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Abstract: The problem of moving target tracking in directional sensor networks

(DSNs) introduces new research challenges, including optimal selection of sensing and

communication sectors of the directional sensor nodes, determination of the precise

location of the target and an energy-efficient data collection mechanism. Existing solutions

allow individual sensor nodes to detect the target’s location through collaboration among

neighboring nodes, where most of the sensors are activated and communicate with the

sink. Therefore, they incur much overhead, loss of energy and reduced target tracking

accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster

heads coordinate their member nodes in optimizing the active sensing and communication

directions of the nodes, precisely determining the target location by aggregating reported

sensing data from multiple nodes and transferring the resultant location information to the

sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and

maximizes the number of sleeping nodes in the network. We have also investigated the

dynamic approach of activating sleeping nodes on-demand so that the moving target tracking

accuracy can be enhanced while maximizing the network lifetime. We have carried out our
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extensive simulations in ns-3, and the results show that the proposed mechanism achieves

higher performance compared to the state-of-the-art works.

Keywords: target tracking; area coverage; energy; cluster

1. Introduction

Wireless sensors are miniature devices integrated with data processing, physical sensing and

communication units, which provide great research interest for a wide range of applications [1–5].

Sensors can be categorized as omnidirectional and directional sensors. An omnidirectional sensor

can equally detect the surrounding environment in any direction with its omnidirectional antenna.

Unlike omnidirectional sensors, a directional sensor has a limited range of sensing and communication

capabilities, since it can detect only a certain field of vision or a limited direction. A good number

of practical directional sensor motes are now available in the market, including cameras, infrared and

ultrasonic sensors [6,7]. In a directional sensor network (DSN), the communication area of a sensor

is a sector rather than a disk. Directional sensors improve the quality of sensing and scale down the

interference and fading, which, in turn, enhance the network performance, as well as the lifetime [8].

Moving target tracking is an important application that requires sensing nodes to cooperate with each

other in order to achieve a good outcome [5,9,10]. Accurate path detection, low-cost data reporting,

maximum performance without losing data packets and maximizing the network’s lifetime have always

been the critical goals for moving target tracking in wireless sensor networks. The problem has been

well studied in omni-directional sensor networks [11–18]. These solutions are not applicable for DSNs,

as the directionality of sensor devices imposes new research challenges in the domain. Even simple

modified versions of these approaches are not applicable in DSNs. In the literature, a few research works

are found for moving target tracking in directional sensor networks [8,19], and we have a further scope

for research.

Hu et al. [20] addressed the location estimation problem of a moving target using a team of mobile

robots in which directional sensors are integrated. In [19], highly directional sensors are used to detect

the motion of the target, whose field of vision is a line. To overcome the highly convex optimization

problem, an adaptive basis algorithm (ABA) is introduced. The ABA estimates the trajectory, direction

and field of the objects and sensing lines. Zijan et al. [8] used co-operative DSN, where each sensor gives

approximate direction information about the moving target to the sink in real time in a distributed manner.

The authors proposed a sector-based sensor, where each node identifies the target’s presence or absence

and also calculates the location of the target based on target detection information from neighboring

sensor nodes. These two approaches increase the computation overhead, redundant sensing information

to the sink and erroneous information reception from all of the nodes. Therefore, the connectivity of the

sink to each of the nodes in the sensor network is an energy hungry and overloaded process. In addition,

poor coordination among sensing nodes and the excessive transfer of messages to the sink might reduce

the tracking accuracy.
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In this paper, we introduce a distributed clustering approach to solve the moving target tracking

problem, where each cluster head coordinates the computation and communication of target sensing

data with the sink. This work is motivated by the fact that the minimum number of sensor devices,

required for accurate target tracking, will remain active under each cluster head, so that the network

lifetime is maximized. Each cluster head (CH) determines the active sensing member nodes and their

sensing directions in order to cover its working sector area. The sensor nodes transmit target detection

information to their CH, which estimates the location of the target more precisely by exploiting sensing

data from multiple member sensing nodes. The CH then sends the target location information to the

sink. To the best of our knowledge, there has been no work in the literature that exploits CHs to

solve the moving target tracking problem in an energy-efficient way. Our approach is fully distributed,

and it exploits single-hop neighborhood information only. The main contributions of this paper are

summarized below.

• The novelty of this work lies in the development of a cluster-based solution to the moving target

tracking problem in directional sensor networks (DSNs).

• The cluster head-based optimization of the number of active nodes within a cluster minimizes the

sensing redundancy and maximizes the number of sleeping nodes in the network.

• The cluster head-based location estimation and data processing reduces the network contention

and computational overhead of energy-constrained sensor devices and ensures accuracy.

• The moving target tracking through distributed clustering (MTDC) system is capable of tracking

a target originating from anywhere in the monitored area, as well as entering into the terrain

from outside.

• The results of performance evaluations, carried out in ns-3 [21], show that our proposed MTDC

system achieves better performances compared to state-of-the-art mechanisms in terms of tracking

accuracy, active sensor nodes, standard deviation of residual energy and network lifetime.

The remainder of the paper is organized as follows. Section 2 contains a study on the related

works in this field of research. The network model and assumptions are presented in Section 3, and

Section 4 gives explicit insight into our proposed clustering, gateway selection, active node selection

and tracking algorithms for directional sensor networks. Section 5 presents the performance evaluation

of the algorithm. Finally, we conclude the paper in Section 6.

2. Related Works

The coverage problem for fixed targets has been addressed in [22,23] using directional sensor nodes,

where the number of sensors required to be deployed is minimized either in a centralized or in a

distributed way. None of them investigate the problem of moving target tracking or enhancement of target

tracking accuracy. Being an enriched area of research, moving target tracking, in energy-efficient way,

in wireless sensor networks (WSN) has received many proposals over the last few years [8,12,14,19].

The existing mechanisms can be classified into several categories: target tracking in an omnidirectional

sensor network and target tracking in a directional sensor network are the significant types. The

principle research area related to our work is target tracking using distributed clustering in a directional

sensor network.
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A number of target tracking mechanisms have been proposed in WSN. The algorithms presented

in [24,25] have the central node, which gathers the target’s binary information from all of the sensors

in the network and applies a particle filter on that information to update the target’s track. However,

transmitting information of one single node from each sensor is energy hungry; yet, this centralized

approach is not reliable, and also, the particle filters are expensive to compute.

Kim et al. [12] improved a distance-based weight calculation for each sensor that detects the target.

Here, the authors developed a linear approximation model for target’s trajectory by allocating a small

flexible window to the previous measurements, and a straight line segment is used to represent the target’s

trajectory in that window. This algorithm computes the weighted average of the sensors, which detected

the target and is used as an estimated point on the path of the target. Each estimated point is determined

from the recent path and estimated the target’s velocity, and the line equation helps to determine the

target’s location. However, this method needs time synchronization across the network, as well as

complexity while calculating. Hence, the tracking is not in real time, but delayed.

All of the previous research used omnidirectional sensor networks, which can estimate the target’s

location roughly, but cannot get the direction because of the wide field of view. Plarre et al. [19] treated

the problem of tracking objects using highly directional sensors whose field of vision is apparently a

straight line. Here, a sensor detects an object when it crosses the line and keeps a record of the time

of detection. From the time information, a sensor estimates the trajectory using an ad hoc coordinate

system. However, this approach uses a highly directional sensor, and the field of vision is much less,

which cannot cover the entire area. Wang et al. [8] proposed a distributed target tracking algorithm

(RDTT) in a directional sensor network in which each sensor is divided into sectors and can detect the

target’s presence or absence in the sectors. Here, each sensor estimates and calculates the target’s location

using the coordination among the neighboring sensors. However, here, each sensor communicates with

the neighboring sensors, and the sink increases the network traffic and data loss, which will lead to

reduced accuracy in target tracking and energy wastage.

In this paper, we develop a distributed cluster-based solution to the problem of moving target

tracking with improved accuracy and reliability in directional sensor networks. The existing clustering

algorithms, SPAN [26] and FLOC [27], and data delivery framework, Sprinkler [28], for omnidirectional

sensor networks are not usable in our MTDC system. We develop a basic clustering algorithm (A similar

algorithm has been presented in one of our recent conference papers [29]) for DSNs and use the cluster

heads (CHs) to execute the target tracking algorithms. To the best of our knowledge, cluster-based

target tracking in a directional sensor network has not been introduced in any of the existing works.

Our concept has much similarity with [8], except the following distinct differences. First, we introduce a

distributed clustering approach at the network deployment stage to address the communication overhead.

Here, a cluster head is selected in a distributed manner, and a cluster head selects gateway nodes for the

communication to the sink. The cluster head calculates the location of the target and communicates to

the sink. Hence, the network traffic and energy wastage is reduced. Second, in order to increase the

network’s lifetime and to save energy, we develop an active node selection algorithm that runs in each

cluster head to cover an entire cluster area with the minimum number of active sensor nodes initially.

Only when a target’s presence is detected, the cluster head wakes up the neighboring sleeping nodes.
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Finally, the location calculation and communication to the sink is the cluster head’s (CH) responsibility

in our protocol. A CH does this by gathering the target detection information from the cluster members.

3. Network Model

We assume a directional sensor network (DSN) is comprised ofN stationary sensor nodes placed over

a finite two-dimensional planar region. The sensors are deployed randomly with uniform distribution

and high density, so that the coverage and connectivity is maintained [30]. The nodes form a cluster

based data communication network, so that the cluster heads can communicate data to the sink node

in a multi-hop fashion. We assume that the sensors reliably detect the presence of targets, i.e., the

location of a target is reported if it is within the sensing range of a sensor. The sensors send the sensed

data to the cluster head, which determines the target location and communicates with the sink. At

the network deployment stage, each node is defined by three tuples < ID, (x, y), Einit >, where ID

is the unique identifier of a node, (x, y) is the Cartesian location of a sensor (determined by GPS or

any other localization method [31,32]) and Einit is its residual energy. Each node knows the above

three tuples’ information of each of its neighbor nodes by a neighbor discovery protocol [33]. We

assume that the sensing and communication ranges of the sensor devices are identical and the nodes

have multiple communication and sensing sectors. The directional sensing and communication models

are presented below.

3.1. Directional Sensing Model

We assume a directional sensing model in which the sensing area of a sensor is a sector, defined by

three-tuple < Rs, ~V s, θs >, where, Rs is the sensing radius, ~V s is the directional vector that represents

the center line of the sensing sector and θs is the angle of the field of view, as shown in Figure 1a.

Figure 1. The directional sensing and communication models. (a) Sensing model;

(b) communication model.
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We also assume that each node’s sensing region is divided into several sectors, ranging from 2 to 6,

and the sensing range of each sector is identical. The velocity of a moving target is less than the sensor’s

sensing frequency. The assumption is relevant, because the minimum sensing interval for an ultrasonic

sensor is usually around 10−2 to 10−3 s and that of an infrared sensor is usually above 10−4 s, which is

much higher than the target’s possible velocity [34,35]. We also assume that the CH can wake up any

of its member nodes on-demand and the time required (The wake up time for a typical sensor mote is
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6 µs [36]. Thus, sum of the communication, computation and wake up time does not cross 1 ms.) is

much less than the time in which a high speed target can travel one meter.

3.2. Directional Communication Model

The communication model of each sensor is also defined by three-tuples < Rc, ~V c, θc >, where, Rc

is the communication radius, Rc ≥ 2 × Rs, ~V c is the directional vector represents the center line of the

communication sector and θc is the angle of the field of view (FOV), as shown in Figure 1b. Like in the

sensing model, a node can communicate in multiple sectors, ranging from 2 to 6, and the communication

range of each sector is identical. We also assume that, at a certain time, the sensing and communication

sectors of a node may be the same or different, determined by the cluster formation and sensing coverage

algorithms. The notations used throughout this paper are enlisted in Table 1.

Table 1. List of notations.

N Set of all sensor nodes

MCH Cluster member node

d(i, j) Cartesian distance between nodes i and j

ni
max The max number of neighbors of any node i ∈ N has

dmax The distance of the sink from the farthest node

Ψc The set of communication sectors of any node i ∈ N

Ψs The set of sensing sectors of any node i ∈ N

ni,s The set of i’s neighbor nodes in sector s ∈ Ψc

Ei
init The initial energy of node i

Ei
res The residual energy of node i

no
i,s The set of i’s neighbor nodes that are members of any other cluster in sector s ∈ Ψc

nk,wcs The set of sensor nodes that belong to the working communication sector (wcs) of CH k

Wi,s Cluster head selection weight of sensor i in sector s ∈ Ψs

Gi,s Gateway selection weight of sensor i in sector s ∈ Ψs

Λ(i) Area covered by any sector s ∈ Ψs of any node i ∈ N

Λ(i, j) Overlapping area between nodes i and j

Oi Set of nodes having overlapped area coverage with node i

4. MTDC Architecture

The proposed moving target tracking through distributed clustering (MTDC) mechanism has

the following design components: cluster formation algorithm, gateway node selection mechanism,

determination of active sensing nodes and their sensing directions and the cluster head-based

target tracking algorithm. In what follows, we describe in detail the operations of the

aforementioned components.
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4.1. Cluster Formation

The philosophy of our proposed MTDC cluster formation algorithm is as follows. It must achieve

the following three goals: to ensure balanced energy consumption among the network nodes so that

the network lifetime is maximized, to increase the number of members in each cluster so that the total

number of clusters formed in the network is reduced and to reduce the number of hops required to deliver

data packets to the sink from the cluster heads. Therefore, we develop an integrated metric through a

linear combination of three sub-metrics: residual energy, number of neighbors and distance to the sink.

The cluster formation starts just after deployment of the network nodes. As described in Section 3,

each node knows the ID, residual energy and (x, y) location of its neighbor nodes through the

neighborhood discovery algorithm. Thus, each node can calculate the number of neighbors |ni,s| it

has, in each sector s ∈ Ψc and its distance from the sink, d(i, sink). At first, each node i ∈ N calculates

the cluster formation weight for itself in sector s ∈ Ψc, (Wi,s) and all of its neighbor nodes, as follows,

Wi,s = w1 ×
Ei

res

Ei
init

+ w2 ×
|ni,s|

ni
max

+ w3 ×

{

1−
d(i, sink)

dmax

}

, ∀s ∈ Ψc (1)

where w1, w2, and w3 are the weight factors, w1 > w2 > w3 and w1 + w2 + w3 = 1; the ni
max is the

maximum number of neighbor nodes any sensor i has, and it is determined as follows,

ni
max = max

∀s∈Ψc

{

max
∀j∈ni,s

{

max
s∈Ψc

|nj,s|

}

, |ni,s|

}

(2)

Then, each node i ∈ N checks the following condition,

max
∀s∈Ψc

(Wi,s) ≥ max
∀s∈Ψc

{

max
∀j∈ni,s

{

max
s∈Ψc

(Wj,s)

}}

(3)

If Equation (3) returns as true, for any node i ∈ N , it declares itself as the cluster head (CH).

Therefore, Equation (1) ensures that, at each neighborhood environment, the node that has the highest

W value is chosen as the CH. Note also that the CH selection metric is calculated as the weighted linear

combination of three sub-metrics: residual energy, number of neighbor nodes and distance from the

sink with weight factors w1, w2 and w3, respectively. The residual energy is given the highest weight

(w1), while the distance factor is given the lowest (w3). The first term helps to ensure the balanced

energy consumption among the network nodes, while the second term reduces the number of clusters

formed in the network. Finally, the third term reduces the number of hops required to deliver the sensed

data packets to the sink. Thus, a node having a higher amount of residual energy, a higher number

of neighbor nodes and reduced or less distance from the sink will get higher priority to be selected as

the CH. More explicitly, among two or more nodes having a similar distance from the sink and the same

number of neighbor nodes, the one having higher residual energy will be selected as the CH. In summary,

Equation (1) trades-off among the three sub-metrics for achieving the goals of efficient moving target

tracking in DSNs.

The CH calculates the working communication sector of the CH using the direction towards the

sink, which is chosen as the working communication sector. Each cluster head sends a cluster member

request CH_REQUEST message to all of its neighbors, which contains: (1) the CH ID; (2) the working

communication sector ID; and (3) the set of neighbors in the working communication sector.
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If a neighbor node j ∈ nCH,s receives the CH_REQUEST message from a CH (i.e., the node is in

the working communication sector of the CH), then the node j sets its communication direction facing

towards the CH. Then, it replies to CH with the cluster member confirm CH_CONFIRM message that

consists of: (1) the node ID; and (2) the CH ID. After that, it updates W for itself and its neighbors in all

sectors using Equation (1). If a node receives more than one cluster member CH_REQUEST message

from different cluster heads, then it joins the cluster that is the closest.

The cluster formation procedure is presented in Algorithm 1. An example of cluster formation is

depicted in Figure 2, where sensor Bhas the maximum W and is elected as the cluster head that forms a

cluster with members C and D. Similarly, node Acreates a cluster with member nodes E and F .

Algorithm 1 Cluster formation algorithm, at each sensor node i ∈ N .

1. ni,s ← set of neighbor nodes of node i in sector s

2. while TRUE do

3. if Eq 3 returns TRUE then

4. CH ← i

5. o← orientation of node i that has the highest W

6. Node i sets o as its working communication sector

7. CH sends CH_REQUEST to all j ∈ ni,s, ∀s ∈ Ψc

8. else if Node i receives CH_REQUEST from any CH then

9. p←Working communication sector of CH

10. if Node i is NOT a member of any other CHs then

11. q ← orientation of i facing towards CH

12. Node i sets q as its working communication sector

13. Node i sends CH_CONFIRM message to the CH

14. end if

15. end if

16. Update the ni,s and Wi,s

17. end while

Figure 2. Cluster formation. (a) Before cluster formation; (b) after cluster formation.
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4.2. Gateway Selection

After the cluster formation has been completed, gateway nodes are selected for data communication

among the clusters. The gateway (GW) nodes help to develop a network backbone for data

communication. Gateway nodes are selected by the cluster head to communicate with other clusters.

A sensor i can be considered as a candidate gateway node of the CH if it can directly communicate with

the nearby cluster head or through another member of a nearby cluster. We assume that the reception

antenna is omnidirectional. A CH computes the gateway selection weight (G) for all candidate gateway

nodes as follows,

Gi,s = w1 ×
Ei

res

Ei
init

+ w2 ×
|no

i,s|

ni
max

+ w3 ×

{

1−
d(i, sink)

dmax

}

, ∀s ∈ Ψc (4)

where w1, w2, and w3 are the weight factors, w1 > w2 > w3 and w1 + w2 + w3 = 1. Now, a CH selects

a sensor node i as a gateway node if and only if the node satisfies the following condition,

max
∀s∈Ψc

(Gi,s) ≥ max
∀j,Sj∈nk,wcs,j 6=i

{

max
s∈Ψc

(Gj,s)

}

(5)

Therefore, the CH selects a node i as the gateway that has the highest G value using one-hop

neighborhood information, and it requires light weight computations. Then, the CH k broadcasts a

gateway request GW_REQUEST message consisting of the: (1) gateway node ID; and (2) gateway

working communication sector ID; thus, the gateway and all other cluster member nodes come to know

this selection. The selected gateway sends a gateway confirmation GW_CONFIRM message to the other

cluster head.

An example gateway selection procedure is presented in Figure 3. Here, A and B are the cluster heads

of Clusters 1 and 2, accordingly. The member nodes X and Y are common in both of the clusters, so

these two nodes are considered as the candidate gateway nodes. Node Y has the highest G compared to

all of the candidate gateway nodes. Therefore, Y is selected as the gateway node to communicate with

the next-hop cluster.

Figure 3. Gateway node selection.
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4.3. Cluster Area Coverage

Once the communication backbone is constructed, each cluster head selects some active nodes, which

will remain awake initially. The other nodes of the cluster will be in sleep mode to conserve energy. A

greedy approach is used in the selection of the active nodes to cover the border area of a cluster, as well

as the middle area.



Sensors 2014, 14 24390

4.3.1. Border Area Coverage

Since there is a high probability of having overlapped regions covered by directional sensor nodes,

our mechanism targets minimizing the number of active sensor nodes by reducing duplicate coverage

and covering the cluster border area only. Since the CH is aware of the locations of its member nodes,

it can determine the set of sensor nodes BCH that are candidate nodes for border area coverage. Note

that each node i ∈ BCH must satisfy the following condition,

min {d(i, x)} < Rs (6)

where x is any point on the border arc or straight line. The condition 6 implies that at least one sector

s ∈ Ψs of node i ∈ BCH can cover some area of the cluster border. Therefore, our problem now boils

down to the selection of nodes from BCH in such a way that the cluster border area can be covered with

the minimum number of nodes, which is an NP-complete problem [22]. Thus, we develop a greedy

solution for the problem.

Figure 4. Border area coverage overlapping.
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At the first step, the CH finds all i ∈ BCH nodes whose coverage area has no overlapping region with

any other neighboring nodes, denoted by ζB, using Equation (7), as follows,

ζB = {i | overlap(i, j) = 0, ∀j ∈ BCH , j 6= i, ∀s ∈ Ψs} (7)

where the function overlap(i, j) returns zero if node i has no overlap with any of its neighboring

nodes j ∈ BCH , and one otherwise. As shown in Figure 4, node k is the CH, node j intersects the cluster

border on points (x1j , y1j) and (x2j , y2j) and node i intersects the cluster border on points (x1i, y1i)

and (x2i, y2i). Node i has overlapping coverage with node j. Therefore, the overlap(i, j) function can

perform the test using condition 8 and returns the result accordingly.

(x1j < x1i || x2i < x2j) && (y2j < y1i || y2i < y1j) (8)

After getting the result, the CH activates all of the nodes having no overlap with any other nodes and

puts them into a list ζB , and these nodes are activated.

At the second step, the MTDC border area coverage mechanism uses a greedy approach to activate

the nodes based on their area coverage. The CH sorts the remaining Bcov = {BCH\ ζB} border area

sensors in descending order of the maximum border lengths that they cover, which is computed using

Equation (9),

max
∀s∈Ψs

{len(i, s)} , i ∈ Bcov (9)
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where function len(i, s) returns the length of the border covered by any node i ∈ Bcov in sector s ∈ Ψs.

The CH then activates the first node i ∈ Bcov and migrates it to a separate list of active nodes, Bactive.

Before activating the second node j ∈ Bcov, the CH compares if the node j has less than α% overlap

with i and migrates it to Bactive, if the test returns true; otherwise, node j is not activated. This process

continues till the complete border of the CH is covered. However, if the complete border is not covered

in the first round, the same procedure will be executed iteratively with the increased value of α (e.g.,

α = 2×α) in each iteration. The cluster border area coverage procedure is summarized in Algorithm 2.

Algorithm 2 Border area coverage algorithm, at each cluster head (CH).

INPUT: BCH

OUTPUT: Bactive

1. for all i ∈ BCH do

2. Develop ζB, the set of all nodes having no overlapping region with neighbors, using Equation (7)

3. end for

4. Bcov ← {BCH \ ζB}

5. sort Bcov in descending order of covered border length

6. Bactive ← first element in Bcov

7. while Complete border is not covered do

8. for all k ∈ Bcov do

9. for all i ∈ Bactive && i 6= k do

10. if overlap(i, k) < α then

11. Bactive ← {Bactive ∪ i}

12. Bcov ← {Bcov\ i}

13. end if

14. end for

15. end for

16. α = α× 2

17. end while

18. Bactive ← {ζB ∪ Bactive}

4.3.2. Middle Area Coverage

Note that the border area coverage algorithm activates the sensor nodes that can detect a target moving

in or out of the border area of a CH. However, these sensors fail to track the path of a moving target inside

the CH area. Therefore, we activate a minimum number of sensors in the middle area to increase the

target tracking accuracy using a similar procedure stated in Algorithm 2.

First, we find a set of candidate sensor nodes for middle area coverage for a given cluster head,

MCH = {MCH\ Bactive}, where MCH is the set of all members of the CH. Then, we find all i ∈ MCH

nodes whose coverage area has no overlapping region with any other neighboring nodes, denoted by ζM ,

using Equation (10), as follows,

ζM = {i | Λ(i, j) = 0, ∀j ∈MCH , j 6= i, ∀s ∈ Ψs} (10)
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where Λ(i, j) is a function of calculating the amount of overlapped area between nodes i and j, which is

elaborated in Section 4.3.4.

In the second step, the proposed MTDC middle area coverage algorithm finds the sorted list of

Mcov = {MCH\ ζM} in ascending order of their amount of overlapped area coverage with the

neighborhood nodes. The CH then activates the first node i ∈ Mcov and migrates it to a separate list

of active nodes, Mactive. Therefore, the same procedure is applied to activate the rest of the nodes from

Mcov as used in the border area coverage algorithm. The steps of activating the sensor nodes for middle

area coverage are summarized in Algorithm 3.

Algorithm 3 Middle area coverage algorithm, at each CH.

INPUT: MCH , Bactive

OUTPUT: Mactive

1. for all i ∈ MCH do

2. Develop ζM , the set of all nodes having no overlapping region with neighbors, using Equation (7)

3. end for

4. Mcov ← {MCH \ ζM}

5. sort Mcov in ascending order of amount of overlapped area

6. Mactive ← first element in Mcov

7. while Complete middle area is not covered do

8. for all k ∈Mcov do

9. for all i ∈ (Mactive ∪ Bactive) && i 6= k do

10. if Λ(i, k) < α then

11. Mactive ← {Mactive ∪ i}

12. Mcov ← {Mcov\ i}

13. end if

14. end for

15. end for

16. α = α× 2

17. end while

18. Mactive ← {ζM ∪ Mactive}

4.3.3. On-Demand Node Activation

Note that the aforementioned border and middle area coverage algorithms guarantee that a moving

target will be detected by at least one of the member sensing nodes of the visiting CH. In the literature,

this is known as a κ-coverage solution, and in this case, κ = 1. However, our proposed MTDC allows

CHs to activate more sensing nodes dynamically, when a target is detected, to increase the target tracking

accuracy. The set of candidate sleeping nodes that can be activated for increasing the coverage is

M ′
CH = {MCH\ Bactive\Mactive}. When a CH receives the target detection sensing information from

any member node i, it first develops a set of sleeping nodes that can cover the active sensing sector of i,

as follows,

Di
cov = {j |Λ(i, j) > 0, ∀j ∈M ′

CH , j 6= i, ∀s ∈ Ψs} (11)
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Now, the CH sorts the elements of Dcov in descending order of the amount of coverage area overlapped

with node i. Then, nodes from the set Dcov are activated one after another, so that each point in the active

sector of i is covered by at least κ sensors. The steps of the on-demand node activation mechanism have

been summarized in Algorithm 4.

Similarly, when sensor node i notifies the CH that the target has gone out of its coverage area, the

newly-activated nodes will be sent to sleeping mode again. Thus, our MTDC algorithm activates the

sleeping nodes on-demand for a short period of time, so that the target tracking accuracy can be enhanced.

Algorithm 4 On-demand node activation algorithm, at each CH.

INPUT: MCH , Bactive,Mactive, κ

OUTPUT: Di
active

1. M ′
CH ← {MCH \ Bactive \Mactive}

2. Find Di
cov using Equation (11)

3. sort Di
cov in descending order of amount of Λ(i, j)

4. Di
active ← first element in Di

cov

5. while each point of i’s sector is not κ-covered do

6. m← Di
cov

7. Di
active ← {D

i
active ∪ m}

8. Di
cov ← {D

i
cov \m}

9. end while

4.3.4. Overlapping Coverage Area Calculation

As discussed before, when a CH attempts to activate a sensor node, it needs to calculate the amount

of area covered by multiple active sensor nodes, i.e., the amount of overlapped area, denoted by Λ. Two

sensing nodes may overlap each other in many different ways, and they can be broadly categorized into

three different cases, as shown in Figure 5. In Case 1, the overlapping area is covered by three straight

lines; in Case 2, the area is covered by two straight lines and one arc; and in Case 3, the overlapping

region is covered by one straight line and one arc.

Figure 5. Different types of overlapping. (a) Candidate sector; (b) Case 1; (c) Case 2;

(d) Case 3.
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Now, using simple geometry [37], we can calculate the area of a candidate sector that has no

overlapping area (Figure 5a) bounded by Case 1, Case 2 and Case 3 using Equations (12) and

(14)–(16), respectively.

Λ =
r2θ

2
(12)

s =
a + b+ c

2
(13)

Λ =
√

s(s− a)(s− b)(s− c) (14)

Λ =
ab

2
[θ − tan−1(

(b− a) sin(2θ)

(b+ a) + (b− a) cos(2θ)
)] (15)

Λ =
r2

2
(θ − sin θ) (16)

In addition to the above cases, we may encounter situations where the overlapping area has two arcs

and one straight line, or two arcs and two straight lines, or two arcs only, or four straight lines, etc.

In these cases, we can divide the area into two or more separate parts, where each part falls into one of

the aforementioned three cases. Thus, we can calculate the area of overlapping regions of any shape.

A node i can calculate the percentage of overlapped area coverage with any of its neighbor node j for

any of its candidate sectors s as follows,

η(i, j, s) =
Λ(i, j)

Λi

× 100%, ∀j ∈ ni,s, ∀s ∈ Ψc (17)

In the case, node i has overlapping coverage with more than one neighbor nodes, as shown in Figure 6,

it can calculate the total amount of overlapping as follows,

η(i, s) =

|ni,s|
∑

j=1

ηsi,j (18)

Thus, we can calculate the area of the overlapping region and the percentage of overlap for any sensor

member node of a CH.

Figure 6. Coverage area overlapped by multiple nodes.
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4.4. Target Tracking

In this section, we describe how a CH determines the location of a target by exploiting sensed data

from its member nodes. When a target is detected by a sensor node, it sends the sensing data, < NodeID,

sector, DateTime>, to the CH. For a moving target, the CH will receive such sensing information from

many of its member nodes. Then, the CH combines all of the sensing information to determine the arc

in which the target is crossing, described as follows.
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The CH takes the initial angle λ as the full sector of the first member node that senses the target.

Then, it reduces the angle size by taking INTERSECTION of coverage of all other nodes that sense the

target using Equation (19). If a sensing node has an overlapping coverage area with the first node, but

the former does not report any sensing information, the CH combines the corresponding central angles

by the MINUS operation using Equation (20). Therefore, the arc corresponding to the resultant angle λ′

is denoted as the location in which the target passed. Therefore, the target tracking accuracy increases

with the number of sensing nodes that report sensing information to the CH.

λ′ = λ
⋂

m∈IN

Anglem (19)

λ′ = λ \m∈OUT Anglem (20)

here, IN is the set of member nodes indicating the target’s presence and OUT is the set of members

indicating the target’s absence.

Figure 7 illustrates the target tracking example. In Figure 7a, node C senses the targets presence first,

and B and A also sense the presence of the target and send the information to the CH. The CH calculates

the angle ∠ 1C3 using intersection Points 1 and 3 of node A and C and ∠2C4 using intersection Points 2

and 4 of node B. Then, it performs the INTERSECTION operation on the angles and gets the resultant

angle (λ′) ∠2C3. The corresponding arc of ∠2C3 is “23”. Therefore, the arc “23” is estimated as the

location of the target. Thus, if more sensors detect the target, the arc length can further be reduced.

Figure 7. Determination of a target’s location.
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In Figure 7b, node C and A sense the target’s presence and B cannot sense the presence of the target.

The CH calculates the angle ∠1C3 using intersection Points 1 and 3 of node A and C and ∠2C4 using

intersection Points 2 and 4 of node B. Then, it performs the MINUS operation on the angles and gets

the resultant angle ∠1C2. The corresponding arc of ∠1C2 is “12”, and it is the estimated location of

the target.

4.5. Data Reporting

Data packets are sent to the sink using inter-cluster communication through the gateway nodes. Data

transmission from the CHs to the sink is event-triggered in our MTDC system, i.e., after receiving sensed

data packets that contain the sensor ID and timestamp of the event, a CH forwards them toward the sink.

The target’s movement from one location to another causes new sensor nodes to wake up, and thus, many

sensed data packets are received by the corresponding CHs. Thus, the data communication is triggered

by the events occurring in the terrain.
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In a sensor network, a significant amount of energy is spent due to the transmission and reception

of data packets. Therefore, data processing and aggregation at the CHs before forwarding it to the sink

has proven to provide better performance [38,39]. The cluster head-based solution of MTDC gives it

the opportunity to diminish redundant data reporting to the sink through data integration, decreasing the

energy consumption of battery-powered nodes.

4.6. Cluster Management

Cluster management is required to reorganize the cluster head nodes periodically, so that one node

does not run out of energy, reducing the network lifetime. The cluster management procedure consists

of three phases: cluster head re-election, member node re-selection and gateway node renewing.

When the residual energy of the CH becomes less than a predefined threshold γth, then the CH

collects information from its neighbors to elect a new cluster head using the same procedure stated in

Section 4.1. Then, the old CH becomes an ordinary node, and it doubles the energy threshold value

so that the possibility of selecting the same node as the cluster head is decreased, and the energy load

distribution becomes more balanced across the network.

Similarly, when the residual energy of a member node or a gateway node becomes less than the

predefined threshold γth, then it notifies the CH, and a new member or a new gateway is selected by the

CH using the same procedure stated before.

4.7. Discussion

Note that, in MTDC, the weighted linear combination of three sub-metrics (residual energy, number

of neighbor nodes and distance from the sink of a node) produces an integrated metric, which has been

used to select CHs and gateways in the network. The selection of CHs exploits single-hop neighborhood

information only. The computation and communication overheads of moving target tracking are placed

on CHs. Therefore, the MTDC is a distributed solution and expected to provide satisfactory performance

for increasing network size.

However, the key limitation of this work is the lack of mathematical expressions for the appropriate

values of weight factors w1, w2 and w3 used in Equations (1) and (4). The optimal values of them are

impacted by the network node density, initial node energy, network size and shape. The choice of

sub-optimal values of the weight factors might reduce the performance of the proposed MTDC system.

The simulation experiment-based determination of their values in our current work is the first research

step, and it does not guarantee the optimal choice. A dynamic selection technique might further improve

the MTDC performance. The analytical modeling to dynamically select the optimal values of the weight

factors has been left for future work.

5. Performance Evaluation

In this section, we study the comparative performances of the real-time distributed target tracking

(RDTT) [8], adaptive basis algorithm (ABA) [19] and the proposed moving target tracking through
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distributed clustering (MTDC) mechanism in terms of target tracking accuracy, network lifetime, the

standard deviation of residual energy and protocol operation overhead.

5.1. Simulation Environment

We evaluate the performances of the studied target tracking mechanisms in ns-3, a discrete-event

network simulator [21]. As sensor nodes, we use the ns-3 StaWifiMac model, and the nodes

use the ConstantPositionMobility model and the target use RandomDirection2dMobility model. The

RandomDirection2dMobility model use defined values for speed and random values for pause time,

direction and acceleration of the moving target, which corresponds to the real-life scenario. For setting

the channel properties, such as the delay loss model, propagation delay model, data rate and channel

characteristics are defined using the YansWifiPhy channel model. We also use a station manager model

for packet management that enables fragmentation for very large packets. We employ RCRT [40] as a

transport protocol that ensures end-to-end reliable and energy-efficient data transfer.

We deploy the sensors and the moving targets uniformly in a region of 1000 × 1000 m2. We run

simulation for 1000 s. 600 stationary sensor nodes and a few moving targets are considered. We have

used the following values for the weight factors, w1 = 0.45, w2 = 0.35, and w3 = 0.20, determined

through numerous simulation runs for different network size, node density, and initial node energy values

as in [41,42]. The network configuration parameters are shown in Table 2. For each graph points, we

run 10 simulation runs and take the average of the results.

Table 2. Network configuration parameters.

Parameters Value

Simulation Area 1000 m × 1000 m

Deployment Type Uniform random

Number of Sensor Nodes 200 ∼ 1000

Number of Communication and Sensing Sectors 2 ∼ 6

Number of Moving Targets 1 ∼ 5

Transmission Range 100 m

Sensing Range 50 m

Target Moving Velocity 1 ∼ 6 m/s

Data Reporting Rate 1 packet/s

Network Bandwidth 512 Kbps

Initial Energy of a Sensor Node 5 J

γth 1 J

k (k-coverage) 3

Simulation Time 1000 s

5.2. Performance Metrics

The comparative performances of our proposed MTDC algorithm with those of RDTT [8] and

ABA [19] have been carried out for varying number of sensing and communication sectors, number
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of sensor nodes deployed in the terrain, moving velocity of targets, number of targets moving in the

terrain, etc. The following performance matrices are evaluated for comparison.

• Target tracking accuracy: The target tracking accuracy percentage is measured as the deviation

percentage of the detected path from the actual path, the ratio of which is the actual path to the

detected path of the target. A lesser value means that the detected path is less diverted from the

actual path. Therefore, the lesser the value is, the more accurate is the tracking.

• Number of active sensing nodes: The active sensing nodes that are required to cover all of the

targets entering and exiting in the terrain are measured. The lesser the value is, the more is the

number of sensor nodes that go into sleep mode and conserve energy.

• Standard deviation of residual energy: The standard deviation of energy defines the average

variance between the residual energy levels for all nodes and is measured by Equation (21),

σ =

√

√

√

√

1

|N |

|N |
∑

i=1

(Ei − µ)2 (21)

where Ei and µ are, respectively, the residual energy of node Si and the mean residual energy

for all nodes. Therefore, the value of σ indicates how well the energy consumption is distributed

among the sensor nodes. The smaller the value, the better is the capability of the MTDC system

to balance the energy consumption.

• Network lifetime: We measure the network lifetime during the entire process. A greater amount

of time corresponds to better performance.

• Tracking operation overhead: The tracking operation overhead is defined as the ratio of the

total number of control bytes (due to REQUEST, CONFIRM, RTS, CTS, ACK, etc. messages)

transferred during the simulation period to the total number of data bytes received by the sink. A

smaller percentage of overhead describes better performance.

5.3. Simulation Results

To evaluate the robustness of our proposed MTDC mechanism in different environments, we study the

performances for varying numbers of sensor nodes deployed in the network and the number of sensing

and communication sectors.

5.3.1. Impacts of the Number of Sensor Nodes

The performance metrics discussed before are measured for varying numbers of directional sensor

nodes ranging from 200 to 1000, and the number of sectors is kept at four.

Figure 8a reveals a substantial improvement in terms of target tracking accuracy, which is measured

from the deviation of the detected path of a target from the actual path. The accuracy percentage has

been achieved by our MTDC algorithm, and compared to RDTT and ABA, it is relatively higher. Our

algorithm shows better performance, because the CH takes the responsibility of being a coordinator,

aggregates the target tracking information from the member sensor nodes and detects the best possible

path without any loss of information. The graphs in Figure 8a show that for both algorithms, the
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target tracking accuracy percentage increases as the number of sensor nodes deployed increases. This

is because, when there are many nodes, the target will be tracked by a greater number of nodes and

accuracy percentage will go higher.

The graphs in Figure 8b show that, initially, the number of active sensor nodes is almost the same

with the varying number of deployed sensor nodes in MTDC, ABA and RDTT. In RDTT and ABA, the

number of active nodes is much higher compared to our MTDC algorithm. This is the most important

achievement of our MTDC algorithm, and it is due to the execution of our proposed algorithm at the CHs,

not at individual sensor nodes. The CHs are performing as controllers for determining active sensors and

their sensing directions; thus, more optimal decisions are made to send many overlapping sensors into

sleep mode. On the contrary, in the RDTT algorithm, individual sensor nodes run the target tracking

algorithm, so it has poor coordination among the nodes and is unable to implement an optimal area

coverage. In ABA, the number of active sensor nodes are lower than RDTT; this is because a few nodes

are used for tracking objects only when the object crosses its line of sight. Thus, it does not cover the

whole area. Therefore, a substantial performance improvement by our MTDC system has been achieved.

Figure 8. Impacts of the number of sensor nodes. (a) Target tracking accuracy;

(b) percentage of active sensing nodes; (c) standard deviation of residual energy; (d) network

Lifetime.
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Figure 8c shows the standard deviation of residual energy levels for increasing the number of sensor

nodes deployed in the network. The graphs depict that the standard deviation of the residual energy of
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nodes decreases with the increasing number of nodes deployed in the network. Our proposed MTDC

algorithm gives better performance than RDTT and ABA. This happens because RDTT and ABA do

not consider the residual energy level of nodes when selecting CHs, gateways and active sensing nodes,

and thus, this increases unbalanced energy consumption. Furthermore, updating the residual energy

thresholds for selecting/renewing CHs in our MTDC system ensures balanced energy consumption.

The comparison of network lifetime offered by the MTDC, RDTT and ABA algorithms is shown

in Figure 8d. As expected theoretically, the network lifetime linearly increases with the number of

additional sensors deployed in the network for all of the studied protocols. Our MTDC system achieves

better lifetime compared to the RDTT and ABA algorithms, because MTDC uses a clustering approach

to reduce the network overhead and area coverage algorithms for activating a few nodes initially, which

enhance the network lifetime.

5.3.2. Impacts of the Number of Sectors

In this section, we evaluate the impacts of the number of communication and sensing sectors, ranging

from 2 to 6, on the performances of the studied algorithms. In this experiment, we have fixed the number

of sensor nodes deployed in the area at 600.

Figure 9a states that the target tracking accuracy percentage in MTDC, RDTT and ABA increases

with the number of sensing sectors. The high number of sectors means a shorter arc length. Therefore,

the target’s path can be detected more accurately with a lower deviation from the actual path. The

graphs also state that our MTDC algorithm performs better than the RDTT and ABA algorithms despite

the increasing number of sectors. In our MTDC system, the CHs run the target coverage algorithm that

determines the active sensor nodes and their sensing directions, so that the accuracy percentage is higher.

The number of active sensor nodes is increased with the number of sectors, as depicted in Figure 9b.

However, in our MTDC algorithm, fewer sensing nodes remain active compared to RDTT and ABA.

This happens for the following reasons: cluster formation helps the sensor nodes be coordinated by the

CHs, and CHs select some active sensor nodes, which can track the target’s path initially. Besides, the

on-demand node activation procedure helps to send a good number of sensor nodes into the sleep state,

reducing the active sensing nodes.

The graphs in Figure 9c state that the standard deviation of the residual energy level decreases slowly

with the increasing number of sectors for MTDC, RDTT and ABA. Our proposed MTDC system gives

much better performance than the RDTT and ABA. As stated in Section 5.3.1 for the number of sensors,

the larger number of sectors also increases the number of options from which the CH can choose

regarding the nodes to activate and which to keep in sleep mode. Therefore, the energy will be conserved.

The comparison of the network lifetime offered by the MTDC, RDTT and ABA algorithms is shown

in Figure 9d for an increasing number of sectors. The network lifetime linearly decreases with the

number of sectors for all of the studied protocols, since it increases the probability of activating a large

number of nodes initially.
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Figure 9. Impacts of the number of sectors. (a) Target tracking accuracy; (b) percentage of

active sensing nodes; (c) standard deviation of the residual energy; (d) network Lifetime.

2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

 

 

Ta
rg

et 
tra

ck
ing

 ac
cu

ra
cy

 (%
)

Number of sectors

 MTDC
 RDTT
 ABA

2 3 4 5 6
0

20

40

60

80

100

 

 

Pe
rc

en
ta

ge
 o

f a
cti

ve
 se

ns
ing

 n
od

es
 (%

)

Number of sectors

 MTDC
 RDTT
 ABA

(a) (b)

2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 

 

   S
tan

da
rd

 de
via

tio
n o

f r
es

idu
al 

en
er

gy
 (J

)

Number of sectors

 MTDC
 RDTT
 ABA

2 3 4 5 6
0

100

200

300

400

500

600

700

 

 

Ne
tw

or
k l

ife
tim

e (
se

c)

Number of sectors

 MTDC
 RDTT
 ABA

(c) (d)

5.3.3. Impacts of Target Moving Velocity

In this section, we study the impacts of target moving velocity on the performances of the target

tracking algorithms. Figure 10 states that the target tracking accuracy percentage in MTDC, RDTT and

ABA decreases with the increasing target tracking velocity. The higher velocity of the target causes the

sensor devices to miss data reporting, and thus, the accuracy decreases. The graphs also state that our

MTDC algorithm performs slightly better than the RDTT and ABA algorithms irrespective of velocity

levels. In our MTDC system, the CHs run the target coverage algorithm that determines the active sensor

nodes and their sensing directions, so that the accuracy percentage is higher.

We also observe in Figure 10b that the target moving velocity has no impact on the percentage of

active sensing nodes in the network, which is also expected theoretically. However, in our MTDC

algorithm, fewer sensing nodes remains active compared to the RDTT and ABA algorithms, as stated in

Section 5.3.2.

The standard deviation of residual energy linearly increases and the network lifetime decreases with

the target moving velocity, as shown in Figure 10c,d, respectively. This is because when the target

moving speed is high, node activation and deactivation happen more frequently. This causes more energy

consumption and the rapid degradation of the network lifetime.
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Figure 10. Impacts of target tracking velocity. (a) Target tracking accuracy; (b) percentage

of active sensing nodes; (c) standard deviation of the residual energy; (d) network Lifetime.
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5.3.4. Impacts of the Number of Moving Targets

In this section, we evaluate the impacts of the number of moving targets, ranging from 1 to 5, on the

performances of the studied target tracking systems. In this experiment, we have fixed the number of

sensor nodes deployed in the area at 600 and the number of sectors at four.

Figure 11a depicts that the percentage of target tracking accuracy in MTDC, RDTT and ABA

decreases with the increasing number of targets. When the number of targets in the vicinity increases,

most of the sensor nodes become active and track them, and the communication overhead increases,

which, in turn, decreases the accuracy. The graphs also state that our MTDC algorithm performs better

than the RDTT and ABA algorithms. In our MTDC system, the CHs run the target coverage algorithm

that determines the active sensor nodes and their sensing directions, so that the accuracy percentage is higher.

The number of active sensor nodes is increased with the number of moving targets, as depicted in

Figure 11b. In our MTDC algorithm, fewer sensing nodes remain active compared to RDTT and ABA.

Because the MTDC cluster formation mechanism selects a CH to coordinate the other nodes of the

cluster, the on-demand node activation procedure can activate as few nodes as possible.

The standard deviation of residual energy linearly increases and the network lifetime decreases with

varying the number of targets, as shown in Figure 11c,d, respectively. This is because, when the number

of moving targets is higher, node activation and deactivation happen more frequently. This causes more

energy consumption and the rapid degradation of the network lifetime.
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Figure 11. Impacts of the number of targets. (a) Target tracking accuracy; (b) percentage of

active sensing nodes; (c) standard deviation of the residual energy; (d) network Lifetime.
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5.3.5. Tracking Operation Overhead

Finally, we measured the target tracking operation overhead for varying numbers of sensor nodes

and sensing and communication sectors. Figure 12a,b, respectively, depicts that the tracking operation

overhead linearly increases with both the number of sensor nodes and the number of sectors. This is

because when the number of sensors and the number of sectors are increased, the number of active nodes

is also increased, which, in turn, excels the communication overhead due to control packet transfer.

Figure 12. Tracking operation overhead. (a) Overhead vs. the number of nodes;

(b) overhead vs. the number of sectors.
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6. Conclusions

In this paper, we presented a distributed cluster-based moving target tracking system in a DSN.

The cluster heads formed in the proposed MTDC system increase the target tracking accuracy through

efficient aggregation of sensing data from member nodes. The CHs also reduce the amount of data

packets transmitted toward the sink node; thus, they reduce the network bandwidth wastage, as well as

increase the network lifetime. In MTDC, the CHs and the gateways are determined first; then, each

CH addresses the area coverage problem by activating some border and middle area sensing nodes

to conserve energy. This work has also increased the moving target tracking accuracy by on-demand

activation of nodes. Our energy-efficient solution to the updating procedure of CHs, GWs and active

sensor nodes is carried out by the cluster heads.

Although the proposed mechanism achieves better performance, further experimental and theoretical

extensions are possible. As mentioned in Section 4.7, the weight factors in our system need a better

mathematical analysis for dynamically selecting their values, and we have left this as future work.
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