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Abstract: In an inertial sensor-based pedestrian navigation system,the position is estimated

by double integrating external acceleration. A new algorithm is proposed to reducez axis

position (height) error. When a foot is on the ground, a foot angle is estimated using

accelerometer output. Using a foot angle, the inclination angle of a road is estimated.

Using this road inclination angle, height difference of onewalking step is estimated and

this estimation is used to reduce height error. Through walking experiments on roads with

different inclination angles, the usefulness of the proposed algorithm is verified.
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1. Introduction

A pedestrian navigation system provides a person’s location indoors or outdoors. Many different

technologies are used for the pedestrian navigation such asvision [1], wireless technology [2], ultrasonic

sensors [3,4], and inertial sensors [5–10]. Among them, an inertial sensor-based pedestrian navigation

system computes the location using inertial sensors installed on a shoe [5–10]. This inertial navigation

system can be used for first respondents and soldiers [11].

The inertial-based navigation algorithms can be classifiedinto two groups. One is that a step length is

estimated using some parameters such as one step walking time or accelerometer maximum values [5,6].

The other is that the position is computed using the inertialnavigation algorithm [12], where results

in [7–10] belong to this group. Basic inertial pedestrian navigation algorithms are proposed in [7,8].
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In [9], inertial navigation algorithm is combined with a map matching algorithm. In [10], an HMM filter

is used to estimate gait phases and detect zero velocity intervals. Also we note that the inertial navigation

algorithm is also used to analyze gait for medical purposes [13,14].

This paper is related to the latter, where the inertial navigation algorithm is used. A main advantage of

an inertial sensor-based algorithm is that no landmarks or devices need to be installed on the environment.

On the other hand, an inertial navigation algorithm has an inherent problem that the position error grows

as time elapses.

To reduce the error growth, all inertial-based algorithms employ the zero velocity updating [15].

During walking, a foot touches the ground almost periodically for a short time interval and we know the

velocity of a foot during the interval is zero. This intervalis called a zero velocity interval. The errors of

the inertial navigation algorithm are reduced using this zero velocity interval.

However, even with the zero velocity, the error growth can besignificant. Experiment results reveal

thatz axis position (height) error growth could be in particular significant (see left plots in Figure8 and

Figure9). One explanation is that acceleration in thez axis could be very large when a foot touches

the ground andz axis acceleration data could be saturated (see Figure4). This will degrade the position

accuracy of all three axes and the effect is most dominant in thez axis position and velocity since the

acceleration is the largest in thez axis direction.

In this paper, we propose a new algorithm, which reduces thez-axis position error. We use the fact

that a foot angle is almost the same as the inclination angle of a ground when a foot is on the ground (see

Figure2). If we measure a foot angle during the zero velocity (that is, when a foot is on the ground), the

inclination angle of a ground can be estimated. Using the estimated inclination angle, thez-axis position

error can be compensated.

The paper is organized as follows. In Section 2, basic equations of inertial sensor-based pedestrian

navigation algorithm is introduced and detailed equationsare given in Appendix. In Section 3, a height

compensation algorithm using a foot angle estimation is proposed. In Section 4, the proposed algorithm

is verified through experiments. Conclusion is given in Section 5.

2. Inertial Sensor-Based Pedestrian Navigation System

In this section, a brief introduction to an inertial navigation algorithm is given. Details about inertial

navigation algorithms can be found in [12,16,17]. The inertial navigation algorithm used in this paper is

from [10].

Let r ∈ R3, v ∈ R3 andq ∈ R4 be a position, a velocity and attitude quaternion in the navigation

coordinate frame. The navigation coordinate frame has axeswith the direction north (x axis), west

(y axis), and the local vertical (up,z axis). The body coordinate frame is fixed on the sensor unit.

The rotation matrix associated with the quaternionq is expressed asC(q). In the inertial navigation

algorithm,r, v andq are estimated from inertial sensors (accelerometers and gyroscopes) and magnetic

sensors.

Let ωb, ab, g̃ andm̃ be defined as follows:

• ωb ∈ R3 : body angular rates

• ab ∈ R3 : body acceleration without gravitational acceleration
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• g̃ ∈ R3 : gravitational acceleration vector in the navigation coordinate frame

• m̃ ∈ R3 : earth magnetic field vector in the navigation coordinate frame.

The sensor output equations are given by

yg = ωb + bg + vg

ya = C(q)g̃ + ab + ba + va

ym = C(q)m̃+ vm

(1)

whereyg ∈ R3 is a gyroscope output,ya ∈ R3 is an accelerometer output,ym ∈ R3 is a magnetic sensor

output,bg ∈ R3 is gyroscope bias,ba ∈ R3 is accelerometer bias,vg ∈ R3 is gyroscope sensor noise,

va ∈ R3 is accelerometer sensor noise, andvm ∈ R3 is magnetic sensor noise.

An indirect Kalman filter is used to estimateq, r andv. In an indirect filter,q, r andv are not directly

estimated. Insteadq, v andr are first estimated by appropriately integrating or double integratingyg and

ya and their errors are estimated using a Kalman filter [10]. The indirect Kalman filter equations are

given in Appendix.

The following assumptions are made in the paper:

• Walking direction is only forward and no side walking and backward walking are allowed.

• There is no staircase on the walking path

The assumptions are satisfied during normal walking situations: that is, a person walks forward only

and stopping is allowed.

3. Height Compensation Algorithm

The inertial sensor unit is installed on top of a shoe as in Figure1. When a person is standing on a

flat ground, the unit is not completely level and the roll angle at that time is denoted byθinit.

Figure 1. Initial angleθinit when a foot is on a flat ground.

When a foot is on a slope with the inclination angleθground (see Figure2), the roll angleθ of the

sensor unit is different fromθinit, which is the roll angle when a foot is on a flat ground. The relationship

betweenθ andθground is given by

θground = θ − θinit. (2)

Sinceθinit is constant, we can estimate the ground inclination angleθground once we know the roll

angleθ.
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Figure 2. Roll angleθ of the sensor unit when a foot is on a slope.

The roll angleθ can be computed from the attitude quaternionq̂. Or θ can be also estimated using

accelerometer outputs during the zero velocity interval since there is no external acceleration. From

Equation (1), we obtain the following ignoring sensor noises and external acceleration

ya ≈ C(q)







0

0

g






=







− sin θ

cos θ sinφ

cos θ cosφ






g

whereφ is the pitch angle. Thusθ andφ can be estimated using the following:

φ = atan2(ya,y, ya,z)

θ = atan2(−ya,x,
√

y2a,y + y2a,z).
(3)

In this paper, roll angleθ is estimated using Equation (3) during each zero velocity interval:θ is

computed for each discrete time during a zero velocity interval and the averaged value is used asθ̂,

which is an estimated value ofθ. Thusθ̂ is updated whenever zero velocity intervals are encountered. In

the update, a low pass filter is used to suppress a sudden change of θ̂.

There are many methods to detect zero velocity intervals [15]. In this paper, we used both

accelerometer values and force sensors (Tekscan FlexiForce Sensors), which are installed inside a shoe.

Note that the measured force increases when a foot is on the ground since the human weight is applied

on the sensors. We assume a discrete timei belongs to a zero velocity interval if the measured force

sensor is larger than the prespecified value andθi (θ value computed using Equation (3) at the discrete

time i) satisfies the following

|θi − θi−1| < 2◦. (4)

Note that Equation (4) is equivalent to the condition that changes of accelerometers are small.

A typical foot movement trajectory when a person is walking on a slope is given in Figure3. Note

thatrk1 is the foot position at the discrete timek1. In this example, the foot is on the slope at the discrete

timek1 andk2. A person walked one step between the timek1 andk2. Thusrk1 is the position before one

step walking andrk2 is the position after the step. Letδz,k1,k2 andδxy,k1,k2 be the horizontal and vertical

distances betweenrk1 andrk2 , respectively:

δxy =

∥

∥

∥

∥

∥

[

1 0 0

0 1 0

]

(rk2 − rk1)

∥

∥

∥

∥

∥

2

δz =
[

0 0 1
]

(rk2 − rk1).

(5)
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Figure 3. Foot movement between two zero velocity intervals.

Note thatδz,k1,k2 andδxy,k1,k2 are horizontal and vertical distances of one walking step. We will drop

k1 andk2 subscripts inδ for simplicity.

Assuming that walking is mostly up or down along the slope,δz and δxy have the following

relationship:

δz ≈ tan(θground)δxy. (6)

Equation (6) is used in the measurement update of the Kalman filter in Appendix. Let θ̂k1 be estimatedθ

value at timek1 using Equation (3) andr̂k1 be the position estimate of the inertial navigation algorithm.

Let r̂−k2 be the position estimate of the inertial navigation algorithm before the measurement update (that

is, the zero velocity updating). Thuŝr−k2 is obtained by double integrating acceleration starting from time

k1 with the initial valuer̂k1.

From Equation (6), let δ̂z (estimate ofδz) be defined by

δ̂z = tan(θ̂k1 − θinit)

∥

∥

∥

∥

∥

[

1 0 0

0 1 0

]

(r̂−k2 − r̂k1)

∥

∥

∥

∥

∥

2

. (7)

Note that δ̂z in Equation (7) is the vertical distance (height difference) computed using the ground

inclination angle.

We have assumed thatθ̂k1 is relatively accurate and errors inx andy position estimation in the inertial

navigation algorithm are small: that is, we have assumed thefollowing is satisfied
[

1 0 0

0 1 0

]

(r̂−k2 − r̂k1) ≈
[

1 0 0

0 1 0

]

(rk2 − rk1).

With the assumptions we have the following approximation from Equations (5) and (6):

δ̂z ≈
[

0 0 1
]

(rk2 − rk1). (8)

Let vz be the approximation error in Equation (8), we can rewrite Equation (8) as following:

δ̂z =
[

0 0 1
]

(rk2 − rk1) + vz

=
[

0 0 1
]

(rk2 − r̂−k2 + r̂−k2 − rk1) + vz

=
[

0 0 1
]

(re,k2 + r̂−k2 − r̂k1 − re,k1) + vz

(9)
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where recall thatre,k = rk − r̂−k in Equation (13).

Let vδ = vz −
[

0 0 1
]

re,k1, then Equation (9) can be written as follows:

δ̂z −
[

0 0 1
]

(r̂−k2 − r̂k1) =
[

0 0 1
]

(rk2 − r̂−k2) + vδ

wherevδ represents the approximation errors.

We have the following measurement equation for the Kalman filter in Appendix:

δ̂z −
[

0 0 1
]

(r̂−k2 − r̂k1) =
[

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
]

xk2 + vδ. (10)

This measurement update equation is combined with the zero velocity updating equation in

Equation (16). Note that the measurement noisevδ contains all the approximation errors in the derivation

of Equation (10). So an exact analytic formulation for the covariance is noteasy to derive. A small

positive value is assigned toE{vδ,k2v′δ,k2} in the paper.

The proposed algorithm combined with the inertial navigation algorithms summarized in the

following:

while (true)

compute r̂−k , v̂−k and q̂−k
if ( zero velocity interval )

if ( the start of the zero velocity interval )

θ̂ground = θ̂ground,previous

else if ( the end of the zero velocity interval )

compute θ̂ground,previous using Equations (2) and (3)

end

zero velocity updating Equation (16) and height compensation

Equation (10)

update r̂k, v̂k and q̂k

else

r̂k = r̂−k , v̂k = v̂−k and q̂k = q̂−k
end

k = k + 1

end

4. Experiments

As an inertial sensor unit, XSens MTi28A53G25 is used, whosespecifications are given in Table1.

In Figure 4, typical accelerometer data (ya) are given. The accelerometer output from XSens

MTi28A53G25 is a low pass filtered signal with the bandwidth 30 Hz (see Table1). The full scale

range of the accelerometer is 50m/s2 and note that there is saturation inya,z, which may cause largez

axis velocity and position errors. The detected zero velocity interval is also given.
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Table 1. Specifications of XSens MTi28A53G25.

rate of turn acceleration magnetic field

full scale ±1, 500◦/s ±50 m/ s2 ±750 mGauss

bandwidth 40 Hz 30 Hz 10 Hz

bias stability 20◦/ h 0.02 m/s2 0.1 mGauss

noise 0.05◦/ s/
√

Hz 0.002 m/ s2/
√

Hz 0.5 mGauss

Figure 4. Accelerometer outputs and zero velocity interval.

To test the proposed algorithm, four roads are selected (seeFigure5). These roads are more than 50 m

long and the inclination angles are almost constant. The inclination angle of each road is measured with

a digital inclinometer: inclination angles are measured atseveral points (13–17 points for each road) and

the average value is considered as the inclination angle of aroad. The results are given in Figure6.

Figure 5. Four roads (A,B,C,D) with different inclination angles.
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Figure 6. Inclination angle measurement with a digital inclinometer(each measurement is

taken from different points along the roads).

In Figure5, the inclination angles of four roads are−0.046◦, 2.54◦, 6.14◦ and 7.52◦, respectively.

We walked up on each road 50 m and computedθ angle using Equation (3) during the angle

measurement interval. In Figure7, computedθ̂ground using Equations (2) and (3) is given. Note that

each point in the figure corresponds to a computedθ̂ground for each walking step. For the reference, the

road inclination angles are also given. We can see thatθ̂ground is close to the inclination angle and thus

θ̂ground can be used as a road inclination angle estimate.

Figure 7. θ̂ground estimation for each road (the estimated value at the end of a zero velocity

interval).
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The z axis position estimation (the third element ofr) result for road A (indoor corridor) is given

in Figure 8. The left graph in Figure8 shows thez axis position estimation without the height

compensation, where the inertial navigation algorithm with zero velocity updating is used. The straight

line in the plot is the estimated actualz axis position, which is computed from the inclination angle

of the road and the walking distance (50 m). We can see the error increases rapidly. The error growth

depends on many elements such as sensor scaling factor calibration, bias stability, sensor axis alignments

and sensor saturation. We only performed simple calibrations. An initial gyroscope bias is estimated by

averaging initial 1 minute gyroscope data while the sensor unit is not moving. Also, the accelerometer

offset is estimated by rotating the accelerometer 360◦ and finding the center value. With this simple

calibration, the error seems to be large. The right graph in Figure 8 shows that thez axis position is

corrected using the proposed height compensation algorithm.

Figure 8. z axis position estimation for road A without (left) and with (right) the proposed

height compensation.

The z axis position estimation result for road C (inclination angle of the road is 6.14◦) is given in

Figure9, where a person walked up 50 m along the road. The straight line is drawn between 0 and the

computed finalz axis position (50 m× sin(6.14◦) = 5.348 m). Note that we measured 50 m using a

tape measure on the road and thus 50 m corresponds to‖rN − r1‖2, whererN is the final position and

r1 is the initial position. Without the height compensation, we can see that thez axis position error is

large (finalz axis position error is 3.61 m). On the other hand, with the height compensation, thez axis

position error compensation is greatly reduced (finalz axis position error is 0.62 m).

For the same road C, we walked down 50 m along the road and the result is given in Figure10. It can

be seen that without the height compensation, thez axis position error diverges quickly. In the right plot,

it can be seen that thez axis position is compensated with the height compensation algorithm.

For four roads, three walking experiments are done. The averagez axis position errors are given

in Table2 without and with the compensation algorithm. The true finalz position is computed using

sin(θground) × 50 m. We can see that the proposed height compensation algorithm reduces thez axis

position error significantly. In Table2, position errors (with compensation) of Road D seem to be large.

We believe this is due to the fact that the road D does not have asmooth surface, which can be verified
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from Figure6. Thus the computed true height (that has been estimated using the estimated slope angle

7.52◦) may not be accurate.

Figure 9. z axis position estimation for road C without (left) and with (right) the proposed

height compensation (up-walking).

Figure 10. z axis position estimation for road C without (left) and with (right) the proposed

height compensation (down-walking).

We note although the proposed method reduces thez axis position error growth, the position error

divergence cannot be avoided over the long time.

Now instead of walking up and down along the slope, a person walked up and down the slope

diagonally. In this experiment, pitch angleφ is not zero. We measured road inclination angles along

line B in Figure11 and the average road inclination angle is 7.83◦. A person walked up and down 3

times. Thez axis position error with the height compensation was 0.45, 0.43, 0.15 m (walking up) and

0.41, 0.30, 0.21 m (walking down). Thus we can see the proposed algorithm is working whenφ is not

zero.
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Table 2. z axis position error (average value of 3 experiments).

position error position error

without compensation (m) with compensation (m)

road A 5.76 0.41

road B walking up 1.59 0.05

walking down 3.51 0.30

road C walking up 1.64 0.40

walking down 8.94 0.79

road D walking up 4.62 1.19

walking down 8.33 2.11

Figure 11. Height compensation experiment while walking up and down the slope

diagonally.

5. Conclusions

In pedestrian navigation systems using inertial navigation algorithm, position error tends to diverge

sooner or later. To reduce the position error growth, a zero velocity updating algorithm is used. Even

with the zero velocity updating algorithm, position error growth could be still large. In particular, thez

axis position (height) error growth could be significant.

In this paper, we have proposed a height compensation algorithm. An inclination angle of a road is

estimated using foot angle estimation. Using the inclination angle, the height difference of a walking step

is estimated. Using this estimation,z axis position in the inertial navigation algorithm is compensated.

Through walking test under four different roads (with different inclination angles), the usefulness of the

proposed method has been shown. Four different roads (with different inclination angle), 50 m walking

test was done. Without the proposed height compensation algorithm, the averagez axis position error

range was 1.64–8.94 m over 50 m walking. On the other hand, theaverage error range with the proposed

height compensation algorithm was 0.05–2.11 m.
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We note that although the proposed method reduces thez axis position error growth, the position error

divergence cannot be avoided over the long time. To avoid thedivergence problem, external reference

such as GPS should be used.

The current algorithm assumes that a person walks up or down on a slope direction. The current

algorithm cannot deal with the staircase walking. The future work is to improve the proposed algorithm

to cope with various situations such as the staircase walking. One possible solution is to use gait phase

information (which can be determined using inertial sensors and force sensors [18]) to determine whether

a person is stair climbing or descending.
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Appendix

An indirect Kalman filter for inertial navigation algorithms is introduced in this appendix. The

equations are mostly from [10].

Let q̂, r̂, andv̂ be the estimates ofq, r andv, which are computed from the following equations:

˙̂q =
1

2
Ω(yg)q̂ (11)

whereΩ(yg) is defined by

Ω(yg) =











0 −yg,x −yg,y −yg,z

yg,x 0 yg,z −yg,y

yg,y −yg,z 0 yg,x

yg,z yg,y −yg,x 0











.

˙̂v = C ′(q̂)ya − g̃
˙̂r = v̂.

(12)

whereg̃ is the gravitational acceleration vector.

If there are no sensor noises and bias terms inya andyg, q̂, r̂, andv̂ should be 100% accurate. For

example, ifyg = ωb, thenq̂ = q (that is, there is no error in̂q). Due to sensor noises, however,q̂, r̂, and

v̂ contain errors.

Let qe, re, ve be errors in̂q, r̂, andv̂, which are defined by

qe , q̂∗ ⊗ q

re , r − r̂

ve , v − v̂

(13)

where⊗ is the quaternion multiplication.

If the errorqe is small, it can be approximated by

qe ≈
[

1

q̄e

]

. (14)
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The errors are estimated using a Kalman filter and the state for the Kalman filter is given by

x ,

















q̄e

bg

re

ve

ba

















.

The state equation is given by

ẋ(t) = Ax(t) +B











vg

wbg

va

wba











(15)

whereA andB are given by (I3 ∈ R3×3 is an identity matrix and03 ∈ R3×3 is a zero matrix)

A ,

















[−yg×] −1

2
I3 03 03 03

03 03 03 03 03

03 03 03 I3 03

−2C ′(q̂)[ya×] 03 03 03 −C ′(q̂)

03 03 03 03 03

















B ,

















−0.5 I3 03 I3

03 I3 03 03

03 03 03 03

03 03 −C ′(q̂) 03

03 03 03 I3

















.

For a vectorp ∈ R3, [p×] is defined by

[p×] ,







0 −p3 p2

p3 0 −p1

−p2 p1 0






.

The noisewbg and wba are process noises for compensation of slowly time-varyinggyroscope and

accelerometer bias. As usual, we assume all noises in Equation (15) are uncorrelated, zero mean white

Gaussian.

When a foot is on the ground and thus is not moving, we can use the factv = 0 in the measurement

update of the Kalman filter. The zero velocity interval can bedetected usingya andyg : if ya change is

small andyg is small for more than a certain period, we can consider a footis not moving [15,19]. The

zero velocity interval also can be detected using the force sensors installed on a shoe. In this paper, the

zero velocity interval is detected usingya change and the force sensors.

During the zero velocity interval, we can use the factv = 0 in the measurement updating as follows:

The velocity measurementyv is given by

yv = v + vv

= v̂ + ve + vv
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wherevv is the measurement noise. We assume that the measurement noisevv is a uncorrelated white

Gaussian noise. LetRv be the covariance ofvv, which is defined byE{vv(t)vv(s)′} = Rvδ(t− s).

During the zero velocity interval (that isv = 0), we use0 − v̂ as an output to the indirect Kalman

filter, where the output equation is given by

−v̂ = ve + vv

=
[

0 0 0 I3 0
]

x+ vv.
(16)

In the zero velocity updating,vv is not the actual measurement noise since we are not directlymeasuring

v but indirectly estimatingv = 0. Thus covarianceRv indicates our confidence in the zero velocity

algorithm. If we useRv = 03, we are assuming that the zero velocity algorithm is 100% correct. We

note that there is a slight chance that the zero velocity interval detection is wrong. Thus we assign small

positive value toRv. In the zero velocity updating, the velocity, position and attitude errors are greatly

reduced [7,8].

During the zero velocity interval, we also update the heading usingym. As in [7], heading is only

compensated at the end of the zero velocity interval since the attitude is most accurate at that time. For

the heading update equation, we used the technique in [20], whereym only affects heading not pitch and

roll. See Equation (21) in [20].

The sampling rate of the inertial sensors is 100 Hz and the appropriate discretized equations are used.
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