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Abstract: A new fluorescent probe P derived from naphthalimide bearing a pyridine group 

has been synthesized and characterized. The proposed probe P shows high selectivity and 

sensitivity to Cu2+ in aqueous media. Under optimized conditions, the linear response of P  

(2 μM) toward Cu2+ was 0.05–0.9 μM in ethanol-water solution (3:2, v:v, 50 mM HEPES, 

pH 7.4), and the detection limit was 0.03 μM. 

Keywords: fluorescent probe; naphthalimide; Cu2+; schiff base; pyridine 

 

1. Introduction 

Development of optical sensors for the detection of environmental targets has been an actively 

research topic recently. Because of its simplicity and high sensitivity, the fluorescence technique has 

become a powerful tool among the methods available for chemical sensors [1]. Most metal ions play 

important roles in living systems and have an extreme eco-toxicological impact on the environment 
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and humans. Among these various metal ions, Cu2+ is both a significant environment pollutant and an 

essential trace element in biological systems [2], so detecting the presence of Cu2+ has received 

considerable attention. So far, many Cu2+-selective fluorescent probes have been successfully  

devised [2–24]. It is unfortunate that only a few examples of “off-on” type probes are available due to the 

fluorescence quenching nature of paramagnetic Cu2+ [2−20]. In most practical applications, fluorescence 

quenching changes in fluorescence intensity can be interrupted by many other poorly quantified or 

variable factors such as photobleaching, probe molecule concentration, the environment around the probe 

molecule (pH, polarity, temperature, and so on), and stability under illumination, etc. [21–23]. To 

increase the selectivity and sensitivity of a measurement for analytical purposes, probes in which the 

binding of Cu2+ leads to a fluorescence enhancement are desirable. Therefore, there is still room to 

develop highly sensitive and selective “off-on” probes for Cu2+ in neutral aqueous media. 

For the construction of a highly efficient probe for a target, it is necessary to choose an efficient 

fluorophore and consider the geometry of the coordination sites of the target [2,3,23]. Naphthalimide 

derivatives, which are widely used as fluorescent dyes, have excellent photophysical properties, such 

as high fluorescence quantum yields, large Stokes shifts, strong absorption band and stability. 

Furthermore, the recognition moiety should be preliminarily considered in designing probes because 

they are responsible for the selectivity and binding efficiency of the whole probe. According to  

Hard-Soft-Acid-Base theory, O and N donor atoms established the high affinity for Cu2+ [14]. With this 

intention, a Cu2+-specific “off-on” type fluorescent probe P derived from naphthalimide with N and O 

as coordination sites was designed and synthesized (Scheme 1). 

Scheme 1. The synthesis route of compound P. 

 

2. Experimental Section 

2.1. Reagents and Instruments 

All of the materials were analytical reagent grade and used without further purification. The metal 

ions and anions salts employed are NaCl, MgCl2·6H2O, CdCl2, HgCl2, CaCl2·2H2O, FeCl3·6H2O, 

CrCl3·6H2O, Zn(NO3)2·6H2O, AgNO3, CoCl2·6H2O, MnCl2·4H2O, CuCl2·2H2O, NiCl2·6H2O, PbCl2, 

NaClO, NaNO3, Na2CO3, NaCl, NaAc, NaClO4, KBr and Na2HPO4, respectively. NMR spectra were 

recorded in DMSO-d6 at 25 °C on a Bruker WM-300 spectrometer (Fällanden, Switzerland). 

Electrospray ionization (ESI) analyses were performed on a Thermo TSQ Quantum Mass Spectrometer 

(Waltham, MA, USA). UV-Vis spectra were obtained on a Beckman DU-800 spectrophotometer 

(Bremen, Germany) with 1 cm quartz cell at 25 °C. Fluorescence measurements were carried out on a 
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HORIBA Fluoromax-4 luminescence spectrometer (Paris, France). Fluorescence imaging was 

performed by confocal fluorescence microscopy on an Olympus FluoView Fv1000 laser scanning 

microscope (Osaka, Japan). pH values were measured with a PBS-3C pH-meter (Shanghai, China). 

2.2. Synthesis 

Compounds 1 and 2 were obtained according to our previous work [25]. Briefly, under N2, 

compound 1 (373.1 mg, 1.0 mmol) and anthraniloyl hydrazine (181.3 mg, 1.2 mmol) were combined 

in ethanol (50 mL). The reaction solution was refluxed for 4 h and stirred. The precipitate so obtained 

was filtered and washed three times with ethanol. The crude product was purified by recrystallization 

from ethanol to give light yellow crystals of 2. Yield: 75%. MS: m/z 507.10 [M + H]+. 1H-NMR 

(DMSO-d6, δ ppm): 11.65 (s, 1 H), 8.64 (d, 1 H, J = 8.35), 8.55 (d, 1 H, J = 8.15), 8.43 (t, 2 H, J = 7.42), 

7.90 (t, 1 H, J = 7.82), 7.85 (d, 1 H, J = 8.20), 7.58 (d, 1 H, J = 7.85), 7.36 (d, 2 H, J = 8.35), 7.21 (t, 1 H, 

J = 7.65), 7.13 (d, 1 H, J = 8.25), 6.77 (d, 1 H, J = 8.30), 6.59 (t, 1 H, J = 7.47), 6.40 (b, 2 H), 4.04 (t,  

2 H, J = 7.32), 1.62 (m, 2 H, J = 7.41), 1.36 (m, 2 H, J = 7.37), 0.93 (t, 3 H, J = 7.35). 13C-NMR 

(DMSO-d6, δ ppm): 163.86, 163.22 (C=O), 158.71, 156.54, 150.54, 133.07, 132.73, 132.21, 131.96, 

129.59, 129.44, 128.60, 127.72, 123.96, 122.68, 121.04, 117.22, 116.85, 115.06, 112.63, 36.25, 30.14, 

20.27, 14.19. 

Compound P: Compound 2 (506.2 mg, 1.0 mmol) and 2-pyridinecarboxaldehyde  

(128 μL, 1.2 mM) were reacted in refluxing ethanol (50 mL) for 4 h, and then cooled to room 

temperature, the precipitate so obtained was purified by recrystallization from ethanol to give light 

yellow crystals of P. Yield: 72.5%. MS: m/z 596.15 [M + H]+. 1H-NMR (DMSO-d6, δ ppm): 8.98 (s, 1 H), 

8.62 (d, 1 H, J = 8.35), 8.55 (d, 1 H, J = 7.25), 8.52 (d, 1 H, J = 7.25), 8.20 (d, 1 H,  

J = 8.25), 7.91 (s, 1 H), 7.88 (d, 1 H, J = 7.85), 7.84 (s, 1 H), 7.83 (s, 1 H), 7.80 (d, 1 H, J = 9.50), 7.73 

(d, 1 H, J = 9.20), 7.43 (d, 1 H, J = 7.95), 7.34 (s, 1 H), 7.32 (s, 2 H), 7.27 (t, 1 H, J = 8.45), 7.10 (d, 1 H, 

J = 8.25), 6.79 (d, 1 H, J = 8.00), 6.73 (t, 1 H, J = 7.92), 6.49 (d, 1 H, J = 3.30), 4.03 (t, 2 H, J = 7.40), 

1.61 (m, 2 H, J = 7.46), 1.35 (m, 2 H, J = 7.43), 0.92 (t, 3 H, J = 7.35). 13C-NMR (DMSO-d6, δ ppm): 

163.86, 163.21, 161.25 (C=O), 158.78, 158.72, 156.89 (ArC), 150.03, 149.68 (C=N), 146.30, 137.57, 

134.30, 133.03, 132.28, 131.95, 129.96, 129.42, 128.58, 128.46, 127.70, 124.04, 123.90, 122.67, 

121.31, 121.07, 118.22, 117.20, 115.49, 115.15, 112.58, 30.14, 20.26, 14.18 (see Supplementary 

Material, Figures S1–S3). 

2.3. General Procedure for Spectroscopic Measurements 

A stock solution of P (1 mM) was prepared in DMSO. To 5 mL glass tubes, P (10 µL, 1 mmol) and a 

proper amount of Cu2+ stock solution (1.0 mmol) were added succesively and then diluted with  

ethanol-water solution (3:2, v:v, 50 mM HEPES, pH 7.4). The resulting solution was thoroughly 

mixed. For all measurements, excitation and emission slit widths were 2 nm, excitation wavelength 

was 360 nm. 
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3. Results and Discussion 

3.1. pH Effects on P and P with Cu2+ 

The influence of pH on the fluorescence response of probe P was determined first (Figure 1). At pH 

below 5.7, the fluorescence response of P was affected by pH to some extent. With the increase of pH 

from 5.7 and 10.0, “off-on” fluorescence signals at 432 nm were mainly caused by the addition of 

Cu2+. This indicated that the receptor gradually captured Cu2+ and formed the P-Cu2+ complex. In this 

work, pH 7.4 was chosen as an optimum experimental condition in that P could work with very low  

background fluorescence. 

Figure 1. Influence of pH on the fluorescence spetra of P (2 μM, ■) and P (2 μM, ▼) plus 

Cu2+ (50 μM) in ethanol-water solution (3:2, v:v). The pH was modulated by adding  

1 M HCl or 1 M NaOH in HEPES buffers. 

 

3.2. Fluorescence Spectral Response of P 

An important feature of P was its selectivity toward Cu2+ over other competitive species, and the 

selectivity experiments for probe P were conducted as shown in Figure 2. Fluorescence spectral changes 

of P were examined with addition of metal ions and anions including Na+, K+, Ag+, Mg2+, Ca2+, Zn2+, 

Pb2+, Cd2+, Co2+, Ni2+, Mn2+, Hg2+, Cu2+, Cr3+, Fe3+, Al3+, S2−, SO4
2−, SCN−, NO3

−, CO3
2−, Cl−, Ac−, 

ClO4
−, Br− and HPO4

2−. An obvious enhancement of fluorescence intensity at 432 nm was observed 

only upon addition of Cu2+, which was attributable to the complexation between P and Cu2+. In 

contrast, no obvious changes were observed in the case of other metal ions and anions. Moreover, to 

check the interferences from other metal ions and anions on the fluorescence signal of Cu2+, 

competition experiments were performed between Cu2+ and selected metal ions and anions (Figure 3). 

When selected metal ions and anions (50 μM) were added into ethanol-water solution (3:2, v:v, 50 mM 

HEPES, pH 7.4) of P (2 μM) containing Cu2+ (10 μM), the emission spectra displayed a similar pattern 

to that with Cu2+ alone. This experiment clearly demonstrated that selected metal ions and anions even 

in higher concentrations did not interfere the Cu2+ detection, which made it applicable for Cu2+ sensing 

in the real sample. 
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Figure 2. (a) Fluorescence spectra of P (2 μM) with different metal ions or (b) anions  

(50 μM) in ethanol-water solution (3:2, v:v, 50 mM HEPES, pH 7.4). 

Figure 3. (a) Fluorescence response of P (2 μM) to 10 μM of Cu2+ or to the mixture of  

50 μM individual metal ions with 10 μM of Cu2+ in ethanol-water solution (3:2, v:v,  

50 mM HEPES, pH 7.4); (b) Fluorescence response of P (2 μM) to 10 μM of Cu2+ or to the 

mixture of 50 μM individual anions with 10 μM of Cu2+. 

In addition, the titration of P with various amounts of Cu2+ in ethanol-water solution (3:2, v:v,  

50 mM HEPES, pH 7.4) were studied (Figure 4).  

Figure 4. Fluorescence spectra of P (2 μM) in ethanol-water solution (3:2, v:v, 50 mM 

HEPES, pH 7.4) in the presence of different amounts of Cu2+. Inset: Fluorescence intensity 

at 432 nm as a function of Cu2+ concentration. 
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As the Cu2+ concentration increased, the fluorescence emission intensity at 432 nm gradually 

increased accordingly. The linear fluorescence enhancement of P (2 μM) to Cu2+ was obtained in the 

range of 0.05–0.9 μM (R = 0.999; inset of Figure 4). The limit of detection (LOD) was 0.03 μM, based 

on 3 × δblank/k (where δblank is the standard deviation of the blank solution and k is the slope of the 

calibration plot). 

3.3. The Binding Mechanism 

To quantify the complexation ration between P and Cu2+, a Job plot experiment was carried out by 

keeping the total concentration of P and Cu2+ at 10 µM (Figure 5). The results suggested that a 1:1 

complex of P with Cu2+ was formed, which was supported by the presence of a peak at m/z 659.2 

corresponding to P-Cu2+ in the ESI-MS spectrum of the components of the mixture of P and 1 equivalent 

Cu2+ in ethanol (Supplementary Material, Figure S4). The 1H-NMR spectra also indicated the binding 

of P with Cu2+ (Supplementary Material, Figures S5 and S6). The association constant K was 

determined from the slope to be 6.2 × 105 M−1, by plotting the fluorescence intensity 1/(F − F0) against 

1/[Cu2+]. 

Figure 5. Job’s plot for P-Cu2+ complex, keeping the total concentration of P and Cu2+ as 

10 µM. 

 

From Figure 2, no significant changes in fluorescence spectra were observed when probe P was 

exposed to other metal ions and anions. We believe that this is due to a rapid isomerization of the C=N 

double bond in the excited state [26,27], though other mechanisms such as photoinduced electron transfer 

(PET) may also contribute to it. Notably, by adding Cu2+, the fluorescence character of P was different 

from free P and other metal ions and anions, its fluorescence at λem 432 nm was turned from “off” to “on”. 

The enhancement of fluorescence was likely due to restriction of acyclic C=N isomerization in the 

Schiff base upon addition of Cu2+ [25–27]. Accordingly, the proposed binding mode of P with Cu2+ 

can be illustrated as in Scheme 2. It is believed that this process is reversible, which has been proved 

by a test using EDTA-Cu2+ (Figure 6). As seen, in absence of Cu2+, probe P had a weak fluorescence. 

Addition of Cu2+ led to a reversible coordination with the ligand, resulting in an appearance of 

fluorescence enhancement at λem 432 nm. Thus, an “off-on” based fluorescent probe for Cu2+  

was implemented. 
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Scheme 2. The mode of formation of P-Cu2+ complex. 

 

Figure 6. Fluorescence spectra in ethanol-water solution (3:2, v:v, 50 mM HEPES,  

pH 7.4). a: P (2 µM); b: P (2 µM) + Cu2+ (50 µM); c: P (2 µM) + Cu2+ (50 µM) + EDTA 

(100 µM); d: P (2 µM) + Cu2+ (50 µM) + EDTA (100 µM) + Cu2+ (100 µM); e: P (2 µM) 

+ Cu2+ (50 µM) + EDTA (200 µM) + Cu2+ (100 µM). 

 

4. Conclusions 

In summary, an efficient “off-on” probe P for Cu2+ was proposed. Our studies showed that P was a 

highly selective and sensitive probe for Cu2+, which could work in neutral aqueous solution media and 

has great potential use in environmental sensing applications. These results open up new possibilities 

for the construction of “off-on” probes for other metal ions. 
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