost [94]  

 InGaAs Beef 900–1,700 Quantitative TH, BR PLSR [95]  

 InGaAs Barley 900–1,700 Quantitative PCA, MNF Maximum likelihood multinomial regression classifier [45] 

 
InGaAs, 

HgCdTe 
Maize 

960–1,662 

1,000–2,498 
Qualitative TH PLS-DA [36] 

 HgCdTe Maize 1,000–2,498 Qualitative PCA PLSR [96] 

 InGaAs Onion 1,000–1,600 Qualitative TH Manual analysis [97] 

 InGaAs Oat and groat 1,006–1,650 Qualitative PCA PLS-DA [51] 

 InGaAs Pork 900–1,700 Qualitative Gabor filter, GLCM, TH PLSR [98] 

 InGaAs Pork 900–1,700 Quanlitative Gaborfilter, GLCM, TH PLSR [99] 

 InGaAs Strawberry 1,000–1,600 Qualitative TH LDA [100] 

 InGaAs Strawberry 1,000–1,600 Qualitative Multi-band image segmentation 
Multi-band multivariate classifiers, uni-band univariate 

classifiers, multiband decision-fusion classification 
[101] 

 InGaAs Wheat 960–1,700 Qualitative 
Image cropping, feature 

extraction 
LDA, QDA, ANN [102] 

 InGaAs Wheat 1,000–1,600 Qualitative PCA LDA, QDA [103] 
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Table 1. Cont. 

Mode Camera Product 
Spectral Coverage 

(nm) 

Analysis 

Type 
Image Processing Modeling Reference 

Transmittance CCD Cod 448–752 Qualitative TH Gaussian maximum likelihood (GML) classifier [104] 

 CCD Egg 550–899 Qualitative Not-mentioned PCA [105] 

 InGaAs Egg 900–1,700 Qualitative TH, Gabor filter K-means clustering [43] 

 CCD 
Pickling cucumbers and 

whole pickles 
740–1,000 Qualitative TH PLSDA, KNN [30] 

 CCD Pickling cucumbers 740–1,000 Qualitative TH PLSDA [58] 

 CMOS Shell-free cooked clam 600–950 Qualitative TH Supervised parasite detector [106] 

 CCD Vegetable soybean 400–1,000 Qualitative Not-mentioned Support vector data description (SVDD) classifier [14] 

 CCD Whole pickles 675–1,000 Qualitative TH PCA [93] 

Fluorescence EMCCD 
Microbial biofilm 

formation 
421–700 Qualitative TH PCA [107] 

 EMCCD Cherry tomato 400–700 Qualitative PCA PCA [52] 

 CCD Maize 400–700 Qualitative TH Discriminant analysis [19] 
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4.1. Fruit 

Most of the products that have been studied with hyperspectral imaging are fruits, targeting apple, 

citrus, pear, peach, oranges, almond nut, blueberry, citrus, grape seed, grape skin, and strawberry. The 

majority of these studies were carried out in reflectance mode and in the VIS-NIR range (about 

400–1,100 nm). Chilling defects, diseases and quality attributes of fruits including soluble solids 

content, mealiness, etc., were clarified. Besides, a few studies have been carried out on strawberries and 

grape seeds in the NIR range (about 900–1,700 nm) [49,100,101]. 

One quality attribute of fruit that has been assessed using hyperspectral imaging is soluble solids 

content. Peng and Lu [29] designed a reflectance system to detect apple firmness and soluble solids 

content using stable object stage. Optic fiber and focusing lenses were used to illuminate samples as a 

spot light source and 2D hyperspectral images were collected. The light source used in this study was 

delivered by a circular beam of 1.5 mm, which scanned the fruit 1.6 mm off the incident center. Ten 

MLD functions were proposed to fit the spectral scattering profiles and the best one was chosen as the 

ideal method for predicting fruit firmness and SSC using MLR. The best prediction results with two 

attributes of apple were got with correlation coefficient of 0.85. In the study, over 20 wavelengths were 

used for prediction. This may influence the data processing speed. Later, Mendoza et al. [39] employed 

integrated spectral scattering and image characteristics to predict the firmness and soluble solids content 

of apples. The results indicated an increase of 6% of standard errors of prediction (SEP) for firmness and 

3% of SEP for soluble solids content. Large latent variables were adopted in the prediction model, which 

indicated the necessary of a more robust prediction model for firmness and soluble solids content of 

apples. Leiva-Valenzuela et al. [74] used VIS/NIR hyperspectral imaging (500–1,000 nm) to determine 

the soluble solids content in blueberries, reaching prediction accuracies of 0.87 and 0.79 for firmness 

and soluble solids content, respectively. 

Another quality attribute of fruit evaluated using hyperspectral imaging is mealiness. Huang and  

Lu [66] examined the relationship between reflectance hyperspectral line images and apple mealiness. 

The spectral scattering profiles at individual wavelengths of apples undergoing different time, images 

were obtained and correlated to different mealiness levels. The mealiness of the apple was determined 

by the hardness and juiciness. Its correlation with hyperspectral scattering profiles was predicted using 

PLS. Classification models with two-class or more class were built using PLSDA. The best 

classification accuracy was obtained in the classification of ‘non mealy’ and ‘mealy’ apples, with an 

accuracy of 75%. This study demonstrated that hyperspectral scattering technique was potentially useful 

for nondestructive detection of apple mealiness and suggested that further research should focus on 

improving the classification accuracy especially for discrimination of less severe mealy apples. The 

same spatially resolved diffuse reflectance hyperspectral imaging system was used to study optical 

properties of fruits and vegetables including apple, pear, cucumber, tomato [34]. The study reinforced 

hyperspectral imaging technique’s potential as a convenient attribute classification means for many 

fruits and vegetables. In study of Huang et al. [68], the mealiness of apple was determined using  

VIS/ NIR hyperspectral imaging. A classification accuracy of 82.5% was obtained using LLE 

algorithm-assisted SVM models.  

Some work also has been done for defect detection of fruits. Qin et al. [61] examined the relationship 

between hyperspectral area images and citrus canker, using an Electron-Multiplying 
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Charge-Coupled-Device (EMCCD) imaging device which is a type of CCD with high photosensitivity. 

Later, the hyperspectral area images were processed and classified to differentiate citrus canker lesion 

from normal and other peel diseased conditions including greasy spot, insect damage, melanose, scab, 

and wind scar. The analysis method was SID based classification. The overall classification accuracy 

was 96%. It was noted that canker lesions at different developmental stages affected the SID-based 

classification results. Indeed, canker lesions influenced the reflectance characteristics of a given object. 

Further work should be targeted at the changing patterns of the citrus canker reflectance properties and 

incorporate canker spectra at different growth stages. Meanwhile, since this research used full spectral 

information which was not good for online citrus canker detection, more work could be done at 

exploring better method to optimize waveband combination and raise image processing speed.  

Further research should concentrate on improving the processing speed of the large amount of 

hyperspectral information. 

4.2. Vegetables 

The main application of hyperspectral imaging on vegetables includes onions, mushrooms, pickling 

cucumbers and whole pickles, spinach leaves, and cherry tomato. The major adopted mode is still 

reflectance mode, while few studies were conducted in transmittance model and fluorescence modes.  

Ariana and Lu [93] developed a VIS-NIR hyperpsectral imaging system combining reflectance mode 

and transmission mode together, while using a moving transport platform. This system was applied to 

detect inner defected pickle pieces and classify pickling cucumbers and pickles, with spectral range of 

500–1,000 nm. The system was capable of identifying inner defects of cucumber and pickles which were 

invisible to the naked eye. 

Six papers have been published on mushroom quality detection using hyperspectral imaging. 

Taghizadeh et al. [81] investigated the shelf life (using parameters including weight loss, color, maturity 

index) of mushrooms under different packaging polymer films (polyvinyl chloride (PVC), polyethylene 

terephthalate (PET) with different levels of perforations). This research demonstrated that hyperspectral 

imaging has potential as an analytical tool for evaluation of shelf-life of fresh mushrooms. It also 

indicated hyperspectral imaging can be used to evaluate the effect of different packaging solutions 

especially packaging materials. It indicated that PET packaging film perforated with diameter 1mm was 

generally superior and viable alternative to PVC film in terms of maintaining overall mushroom quality. 

The bruise damage [83] and freeze damage [31] of mushroom were identified using PCA. Mushroom 

slice quality was measured in terms of moisture content, colour and texture [31,83,84] using MLR and 

principal components regression (PCR). It is resulted that hyperspectral imaging is potential for damage 

detection and quality measurement of mushroom. 

Gaston et al. [82] concerned with the prediction of polyphenol oxidase (PPO) activity on mushroom. 

PCA was used as a data analysis method. The result of this study revealed the possibility of developing a 

sensor that could rapidly identify mushrooms with a higher likelihood to develop enzymatic browning. 

Indeed, this study highlights the utility of hyperspectral imaging in terms of safety and quality 

management in the food industry.  
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4.3. Meat 

Most meat researches related to hyperspectral detection were performed on pork, beef, and chicken 

fillet. Lamb [46] and ham [47,79] were also investigated. Liu et al. [41] applied a Gabor filter which is 

used in pattern recognition to preprocess hyperspectral images of pork. PCA was used to compress 

spectral features over the entire wavelengths (400–1,000 nm) into principal components (PCs). ‘Hybrid’ 

PCs were created by combining PCs from hyperspectral images with PC(s) from Gabor-filtered images. 

Both K-means clustering and LDA were applied to classify pork samples. The overall unbiased 

statistical classification accuracy reached 84 ± 1%. The comparison results of hyperspectral images and 

Gabor-filtered images based analysis proved that the texture features extracted by Gabor filter offered 

useful information for the differentiation of different levels of pork quality. 

Liu et al. [53] proposed an automatic and objective evaluation method for pork marbling score 

assessment in the view of pattern recognition. The wide line detector which is adopted in pattern 

recognition was applied for marbling extraction. Standard charts of marbling scores were used. The 

seven levels of marbling score were classified with an accuracy of 99%. The data used by Qiao et al. [23] 

were employed in this study to investigate marbling score estimation. The assessment result was much 

more accurate than Qiao's result in which the texture indices were extracted from the hyperspectral 

images by co-occurrence matrix. This study alleviated the contrast problem brought about by PSE and 

PFN samples when subjective marbling assessment was made on these pale and reflective pork samples. 

Huang et al. [99] studied the wide line detector and Gabor filter for NIR spectral image analysis of pork 

marbling. It turned out that the Gabor filter outperformed the wide line detector for processing of NIR 

images. Huang et al. [98] applied a Gabor filter and GLCM to determine the intramuscular fat content in 

fresh loin cut. The best results of correlation coefficients of calibration and cross validation (0.89 for 

both) were obtained for non-destructive prediction of IMF content of intact pork using the Gabor filter. 

The results of these studies implied that hyperspectral imaging has great potential to predict the fat 

attributes of pork. Proper image processing technique could improve the accuracy of estimation. 

Peng et al. [65,70] studied the bacterial spoilage process in beef and pork, respectively using total 

NIR/VIS reflectance hyperspectral imaging system (400–1,000 nm). The best prediction result 

(correlation coefficient = 0.95, standard error of prediction (SEP) = 0.30) was obtained using 

combination of scattering parameters. These two studies demonstrated the great potential of 

hyperspectral imaging in bacterial activity which causes quality change of food. Multi-linear regression 

(MLR) using SMLR selected waveband combination was preferable to separate fresh beef and unfresh 

beef, while LS-SVM was the preferred method used to detect pork storage time. It was shown that 

hyperspectral imaging can provide quantitative information for bacterial concentration in beef and pork 

samples. The lowest bacterial concentration in beef of the study above was 1 × 10
4
/g, which showed that 

NIR/VIS spectral signal were ideal for detection of bacteria concentration (≥1 × 10
4
). The results of 

these two researches also noted that hyperspectral imaging could be used to predict the shelf life or the 

storage time of beef or pork. 

Barbin et al. [85] studied the grading and classification of pork using near-infrared hyperspectral 

imaging (900–1,700 nm). Different to the study of Qiao et al. [23], three quality grades (PSE 

(pale/pinkish-gray, soft and exudative), RFN (reddish-pink, firm and non-exudative) and DFD (dark 

purplish red, firm and dry)) were studied as grades of pork. Obvious reflectance differences of 2nd 
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derivative spectra among the pork of three quality grades were observed at wavelengths 960, 1,074, 

1,124, 1,147, 1,207 and 1,341 nm. Principal component analysis was carried out and the accuracy was 

96%. The results of this study indicated that pork classes could be precisely discriminated using NIR 

hyperspectral imaging. More work could be conducted to classify fours types (PSE, RFN, RSE 

(reddish-pink, soft and exudative), PFN (pale/pinkish-gray, firm and non-exudative)) of pork totally. 

Different types of lamb muscles from different parts of Charollais breed were imaged and analyzed 

using PCA in study of Kamruzzaman et al. [46]. The results demonstrated the potential of hyperspectral 

imaging in quality inspection of lamb. 

Another developing direction of application of hyperspectral imaging is the visualization of 

prediction/ distribution map of quality attributes in the tested food. Since the hyperspectral images 

combined spectral of each pixel and image at each wavelength together, it is convenient to generate the 

distribution map using the built prediction models by extracting the feature of each pixel and inputting 

them to the corresponding prediction model. Successful examples were demonstrated for visualization 

of L* values (the lightness of the colour), pH values, and drip loss in pork, Enterobacteriaceae on 

chicken fillets, L* values in lamb, adulteration at different levels in pork [38,76,78,86].  

4.4. Seafood 

Few studies on seafood have been reported in the last few years. The tested samples included fresh 

and smoked salmon, cod, prawn, and shell-free cooked clams. Considering the difficulties caused by 

shells, seafood holds promise as an attractive area for hyperspectral imaging research. The mostly 

studied object is salmon, whose fillet remains smooth and shell-free. Huang et al. [89] applied 

hyperspectral imaging on salmon's storage time prediction. PCA based K-means clustering and MLR 

were applied to relate hyperspectral data to the storage time and texture change of salmon, respectively. 

The result indicated that it is possible to predict the texture and storage time using hyperspectral 

imaging. Wu et al. [90] used hyperspectral imaging to measure the color distribution in salmon fillet. 

Successive projections algorithm was employed to select effective wavelengths. Correlation coefficients 

of 0.876, 0.744, and 0.803 were obtained for L*, a*, and b* (three coordinates of the Lab colour space 

representing the lightness of the colour, its position between red/magenta and green and its position 

between yellow and blue), respectively. Ivorra et al. [59] studied the potential of NIR hyperspectral 

imaging for detection of expired vacuum-packed smoked salmon. The classification success rate of 

82.7% demonstrated the potential of hyperspectral imaging as a commercial tool for identification of 

expired salmon.  

VIS/NIR hyperspectral images were investigated by Wu et al. [87] to detect the gelatin adulteration 

in prawn. The combination of uninformation variable elimination and successive projections algorithm 

(SPA) was applied for the first time to select the optimal wavelengths in the hyperspectral image 

analysis. A coefficient of determination of 0.965 was obtained and gelatin in all portions of the prawn 

was visualized. Coelho et al. [106] used hyeprspectral imaging to detect the parasite in the shell-free 

cooked clam Mulinia edulis. Transmittance mode was used in this study. The range of wavelengths 

between 600–950 nm was identified to be sensitive, where changes were observed in the normalized 

optical responses of clam’s mantle cavity in condition of parasite. Reduction in the normalized 

transmittance of clam’s mantle indicated a hidden parasite inside the clam. Transmittance features over 

720 nm achieved a 100% detection accuracy. Normalized transmittance was suggested to be a proper 
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feature for development of non-destructive parasite-detector. Further work was suggested to develop a 

methodology for wavelength selection in predefined conditions. 

4.5. Grains  

Hyperspectral imaging has been applied for classification of grains including maize, wheat, barley, 

oat and groat, soybean, and rice seed. A NIR hyperspectral imaging system (900–1,700 nm) was 

developed in a mathematical modeling framework to identify pregerminated barley at an early stage in 

order to segregate the barley kernels into low or high quality [45]. This system employed a supervised 

classification framework based on a set of features which are insensitive to the kernel orientation. A low 

classification error of 3% proved feasibility of the developed system for describing the degree of 

pregermination of single barley kernels. Williams et al. [36] described the application of InGaAs and 

HgCdTe detector-based NIR hyperspectral imaging (960–1662 nm) techniques in distinguishing 

between hard, intermediate and soft maize kernels. PCA and multivariate data analysis were applied to 

detect glassy (hard) and floury (soft) endosperm inside the maize kernels. It resulted that the InGaAs 

detector-based NIR hyperspectral imaging system obtained a better coefficient of determination to 

distinguish between glassy and floury endosperm (84.9%) comparing to the HgCdTe detector-based 

NIR hyperspectral imaging system (76.3%). Serranti et al. developed an NIR hyperspectral imaging 

system (1,006–1,650 nm) for classification of oat and groat kernels [51]. The obtained hyperspectral 

images were analyzed using PCA and PLS-DA to build the classification models to discriminate oat and 

groat kernels. Three key wavelengths, i.e., 1,132, 1,195 and 1,608 nm, were identified using a 

bootstrap-VIP procedure. The very high classification result (almost 100%) strongly indicated the big 

potential of hyperpsectral imaging in industrial application. Another NIR hyperspectral image system 

(960–1,700 nm) was developed for differentiation of wheat classes grown in western Canada. Different 

classification models were used in the system. Classification accuracies of 94%–100%, 86%–100%, and 

80%–100% were obtained from LDA, quadratic discriminant analysis (QDA) and ANN models, 

respectively. It was concluded that NIR hyperspectral imaging along with statistical and ANN classifiers 

has the potential to effectively classify Canadian wheat. 

Some research work also has been conducted for detection of damage and contaminants of grains. 

Williams et al. [96] developed the NIR hyperspectral imaging system (1,000–2,498 nm) to track changes 

in fungal contamination of whole maize kernels. PLS regression models were established to assess the 

changes over time. The results indicated the possibility of the early detection of fungal contamination 

and activity. NIR hyperspectral imaging technology has also been applied to detect damaged wheat 

kernels. A NIR hyperspectral imaging system in the range of wavelengths 1,000–1,600 nm was 

developed for detection of insect-damaged wheat kernels [103]. LDA and QDA were employed to 

classify healthy and insect-damaged wheat kernels and the classification accuracy was 85%–100%. 

Later, another NIR hyperspectral imaging system (700–1,100 nm) was established to discriminate 

healthy and midge-damaged wheat kernels by the same research team [92]. Statistical features and 

histogram features were extracted from hyperspectral images at significant wavelengths. Three 

statistical classifiers were used for classification. The high average accuracy (95.3%–99.3%) strongly 

indicated the potential of NIR hyperspectral imaging for detection of damaged wheat kernels.  
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4.6. Biofilm Detection  

Recently, Jun et al. [107] reported the utilization of macro-scale fluorescence hyperspectral imaging 

to evaluate the potential detection of pathogenic bacterial biofilm formations on five types of 

food-contact surface materials: stainless steel, high density polyethylene (HDPE), plastic laminate 

(Formica), and two variations of polished granite. These materials are commonly used to process and 

handle food, and sometimes cause biofilm pollution on food surface. Spots of biofilm (E. coli O157:H7 

and Salmonella biofilm) growth were produced on sample surfaces and stored and scanned by 

fluorescence hyperspectral imaging system using ultraviolet-A excitation (421–700 nm, including a 

C-mount object lens, F1.9 35 mm). PCA was used to reduce the dimensionality of hyperspectral images 

and an image processing method was developed based on single-band and two-band ratio techniques to 

select the wavebands appropriate for differentiating biofilm spots form different backgrounds. The 

suitable spectral fluorescence band for detecting microbial biofilm on stainless steel surfaces was  

559 nm, with overall detection rate of 95%. For HDPE and granite, ratios between different two bands 

provided the most efficient results. For Formica, the results were not accurate enough to detect biofilms 

effectively. The result of this study showed the hyperspectral imaging could also be used to develop 

portable hand-held devices for sanitation inspection of food packaging, which has been a big issue for 

food processing. It was also noted that low cell population density may influence the accuracy of biofilm 

inspection of food processing surfaces. More studies could be conducted on the hyperspectral imaging 

biofilm detection, especially in low cell population density. 

5. Discussion and Conclusions   

Hyperspectral imaging is developing as a platform technology for food quality and safety analysis in 

food processing and packaging. Hyperspectral imaging could obtain the internal spectral information of 

samples while detecting spatial signals, which are related to the physical and chemical features of a large 

amount of food samples and food-contact surface materials. These signals are stored in large data cube 

which may slow down the data processing speed. Thus, increasing the efficiency of the identification of 

key wavelengths should be the center focus of upcoming studies. Improvements in the data analysis 

would elevate the processing speed of hyperspectral imaging data, making hyperspectral imaging more 

suitable for online detection, and providing the basis of multiple-spectral system production. Also, the 

enhancement of the sensitivity and pixel resolution of camera would help to improve the prediction 

accuracy of hyperspectral imaging. The achievements of the research in hyperspectral imaging strongly 

indicate that hyperspectral imaging, especially NIR hyperspectral imaging, has a big potential in 

detecting quality and safety of meat and seafood products, as well as biofilm for food packaging. More 

applications of hyperspectral imaging technology in food quality and safety inspection during food 

processing and packaging will be investigated. Future work in hyperspectral imaging could focus on 

issues such as higher sensitivity cameras, higher resolution systems, improvements in data processing 

methods, increasing detection accuracy, and expanding the range of applicable food products. 
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