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Abstract: We present the results of an evaluation of the performance of the Leap Motion 

Controller with the aid of a professional, high-precision, fast motion tracking system. A set 

of static and dynamic measurements was performed with different numbers of tracking 

objects and configurations. For the static measurements, a plastic arm model simulating a 

human arm was used. A set of 37 reference locations was selected to cover the controller’s 

sensory space. For the dynamic measurements, a special V-shaped tool, consisting of two 

tracking objects maintaining a constant distance between them, was created to simulate two 

human fingers. In the static scenario, the standard deviation was less than 0.5 mm. The 

linear correlation revealed a significant increase in the standard deviation when moving 

away from the controller. The results of the dynamic scenario revealed the inconsistent 

performance of the controller, with a significant drop in accuracy for samples taken more 

than 250 mm above the controller’s surface. The Leap Motion Controller undoubtedly 

represents a revolutionary input device for gesture-based human-computer interaction; 

however, due to its rather limited sensory space and inconsistent sampling frequency, in its 

current configuration it cannot currently be used as a professional tracking system. 

Keywords: Leap Motion Controller; motion capture system; precision measurement;  

spatial distortion measurement 
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1. Introduction 

The user interface and the corresponding interaction modalities play an essential role in the  

human-computer relationship. Advanced multimodal interfaces present yet another step in this equation, 

providing users with the freedom and flexibility to choose the best input modality for specific tasks. 

Users generally prefer multimodal interaction when it is available and intuitive to use [1,2]. 

Gesture-based user interfaces, in combination with the latest technical advances that incorporate 

accurate yet affordable new types of input devices, provide realistic new opportunities for specific 

application areas (e.g., entertainment, learning, health, engineering), especially for users who are 

uncomfortable with more commonly used input devices and/or technology [3]. 

Gesture input devices and sensors are of special interest. Gesture acquisition methods can, in 

general, be divided into methods incorporating a specific device that the user must physically hold or 

have on his/her body and hands/body-free methods. The latter become more and more popular as  

the user becomes a controller rather than an operator. One of the first widespread, accurate, and 

commercially viable solutions was the Nintendo WiiMote controller, bundled with the Wii console, 

released in 2006. The WiiMote, besides its vocal and haptic modalities, incorporates an accelerometer 

that allows the acquisition of full 3D gestures. It can operate as a separate device and has been 

successfully used for many atypical applications [4]. Another important milestone is the Microsoft 

Kinect sensor, an add-on for the Xbox 360 console, which was released in late 2010. The Kinect, 

among its visual and auditory inputs, includes a depth-sensing camera. In combination with an open 

SDK, it can be used to acquire and recognize full body gestures for multiple users at a time [5]. The 

latest technological breakthrough in gesture-sensing devices has come in the form of a Leap Motion 

Controller (Leap Motion, San Francisco, CA, United States) [6]. The controller, approximately the size 

of a box of matches, allows for the precise and fluid tracking of multiple hands, fingers, and small 

objects in free space with sub-millimeter accuracy. According to [7], the Leap Motion Controller 

represents a major leap in input technology that could, with its enhanced interaction possibilities, 

trigger a new generation of far more useful 3D displays and possibly surpass the mouse as a primary 

input device. 

The main goal of the research presented in this paper was to analyze the precision and reliability of 

the Leap Motion Controller in static and dynamic conditions and to determine its suitability as an 

economically attractive finger/hand and object tracking sensor. The evaluation was performed with the 

aid of a high-speed and highly accurate optical motion capture system. To the best of the authors’ 

knowledge, no study has yet been conducted with the Leap Motion Controller in combination with an 

optical motion capture system. 

The main contributions of this paper are analyses of the following: 

 Precision and reliability (spatial dispersion of measurements through time) of the controller 

 The spatial distortion of accuracy (variation of accuracy in different regions of sensory space) 

 Sampling frequency and its consistency. 

The rest of the paper is organized as follows: following the Introduction, previous related work is 

presented in Section 2. The experimental environment, measurement methodology, and measurement 
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scenarios used in this study are described in Section 3. The detailed results are analyzed and discussed 

in Section 4. Finally, key conclusions are drawn and recommendations are offered in Secion 5. 

2. Related Work 

To illuminate the choice of motion capture system in combination with the Leap Motion Controller, 

the results of the research in [8] are discussed. The authors of that study focused on the adaptive 

gesture recognition system while developing a gesture database to eliminate the individual factors that 

affect the efficiency of the recognition system. In particular, hand gestures were investigated. To 

acquire input data for the experiment, a Qualisys™ Motion Capture System [9] was used, similar to 

the one in our own setup. 

The Microsoft Kinect sensor was developed with hand/arm and full-body gesture recognition in 

mind. The authors of [10] provide a detailed analysis of the accuracy and resolution of the Kinect 

sensor’s depth data for indoor mapping applications. The experimental results show that the random 

error in depth measurement increases with increasing distance to the sensor, ranging from a few 

millimeters to approximately 4 cm at the maximum range of the sensor. The quality of the data is also 

found to be influenced by the low resolution of the depth measurements. The obtained accuracy is, in 

general, sufficient for detecting arm and full body gestures, but is not sufficient for precise finger 

gestures such as handwriting. The input device latency and spatial jitter are also important factors [11]. 

The Leap Motion Controller presents a milestone in consumer finger/object and gesture tracking 

input technology. The device itself was made publicly available in summer 2013, and therefore not 

much scientific work has been published yet. In [12], the authors describe an application of the Leap 

Motion Controller for the direct manipulation of an industrial robot arm with six axes of freedom. The 

Leap Motion Controller is used for finger position tracking. To increase the tracking precision, an 

interpolation of the acquired data is performed using polynomial splines. The aim of the research was 

to reproduce complex tasks in 3D without constraints on the operator. This goal reflects the importance 

of gesture-based interfaces that utilize low-cost, consumer-grade input sensor devices for industrial use. 

Another study of the Leap Motion Controller in [13] shows its potential in gesture and handwriting 

recognition applications. The acquired input data are treated as a time series of 3D positions and 

processed using the Dynamic Time Warping algorithm. The authors report promising recognition 

accuracy and performance results. 

In [14], a novel interface approach that combines 2D video-based augmented reality with a partial 

voxel model to allow more convincing interactions with 3D objects and worlds is presented. The 

interface enables users to interact with a virtual environment through a hand-controlled interface and 

allows for correct mutual occlusions between the interacting fingers and the virtual environment. A 

combination of the Leap Motion Controller and a webcam is used to track the users’ fingers and 

overlay the appropriate video for an augmented view. 

Finally, in [15], the authors present a study of the accuracy and robustness of the Leap Motion 

Controller. An industrial robot with a reference pen allowing suitable position accuracy was used for 

the experiment. The results show a deviation between the desired 3D position and the average 

measured positions below 0.2 mm for static setups and of 1.2 mm for dynamic setups. 
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3. Experimental Design 

The controller’s performance was evaluated through two types of measurements. In the first 

measurement, a series of fixed static points in space were tracked and recorded for a longer period of 

time to evaluate the consistency and dispersion of the results. The coordinates of the points were 

systematically chosen to cover the majority of the controller’s sensory space. In the second 

measurement, a constant distance was provided between two objects, which were then moved freely 

around the sensory space. The tracking accuracy of the controller was then evaluated based on the 

distortion of the distance between the two objects. The reference system (a professional optical motion 

capture system) was used to determine the exact spatial positions of the tracked objects and the 

distances between them. 

3.1. The Leap Motion Controller 

The Leap Motion Controller uses infrared (IR) imaging to determine the position of predefined 

objects in a limited space in real time. Technically, very few details are known about the precise nature 

of the algorithms used due to patent and trade secret restrictions. However, from inspection of the 

controller, it is clear that three separate IR LED emitters are used in conjunction with two IR cameras. 

Therefore, the controller can be categorized as an optical tracking system based on the stereo vision 

principle. According to the official information [6], the Leap software analyzes the objects observed in 

the device’s field of view. It recognizes hands, fingers, and tools, reporting discrete positions, gestures, 

and motion. The controller’s field of view is an inverted pyramid centered on the device. The effective 

range of the controller extends from approximately 25 to 600 millimeters above the device (1 inch to  

2 feet). The controller itself is accessed and programmed through Application Programming Interfaces 

(APIs), with support for a variety of programming languages, ranging from C++ to Python. The 

positions of the recognized objects are acquired through these APIs. The Cartesian and spherical 

coordinate systems used to describe positions in the controller’s sensory space are shown in Figure 1. 

However, it should be noted that the sampling frequency is not stable, cannot be set, and  

varies significantly. 

Figure 1. The Cartesian and spherical coordinate systems used to describe positions in the 

controller’s sensory space. 
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3.2. The Reference System 

A high-precision optical tracking system [9] consisting of eight Oqus 3+ high-speed cameras and 

Qualisys Track Manager software (version 2.8—build 1065) was used as the reference system 

(Qualisys Inc., Gothenburg, Sweden). Such systems are widely used for the fast and precise tracking of 

various objects in industrial applications, biomechanics, and media and entertainment applications. 

The tracking precision depends on the number of cameras used, their spatial layout, the calibration 

process, and the lighting conditions. In our case, only three markers were used, one for static 

measurement and two for dynamic measurement. In the dynamic measurement, a simple Automatic 

Identification of Markers (AIM) model was created from the two selected markers and their 

connecting bone. All markers were seen by all cameras at all times. The standard deviation of the noise 

for the static marker was measured for each individual coordinate: stdx = 0.018 mm, stdy = 0.016 mm 

and stdz = 0.029 mm. 

3.3. Technical Setup 

The Leap Motion controller was placed on a table 60 × 60 cm in area and 73 cm in height. The 

controller was firmly attached to the table, ensuring no undesired movement of the device. The 

controller transmitted data on the identified objects to a desktop computer (Intel
®

 Core™ i7-2600 CPU 

3.40 GHz with 8 GB of RAM). A set of scripts was written in the Python programming language using 

the Leap Motion APIs specifically for this study. The scripts were used for real-time data acquisition 

and logging. The operation of the controller was monitored in real time using the Leap Motion 

Visualizer software. 

The optical reference system provided a calibrated measurement volume of approximately 1 × 1 × 1 m 

in size, with a resolution of 1.3 million pixels and a constant frame rate of 500 frames per second. The 

cameras were set up uniformly, encircling the Leap Motion controller so that each camera’s point of 

view was directed towards the controller. A set of hard passive markers with diameters of 12.5 mm 

was used in the measurements. The coordinate systems of the reference system and the controller were 

aligned at the origin of the controller’s coordinate system. 

Two types of measurements were performed within the experiment, under two  

experimental conditions: 

 Static conditions: acquisition of a limited number of static points in space 

 Dynamic conditions: tracking of moving objects with constant inter-object distance within the 

calibrated space 

Our pre-experiment trials indicated the controller’s inability to track static objects that do not 

resemble the human hand. We can only speculate that this limitation is due to the controller’s internal 

algorithms, as they are protected by patents and therefore not publicly disclosed. A pointed object, 

such as a pen tip (used for tracking in [15]), was successfully tracked only if constantly in motion. 

When it was stationary and mounted on a stand, it was successfully tracked for only approximately  

8–10 s. After this period of time, the measurement was automatically stopped by the controller. 

Therefore, a plastic arm model was used (Figure 2) instead of a simpler object. 
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Figure 2. The setup of the experimental environment. 

 

During the measurement of static locations, the arm model was firmly attached using a stand 

(Figure 3) and directed perpendicular to the z = 0 plane in the opposite direction from the z axis. 

Additionally, a reflective marker was attached to the index fingertip of the plastic arm for simultaneous 

tracking by the controller and by the reference motion capture system. The stability of the stand was 

measured using the reference system, which indicated the dispersion of the measured index fingertip 

location to be below 20 µm. 

Figure 3. To improve the tracking capabilities of the Leap Motion Controller, the marker 

was placed at the tip of the index finger of a plastic arm model. During the measurement of 

static locations, the arm was fixed in place using a stand. 

 

For dynamic measurements, the tracking objects were moved around the sensory space with an 

approximately constant speed of 100 mm/s. Instead of the plastic arm, a special tool was used to mimic 
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two human fingers. It consisted of two wooden sticks with markers fixed together to form a V-shape 

(hereafter: ―the V-tool‖) (Figure 4). This tool provided a constant distance between the two tracked 

objects, which was used to evaluate the tracking performance. It was perfectly tracked by the controller 

and the reference system simultaneously. The exact distance was acquired using the reference system 

(d = 21.36 mm, stdd = 0.023 mm). The arm model with five fingers proved to be very impractical for 

this type of measurement, as the controller usually tracked the five fingers as five individual points that 

could not be identified separately. It was therefore almost impossible to identify the results for two 

selected fingers and calculate their inter-distance. 

Figure 4. The V-tool used for dynamic measurements. 

 

3.4. The Methodology 

All measurements were conducted in an environment with a constant temperature of 22 °C and an 

illumination intensity of approximately 500 lux, a common legal requirement for the workspace. The 

sampling frequency of the reference system was set to 500 Hz. 

3.4.1. Static Measurements 

The 37 reference locations where static measurements were performed are shown in Figure 5. The 

locations of the reference points were selected systematically to cover the majority of the sensory 

space of the controller. The number at each location in the figure indicates the height (the position  

on the y axis in cm) at which the individual measurements were taken. The actual measurements  

were taken close to the reference point in the measurement grid with an offset less than 5 mm. At least 

4,000 samples were measured at each location. A total of 214,546 samples were obtained for the entire 

sensory space. 

It was initially planned to take measurements along a 3-dimensional grid with 5 cm spacing 

between the measured locations. However, the pre-experiment trials revealed that it is difficult to 

obtain stable tracking of static objects at some locations, especially locations in front of the controller 

(z > 0). The measurement grid was therefore modified to include only locations at which the controller 

was able to provide stable tracking over a longer time period. 
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Figure 5. The measurement grid displaying the reference locations of the static measurements. 

 

The analysis of the collected samples was primarily focused on evaluating the dispersion—a 

temporal distribution—of the recorded locations for each reference location, which characterizes the 

repeatability of measurements at a particular location in the controller’s sensory space. Repeatability 

characterizes the ability to relocate the same location in a series of sequential measurements. 

For the purpose of the analysis and the presentation of its results, the following mathematical 

operations and notions are used. 

The measured positions are denoted by a set                                ) ∈ R
3
, where the 

components        ,         and         represent the coordinates in the Cartesian coordinate system of 

the j-th sample (1 ≤ j ≤ Ni, j ∈ N) taken at the i-th position               ∈    , and Ni stands for 

the total number of samples taken at the i-th position. 

The standard deviation of the i-th three-dimensional spatial position is calculated by: 

        
 

    
                      

   , where (1) 

                                                                             (2) 

where                           and             represent the average coordinates calculated by the arithmetic mean over 

Ni samples. 

          stands for the arithmetic mean of        over Ni samples. The standard deviations for 

individual coordinates (       ,          and        ) were calculated by: 
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For the analysis in a spherical coordinate system, the following three conversion equations were 

used (note that, according to the controller’s coordinate system, the y and z axes are mutually switched 

compared to the standard Cartesian system; therefore, y represents the height, and z represents  

the depth): 

            (6) 

          
 

 
  and (7) 
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Assuming symmetry in the controller’s performance over the x and z axes, we additionally define 

the modified azimuth angle as follows: 

   

 
 
 

 
         

 

 
                

 

 
                      

                      

  (9) 

The angle φ' is measured from the x axis (not from the z axis, as in the case of the φ angle) and the 

line connecting the coordinate origin with the projection of the measured location in the x-z plane. As 

the angle φ' is defined under the assumption of symmetry in the controller’s performance over the x 

and z axes, it is therefore defined in the range of    
 

 
  rad. 

3.4.2. Dynamic Measurements 

In the dynamic measurements, the experimenter moved the V-tool randomly but with a constant 

speed within the selected region of the controller’s sensory space. The V-tool was held in the fist 

(Figure 4) to simulate two extended fingers and was therefore detected by the controller. The moving 

speed of the V-tool was approximately 100 mm/s. 

The measured sensory space included a volume of 100,000 cm
3
 (−250 mm < x < 250 mm,  

−250 mm < z < 250 mm and 0 mm < y < 400 mm). This space was systematically covered in a  

series of four continuous measurements, each covering a layer approximately 100 mm in height  

(y dimension). The data from the individual measurements were then combined for analysis. A total of 

119,360 valid positions were recorded with an average density of 1.2 samples per cm
3
. 

The primary goal of the dynamic measurements was to evaluate the distortion of the controller’s 

perception of space. As previously explained, the distortion was measured as the deviation of the 
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distance between the two markers located at the tips of the V-tool. The distance between the markers at 

the i-th position was defined as: 

                     
                 

                 
  (10) 

where               and         represent the coordinates of the first marker, and                

and         represent the coordinates of the second marker. The exact location of the i-th position  

was defined as a central point on the line between the two markers, obtained from the reference 

tracking system: 

          
                       

 
 (11) 

          
                       

 
 (12) 

          
                       

 
 (13) 

4. Results 

This section presents the measurement results based on the experimental design described in the 

previous section. The results of the static measurements are presented first, followed by the results of 

the dynamic measurement scenario. 

4.1. Static Measurements 

The upper two rows in Table 1 show the minimum and maximum standard deviations of the 

measured static positions. The standard deviations are given for the individual axes as well as for the 

three-dimensional spatial position. The lower two rows show the spatial positions with the minimal 

and maximal standard deviations for the individual axes. 

Table 1. Standard deviations of static positions. 

Standard deviation 

and position 

x Axis 

(stdx) 

y Axis 

(stdy) 

z Axis 

(stdz) 

Spatial 

position (std) 

Minimal 

std 

std (mm) 0.0081 0.0093 0.015 0.013 

location (x, y, z) (cm) (0, 30, 0) (−10, 10, −5) (0, 20, −5) (0, 15, 0) 

Maximal 

std 

std (mm) 0.39 0.49 0.37 0.38 

location (x, y, z) (cm) (−20, 20, 0) (−20, 30, 0) (−20, 30, 0) (−20, 30, 0) 

The lowest standard deviation (0.0081 mm) was measured on the x axis 30 cm above the controller, 

while the highest standard deviation (0.49 mm) was measured on the y axis at the leftmost and  

topmost positions. 

Figure 6 shows the probability density of the deviation for the individual axes. By deviation,  

we mean the difference of all the measured samples from their corresponding mean measured 

positions                                 . The figure therefore indicates the deviation 

probability on each of the three axes when making a single measurement in the controller’s sensory 
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space. The narrowness and height of the individual curve can therefore be directly interpreted as the 

consistency of the controller’s individual dimensions for tracking static spatial points. 

Figure 6. The probability density of the deviations, including all 37 locations. 

 

Our further study was focused on the determination of the spatial dependency of the standard 

deviation of the static measurements. For this purpose, a spherical coordinate system was used instead 

of the Cartesian coordinate system. The following figures (Figure 7) show the impact of the radius (r), 

inclination (θ), and azimuth (φ') on the standard deviation. As the angle φ' is not defined for the  

y axis, the five locations above the coordinate origin with x = 0 and z = 0 were excluded from the 

analysis involving the azimuth angle. 

Figure 7. Spatial dependency of (a) the radius—r; (b) inclination—θ; and (c) azimuth—φ' 

on the standard deviation. 
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Figure 7. Cont. 

 

 

The figures indicate a dependency of the standard deviation on the radius and the azimuth. In both 

cases, the standard deviation increases when the radius or azimuth increases. The latter is also 

confirmed by the linear correlations listed in Table 2. 

Table 2. Correlations between the dimensions of the spherical coordinate system and 

standard deviation. 

Correlation variables Pearson coefficient p-value 

           , std[i] 0.338 0.044 

 θ         , std[i] 0.163 0.34 

             , std[i] 0.433 0.051 

The results indicate a significant weak positive correlation between the radius and the standard 

deviation, and a significant moderate positive correlation between the azimuth angle φ' and the standard 

deviation. These results show that consistency of the controller drops with the distance (radius) and 

when the tracking objects are to the far left or far right (higher φ') in the sensory space. Interestingly, 

no such dependency can be found when changing the inclination (θ) of the tracking objects. 
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We also analyzed the sampling performance and sampling frequency of the controller. Each 

measurement of the controller was logged with the corresponding absolute timestamp, which enabled 

us to determine the exact time gap between two sequential samples and to calculate the corresponding 

sample frequency. Figure 8 demonstrates the progress of the measurements and the total time required 

to track the initial 3,000 samples for each of the 37 measured positions. It can be seen that sample 

frequency is very unstable and varies from measurement to measurement, and also within individual 

measurement. The minimal logged period between two samples was 14 ms (corresponds to sampling 

frequency 71.43 Hz). The red line at the bottom of the figure demonstrates the prediction of optimal 

sampling performance based on the highest measured sampling frequency. Figure 9 shows the 

distribution of the time intervals between two consecutive samples involving all 37 positions. The 

mean sampling frequency was 39.0 Hz. The standard deviation was 12.8 Hz. 

Figure 8. The progress of the measurements in the static scenario (the total time required 

to collect the initial 3,000 samples at different points in space). 

 

Figure 9. The distribution of the time intervals between two individual samples. 
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4.2. Dynamic Measurements  

A total of 119,360 measurements were taken within the dynamic measurement scenario in an 

attempt to cover the estimated useful sensory space of the controller, as described in the methodology 

section. Two markers with a constant inter-marker distance were used for tracking, and variations of 

that distance were used to analyze the controller’s accuracy. Figure 10 demonstrates the distributions 

of the deviation of the distance. Figure 10a shows the overall distribution of samples for all the 

positions recorded by the controller. Figure 10b–d display the distributions of the deviation on the 

individual axes. In these cases, the brightness of the color indicates the density of the samples (higher 

brightness represents higher sample density). 

Figure 10. Distributions of deviation within dynamic measurements: (a) the overall 

distribution; and (b–d) the distributions on the individual axes. 
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The most interesting phenomenon, which can be noted in Figure 10a, is the non-Gaussian deviation 

distribution, which was not expected. In addition the global peak at a deviation of approximately  

0 mm, another local peak is evident at a deviation of approximately −5 mm. Further analysis shows 

(Figure 10b–d) that this phenomenon originates in the measurements taken at y > 250 mm over the 

entire covered area of the x-z plane (−250 mm < x, z < 250 mm). 
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The analysis of the spatial dependency of the measured distance deviation was based on computing 

the correlations between the spatial dimensions and the distance (Table 3). The results reveal 

statistically significant moderate negative linear correlations between the distance deviation and the 

height above the controller (y) and the distance from the coordinate origin (r). The distance deviation is 

not correlated with the other spatial dimensions. 

Table 3. Correlations between spatial dimensions and the distance deviation. 

Correlation variables Pearson coefficient p-value 

x[j], dist[j] −0.0658 <0.000 

y[j], dist[j] −0.612 <0.000 

z[j], dist[j] 0.00350 0.223 

r[j], dist[j] −0.595 <0.000 

θ[j], dist [j] 0.192 <0.000 

  [j], dist [j] −0.0792 <0.000 

The additional volumetric analysis reveals the local distribution of the distance deviation on 

different planes. Figure 11 displays the deviation distribution on the x-z plane (different heights above 

the controller) at y = 150 mm (Figure 11a) and y = 250 mm (Figure 11b). The formerly presented 

―local peak anomaly‖ can be observed in Figure 11b, where the distance deviation tends towards lower 

values (blue color). 

Figure 11. Distance deviation distributions in x-z plane at (a) y = 150 mm; and (b) y = 250 mm. 
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Figure 12 displays the deviation on the x = 0 (side view) and z = 0 (front view) planes. The figure 

reveals the highest deviation at the edges of the useful sensory space and at heights above y = 250 mm. 
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Figure 12. Distance deviation distributions at (a) x = 0; and (b) y = 0. 
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Figure 13 displays the controller’s sampling performance when tracking moving objects in four 

different layers above the controller. The red broken line indicates the optimal sampling performance 

defined with a constant sampling period of 15 ms, which corresponds to the minimum time interval 

between two consecutive samples logged in the dynamic measurements. The figure indicates the best 

sampling performance between the heights of y = 100 mm and y = 300 mm, with significantly reduced 

efficiency above this height. 

Figure 13. The progress of the measurements in the dynamic scenario (the total time 

required to collect the initial 10,000 samples in different height regions). 

 

Figure 14 compares the sampling performance for the static and dynamic conditions. The initial 

5,000 samples of the best cases from both conditions were taken for this analysis. These results were 

expected, as the sampling performance in the static condition proved to be more robust and uniform 

than the performance in the dynamic condition. 
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Figure 14. Comparison between the progress of static and dynamic measurements (total 

time required to collect the initial 5,000 samples). 

 

5. Discussion and Conclusions 

In this paper, we have described an extensive evaluation of the performance of the Leap Motion 

Controller with the aid of a professional fast and high-accuracy motion tracking system. The main goal 

of our research was to systematically analyze the controller’s sensory space and to define the spatial 

dependency of its accuracy and reliability. We performed a set of static and dynamic measurements 

with different numbers and configurations of tracking objects. 

In the static scenario, the standard deviation was shown to be less than 0.5 mm at all times, in the 

best cases less than 0.01 mm. In addition, the high accuracy (below 0.2 mm) reported in [15] combines 

with our results to evaluate the controller as a reliable and accurate system for tracking static points. 

Our analysis revealed an important spatial dependency of the controller’s consistency and performance. 

The linear correlation revealed a significant increase in the standard deviation when moving away 

from the controller (radius) and when moving to the far left or right of the controller (φ'). 

A sharp pen mounted on the robotic arm was used in [15], while we had to perform our 

measurements using a plastic arm with pointing finger. The algorithm of the controller seems to have 

been updated and requires a ―hand-like‖ object to track static points. In many cases, we were unable to 

establish a stable environment, and the controller only tracked the static points for a few seconds and 

then stopped. The main criterion for choosing the final 37 spatial locations was, therefore, the 

establishment of a stable position for the tracking arm that enabled successful tracking and logging 

over a longer period of time. The majority of the successfully selected points were located behind the 

controller (z < 0), when the hand was located above the controller and therefore fully visible inside the 
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sensory space. It was very difficult to set up the measurement when the hand was located in front of 

the controller and only the tracking finger remained in the sensory space. 

The set of measurements in the dynamic scenario also revealed the inconsistent performance of the 

controller. Its accuracy was evaluated through the distortion of the distance between two moving 

points with a constant inter-point distance. In this case, the accuracy drops when the objects move 

away from the sensor. There is a significant drop in accuracy for the samples taken more than 250 mm 

above the controller. Due to this interesting and unexpected phenomenon, we repeated the 

measurement for this area and obtained the same results. It is impossible to speculate on the primary 

cause for this behavior, but perhaps the use of objects with different inter-object distances would 

reveal different results. 

An important limitation of the controller’s performance is its inconsistent sampling frequency. Its 

mean value of less than 40 Hz is relatively low and varies significantly under both static and dynamic 

conditions. The main drawback of the non-uniform sampling is the great difficulty to synchronize the 

controller with other real-time systems since it requires difficult post processing and re-sampling 

methods and operations. 

Based on the insights gained from these experiments, the further study of the Leap Motion 

Controller may include research on the precision and reliability of tracking more complex hand/finger 

and tool movements as well as its suitability for applications strongly relying on gesture input modality. 

The Leap Motion Controller undoubtedly represents a revolutionary input device for gesture-based 

human-computer interaction. In this study, we evaluated the controller as a possible replacement for a 

fast and high-precision optical motion capture system in a limited space and with a limited number of 

objects. Based on the current results and the overall experience, we conclude that the controller in its 

current state could not be used as a professional tracking system, primarily due to its rather limited 

sensory space and inconsistent sampling frequency. 
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