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Abstract: In an inertial sensor-based pedestrian navigation systenposition is estimated
by double integrating external acceleration. A new alfonits proposed to reduceaxis
position (height) error. When a foot is on the ground, a foogle is estimated using
accelerometer output. Using a foot angle, the inclinatingle of a road is estimated.
Using this road inclination angle, height difference of amalking step is estimated and
this estimation is used to reduce height error. Through mgllexperiments on roads with
different inclination angles, the usefulness of the preplcalgorithm is verified.

Keywords: inertial sensors; angle measurement; pedestrian nawgdtalman filter

1. Introduction

A pedestrian navigation system provides a person’s logatidoors or outdoors. Many different
technologies are used for the pedestrian navigation suaiias [1], wireless technologyd], ultrasonic
sensors3,4], and inertial sensor$bf10]. Among them, an inertial sensor-based pedestrian nagigat
system computes the location using inertial sensors ladtah a shoe3-10]. This inertial navigation
system can be used for first respondents and soldiéfs [

The inertial-based navigation algorithms can be classifiedtwo groups. One is that a step length is
estimated using some parameters such as one step walkimgti@accelerometer maximum valuég.
The other is that the position is computed using the inenaadigation algorithm 12], where results
in [7-10] belong to this group. Basic inertial pedestrian navigatidgorithms are proposed ii,8].
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In [9], inertial navigation algorithm is combined with a map nfahg algorithm. In L0}, an HMM filter
is used to estimate gait phases and detect zero velocityatde Also we note that the inertial navigation
algorithm is also used to analyze gait for medical purpo$84.4].

This paper is related to the latter, where the inertial ratvwgn algorithm is used. A main advantage of
an inertial sensor-based algorithm is that no landmarkswrcds need to be installed on the environment.
On the other hand, an inertial navigation algorithm has heri@nt problem that the position error grows
as time elapses.

To reduce the error growth, all inertial-based algorithm¥pky the zero velocity updatindL¥].
During walking, a foot touches the ground almost periodiydalr a short time interval and we know the
velocity of a foot during the interval is zero. This interigalled a zero velocity interval. The errors of
the inertial navigation algorithm are reduced using thie zelocity interval.

However, even with the zero velocity, the error growth carsigaificant. Experiment results reveal
that z axis position (height) error growth could be in particulnsficant (see left plots in Figur@and
Figure9). One explanation is that acceleration in thexis could be very large when a foot touches
the ground and axis acceleration data could be saturated (see F@urehis will degrade the position
accuracy of all three axes and the effect is most dominaritén &axis position and velocity since the
acceleration is the largest in theaxis direction.

In this paper, we propose a new algorithm, which reduceses position error. We use the fact
that a foot angle is almost the same as the inclination arfgi@oound when a foot is on the ground (see
Figure?2). If we measure a foot angle during the zero velocity (thawisen a foot is on the ground), the
inclination angle of a ground can be estimated. Using theestd inclination angle, the-axis position
error can be compensated.

The paper is organized as follows. In Section 2, basic egusif inertial sensor-based pedestrian
navigation algorithm is introduced and detailed equatemesgiven in Appendix. In Section 3, a height
compensation algorithm using a foot angle estimation ipgsed. In Section 4, the proposed algorithm
is verified through experiments. Conclusion is given in Bech.

2. Inertial Sensor-Based Pedestrian Navigation System

In this section, a brief introduction to an inertial navigatalgorithm is given. Details about inertial
navigation algorithms can be found i1416,17]. The inertial navigation algorithm used in this paper is
from [10].

Letr € R3, v € R® andg € R* be a position, a velocity and attitude quaternion in the gaion
coordinate frame. The navigation coordinate frame has axsthe direction north £ axis), west
(y axis), and the local vertical (up; axis). The body coordinate frame is fixed on the sensor unit.
The rotation matrix associated with the quaternijois expressed a§'(¢). In the inertial navigation
algorithm,r, v andq are estimated from inertial sensors (accelerometers amm$gypes) and magnetic
Sensors.

Letwy, ai, g andm be defined as follows:

e w;, € R?: body angular rates

e a, € I? : body acceleration without gravitational acceleration
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e § € R?: gravitational acceleration vector in the navigation ciioate frame

e 1 € R?: earth magnetic field vector in the navigation coordinaaenfe.
The sensor output equations are given by

Yg = wy+by+ vy
Yo = C(q)7+ ap+ by + va (1)
Ym = C(Q)m + U,

wherey, € R? is a gyroscope outpug, € R? is an accelerometer output,, € R® is a magnetic sensor
output,b, € R® is gyroscope biad, € R® is accelerometer bias, € R*® is gyroscope sensor noise,
v, € R?is accelerometer sensor noise, apdc R? is magnetic sensor noise.

An indirect Kalman filter is used to estimajer andv. In an indirect filterg, » andv are not directly
estimated. Insteagl v andr are first estimated by appropriately integrating or doullegratingy, and
Y, and their errors are estimated using a Kalman fill€).[ The indirect Kalman filter equations are
given in Appendix.

The following assumptions are made in the paper:

e Walking direction is only forward and no side walking and kaard walking are allowed.
e There is no staircase on the walking path

The assumptions are satisfied during normal walking stinatithat is, a person walks forward only
and stopping is allowed.

3. Height Compensation Algorithm

The inertial sensor unit is installed on top of a shoe as imfed. When a person is standing on a
flat ground, the unit is not completely level and the roll @&al that time is denoted I#y,,;;.

Figure 1. Initial angle#;,;; when a foot is on a flat ground.

Navigation
coordinate frame Body coordinate

7z frame
Zy Inertial Sensor b
unit

| S

When a foot is on a slope with the inclination anglg,.... (see Figure?), the roll angled of the
sensor unit is different froré,,,;;, which is the roll angle when a foot is on a flat ground. Thetreteship
betweert andfy, ,.q iS given by

Oground = 0 — Oinit. (2)

Since#;,;; is constant, we can estimate the ground inclination afglg,., once we know the roll
angled.
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Figure 2. Roll angled of the sensor unit when a foot is on a slope.
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The roll angled can be computed from the attitude quaternjorOr 6 can be also estimated using
accelerometer outputs during the zero velocity intervateithere is no external acceleration. From
Equation (), we obtain the following ignoring sensor noises and extkacceleration

0 —sinf
Ya = C(q) | 0| = | cosflsing | g
g cos  cos ¢

whereg is the pitch angle. Thugand¢ can be estimated using the following:

¢ = atan2yuy, Ya,:) 3)
0 = atanZ—y..,\/y2, +v2.).

In this paper, roll angl® is estimated using Equatio)(during each zero velocity intervall is
computed for each discrete time during a zero velocity iraeand the averaged value is useddas
which is an estimated value 6f Thusé is updated whenever zero velocity intervals are encouhtéine
the update, a low pass filter is used to suppress a suddenechéthg

There are many methods to detect zero velocity interva$. [ In this paper, we used both
accelerometer values and force sensors (Tekscan FlegilSamsors), which are installed inside a shoe.
Note that the measured force increases when a foot is on thedgisince the human weight is applied
on the sensors. We assume a discrete tirfbelongs to a zero velocity interval if the measured force
sensor is larger than the prespecified value @@ value computed using EquatioB)(at the discrete
time 1) satisfies the following

10; — 0; 1] < 2°. (4)
Note that Equatiord) is equivalent to the condition that changes of accelereraeire small.

A typical foot movement trajectory when a person is walkimgeoslope is given in Figurd. Note
thatry, is the foot position at the discrete time. In this example, the foot is on the slope at the discrete
time k; andk,. A person walked one step between the tipandk,. Thusry, is the position before one
step walking and, is the position after the step. L&t », andd,, x, r, be the horizontal and vertical
distances between, andry,, respectively:

[1 0 0] e — )

H 010
5, = [o 0 1}(rk2—r,ﬁ).

Opy =

2 (5)
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Figure 3. Foot movement between two zero velocity intervals.

Foot movement
trajectory

Note thatd, ;, », andd,, , 1, are horizontal and vertical distances of one walking step.vWy drop
k1 andk, subscripts in for simplicity.
Assuming that walking is mostly up or down along the slopg,and ¢,, have the following
relationship:
J, ~ tan(byround)Ozy- (6)

Equation 6) is used in the measurement update of the Kalman filter in Agixe Letd,, be estimated
value at timek; using Equation3) andry, be the position estimate of the inertial navigation aldwnit
Let7,, be the position estimate of the inertial navigation alduoritoefore the measurement update (that
is, the zero velocity updating). Thusg is obtained by double integrating acceleration startingiftime
ky with the initial valuery, .

From Equation§), letd, (estimate of,) be defined by

[1 ) 0](@;—%)

5, = tan(fy, — O; 7
an( k1 t) 010 ()

2

Note thatd, in Equation {) is the vertical distance (height difference) computechgthe ground
inclination angle.

We have assumed thégt1 is relatively accurate and errorsirandy position estimation in the inertial
navigation algorithm are small: that is, we have assumedbiteeving is satisfied

100 (Fo — ) 1 00 ( )
T — Tk ) R Tro — Th ).
010 2 h 010 & h

With the assumptions we have the following approximatiemfilEquationsg) and ©):
52%[0 0 1}(7’]92—7’]91). (8)

Let v, be the approximation error in Equatia8)(we can rewrite Equatior8J as following:

A

0, = |0 0 1 |(rg,—1g)+vs
= 0 0 1 |(rey =74, +7T0 —Th) + 02 (9)

= 0 01 (re,kg + 72];2 - TAkl - Te,lq) + Uy
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where recall that, ;, = r;, — 7, in Equation (3).
Letvs = v, — [ 0 0 1 ] ek, then Equationq) can be written as follows:

&—[0 01}&@—@3:[0 01}0@—%Q+%

whereuvs represents the approximation errors.
We have the following measurement equation for the Kalméer iih Appendix:

6.0 0 1|6, -7)=]0 0000000100000 0]w,+u (10

This measurement update equation is combined with the zefocity updating equation in
Equation (6). Note that the measurement noigeontains all the approximation errors in the derivation
of Equation (0). So an exact analytic formulation for the covariance is eagy to derive. A small
positive value is assigned t{vs x,vs,, } in the paper.

The proposed algorithm combined with the inertial navigatalgorithms summarized in the
following:

while (true)
conpute 7., v, and ¢,
if ( zero velocity interval )
if ( the start of the zero velocity interval )

eground - eground,previous

else if ( the end of the zero velocity interval )
COMPUL € Byroundprevious USI NG Equations (2) and (3)
end
zero velocity updating Equation (16) and hei ght conpensation
Equati on (10)
update 7, 0, and ¢

el se

TA’]C:TA’k_, @k:f)k_ and qu:(jk_
end
k =k + 1

end
4. Experiments

As an inertial sensor unit, XSens MTi28A53G25 is used, whepseifications are given in Table

In Figure 4, typical accelerometer data,) are given. The accelerometer output from XSens
MTi28A53G25 is a low pass filtered signal with the bandwidth 3z (see Tablel). The full scale
range of the accelerometer is bf) s> and note that there is saturationjf., which may cause large
axis velocity and position errors. The detected zero vejanterval is also given.
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Table 1. Specifications of XSens MTi28A53G25.

magnetic field

rate of turn acceleration

fullscale  +1,500°/s +50 m/ & +750 mGauss
bandwidth 40 Hz 30 Hz 10 Hz

bias stability 20/h 0.02 m/8 0.1 mGauss

noise 0.08/sh/Hz 0.002m/%+/Hz 0.5 mGauss

Figure 4. Accelerometer outputs and zero velocity interval.
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To test the proposed algorithm, four roads are selected{geee5). These roads are more than 50 m
long and the inclination angles are almost constant. THeet@n angle of each road is measured with
a digital inclinometer: inclination angles are measureseaeral points (13-17 points for each road) and
the average value is considered as the inclination anglead@ The results are given in Figuge

Figure 5. Four roads (A,B,C,D) with different inclination angles.

road D
(7.52 deg)

road A
(-0.046 deg)

road B
(2.54 deg)

road C
(6.14 deg)
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Figure 6. Inclination angle measurement with a digital inclinomdeach measurement is
taken from different points along the roads).

Average of Road A angle : -0.046154, Variance : 0.077276
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In Figure5, the inclination angles of four roads ar®.046, 2.54, 6.14 and 7.52, respectively.

We walked up on each road 50 m and compufedngle using Equation3] during the angle
measurement interval. In Figuie computedégmund using Equations?) and @) is given. Note that
each point in the figure corresponds to a comp@ge@nd for each walking step. For the reference, the
road inclination angles are also given. We can seeégha;nd is close to the inclination angle and thus

A~

94r0una CAN be used as a road inclination angle estimate.

Figure7. égmund estimation for each road (the estimated value at the end efavelocity
interval).
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The z axis position estimation (the third element:9fresult for road A (indoor corridor) is given
in Figure 8. The left graph in Figure8 shows thez axis position estimation without the height
compensation, where the inertial navigation algorithmhvzero velocity updating is used. The straight
line in the plot is the estimated actualaxis position, which is computed from the inclination angle
of the road and the walking distance (50 m). We can see the iegeases rapidly. The error growth
depends on many elements such as sensor scaling factoatalil bias stability, sensor axis alignments
and sensor saturation. We only performed simple calilbmatién initial gyroscope bias is estimated by
averaging initial 1 minute gyroscope data while the sensdrisi not moving. Also, the accelerometer
offset is estimated by rotating the accelerometer°’3td finding the center value. With this simple
calibration, the error seems to be large. The right graphignré 8 shows that the: axis position is
corrected using the proposed height compensation algorith

Figure 8. z axis position estimation for road A without (left) and wittight) the proposed
height compensation.
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The z axis position estimation result for road C (inclination kngf the road is 6.19 is given in
Figure9, where a person walked up 50 m along the road. The straightdidrawn between 0 and the
computed finak axis position (50 mx sin(6.14°) = 5.348 m). Note that we measured 50 m using a
tape measure on the road and thus 50 m corresponis;te- r ||», wherery is the final position and
r1 is the initial position. Without the height compensatiorg ©an see that the axis position error is
large (finalz axis position error is 3.61 m). On the other hand, with thghiectompensation, theaxis

position error compensation is greatly reduced (finakis position error is 0.62 m).

For the same road C, we walked down 50 m along the road andgbk iegiven in FigurelO. It can
be seen that without the height compensationthris position error diverges quickly. In the right plot,
it can be seen that theaxis position is compensated with the height compensatgorighm.

For four roads, three walking experiments are done. Theageer axis position errors are given
in Table 2 without and with the compensation algorithm. The true finglosition is computed using
sin(fyr0una) X 50 M. We can see that the proposed height compensation algorégtuces the axis
position error significantly. In Tabl2, position errors (with compensation) of Road D seem to lggelar
We believe this is due to the fact that the road D does not haweamth surface, which can be verified
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from Figure6. Thus the computed true height (that has been estimated thsrestimated slope angle
7.52) may not be accurate.

Figure 9. 2 axis position estimation for road C without (left) and witigft) the proposed
height compensation (up-walking).
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Figure 10. = axis position estimation for road C without (left) and witight) the proposed
height compensation (down-walking).
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We note although the proposed method reduces thes position error growth, the position error
divergence cannot be avoided over the long time.

Now instead of walking up and down along the slope, a persdkedaup and down the slope
diagonally. In this experiment, pitch angteis not zero. We measured road inclination angles along
line B in Figurell and the average road inclination angle is 7.88 person walked up and down 3
times. Thez axis position error with the height compensation was 0.4463,00.15 m (walking up) and
0.41, 0.30, 0.21 m (walking down). Thus we can see the prapalgorithm is working whem is not
zero.
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Table 2. > axis position error (average value of 3 experiments).

position error position error
without compensation (m) with compensation (m)
road A 5.76 0.41
road B walking up 1.59 0.05
walking down 3.51 0.30
road C  walking up 1.64 0.40
walking down 8.94 0.79
road D  walking up 4.62 1.19
walking down 8.33 2.11

Figure 11. Height compensation experiment while walking up and dowa $fope

diagonally.
slope angle is
\9.9}
e -~ 15m

5. Conclusions

In pedestrian navigation systems using inertial navigedilgorithm, position error tends to

8055

diverge

sooner or later. To reduce the position error growth, a zetocity updating algorithm is used. Even
with the zero velocity updating algorithm, position erreogth could be still large. In particular, the

axis position (height) error growth could be significant.
In this paper, we have proposed a height compensation &iguoriAn inclination angle of a

road is

estimated using foot angle estimation. Using the incloraéingle, the height difference of a walking step
is estimated. Using this estimationaxis position in the inertial navigation algorithm is compated.

Through walking test under four different roads (with diéiet inclination angles), the usefulne

ss of the

proposed method has been shown. Four different roads (Wignet inclination angle), 50 m walking
test was done. Without the proposed height compensatiamitim, the average axis position error
range was 1.64-8.94 m over 50 m walking. On the other hanéwrage error range with the proposed

height compensation algorithm was 0.05-2.11 m.
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We note that although the proposed method reducesdkies position error growth, the position error
divergence cannot be avoided over the long time. To avoidlivergence problem, external reference
such as GPS should be used.

The current algorithm assumes that a person walks up or dowa slope direction. The current
algorithm cannot deal with the staircase walking. The ®ituork is to improve the proposed algorithm
to cope with various situations such as the staircase wglkime possible solution is to use gait phase
information (which can be determined using inertial sessmd force sensor§]) to determine whether
a person is stair climbing or descending.
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Appendix

An indirect Kalman filter for inertial navigation algorittsmis introduced in this appendix. The

equations are mostly froni(.
Let g, 7, ando be the estimates @f » andv, which are computed from the following equations:

LYo (1)

q:2

where(y,) is defined by
0 “Ygr “Ygy “Yg.2
Yg.x 0 Yg.z2  —Yguy

Yoy —Yg,2 0 Yg,x
Yg,z Yg,y —Yg,x 0

>

= O/((j)ya - g (12)

= .

>-

whereg is the gravitational acceleration vector.

If there are no sensor noises and bias termg,iandy,, ¢, 7, ando should be 100% accurate. For
example, ify, = wy, theng = ¢ (that is, there is no error if). Due to sensor noises, howevgry, and
0 contain errors.

Letq., 7., v. be errors ing, 7, andv, which are defined by

.« £ §®q

re = r—r (13)
A A

Ve = UV—10

where® is the quaternion multiplication.
If the errorg, is small, it can be approximated by

[ 1 ] | ”
de
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The errors are estimated using a Kalman filter and the statbdédalman filter is given by

>

The state equation is given by

whereA andB are given by {3 € R**3 is an identity matrix an@; € R**3 is a zero matrix)

—1r 04

[—ng]
03
AE 03
—2C"(q)[ya ¥]
L 03
[ 05 Iy
03 I3
B2 | 05 04
03 03
| 03 05
For a vectop € R3, [px] is defined by
0
[px] = D3
—P2

03
03
03
03

03
03
03
03

03
03
03

—C"(9)

—P3
0

y41

03

P2

03
03
I3
03
03

I3
03
03
03
I3

—D1

0

03

03

03
-C'(q)

03

8057

(15)

The noisew,, andw,, are process noises for compensation of slowly time-vargypscope and

accelerometer bias. As usual, we assume all noises in Bguat) are uncorrelated, zero mean white

Gaussian.

When a foot is on the ground and thus is not moving, we can sttty = 0 in the measurement
update of the Kalman filter. The zero velocity interval cardeéected using, andy, : if y, change is
small andy, is small for more than a certain period, we can consider aifoodt moving [5,19]. The

zero velocity interval also can be detected using the foeosars installed on a shoe. In this paper, the
zero velocity interval is detected usipg change and the force sensors.
During the zero velocity interval, we can use the faet 0 in the measurement updating as follows:

The velocity measuremept is given by

Yo

UV + Uy
0+ Vo + Uy
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wherev, is the measurement noise. We assume that the measuremsst,nisi a uncorrelated white
Gaussian noise. L&, be the covariance af,, which is defined by{v,(t)v,(s)'} = R,0(t — s).

During the zero velocity interval (that is = 0), we use) — v as an output to the indirect Kalman
filter, where the output equation is given by

A~

—UV = Vg + Uy

(16)
- [0 00 I 0]z+uv,

In the zero velocity updating,, is not the actual measurement noise since we are not direetiguring

v but indirectly estimatingg = 0. Thus covariancez, indicates our confidence in the zero velocity
algorithm. If we useR, = 03, we are assuming that the zero velocity algorithm is 100%ectr We
note that there is a slight chance that the zero velocityvateletection is wrong. Thus we assign small
positive value toR,,. In the zero velocity updating, the velocity, position aniitade errors are greatly
reduced 7,8].

During the zero velocity interval, we also update the hegdisingy,,,. As in [7], heading is only
compensated at the end of the zero velocity interval sineattitude is most accurate at that time. For
the heading update equation, we used the techniq@djnWherey,, only affects heading not pitch and
roll. See Equation (21) ir2Q].

The sampling rate of the inertial sensors is 100 Hz and theogpiate discretized equations are used.
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