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Abstract: High speed photodetectors are a key building block, which allow a large 

wavelength range of detection from 850 nm to telecommunication standards at optical fiber 

band passes of 1.3–1.55 µm. Such devices are key components in several applications such 

as local area networks, board to board, chip to chip and intrachip interconnects. Recent 

technological achievements in growth of high quality SiGe/Ge films on Si wafers have 

opened up the possibility of low cost Ge-based photodetectors for near infrared 

communication bands and high resolution spectral imaging with high quantum efficiencies. 

In this review article, the recent progress in the development and integration of  

Ge-photodetectors on Si-based photonics will be comprehensively reviewed, along with 

remaining technological issues to be overcome and future research trends. 
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1. Introduction 

In the past decade, Si photonics has become one of the hottest research domains in the World since 

it holds great promise for maintaining the performance roadmap known as Moore’s Law. As  

short-distance data exchange rates approach 10 Gb/s, metal interconnection is facing a number of 

inevitable issues such as slow resistance-capacitance limit speed and large heat dissipation. Under 

these circumstances, it is well known that for data communication beyond 10 Gb/s, optical signal 

delivery is more advantageous compared to today’s copper interconnections. As a result, combining 

sophisticated process techniques, low cost and mass production, Si based Electro-Photonic Integrated 
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Circuits (EPIC) emerge as one of the most promising solutions for next generation interconnection 

techniques. In fact, long-haul combinations have been based on fiber optics techniques for the  

last 30 years. The wavelength used for the majority of long-distance data transitions is in  

the 1.3–1.55 µm range, corresponding to the minimum loss window of silica optical fiber. If the same 

wavelength can be utilized in the future short-distance data transfers including inter-chip, chip-to-chip 

and Fiber-To-The-Home (FTTH) communications, all end users will be able to connect directly to the 

external servers without the need for wavelength conversion, making global communication much 

easier and cheaper. As a result, Si EPIC working in 1.3–1.55 μm wavelength has become aggressively 

pursued by researchers worldwide. 

To date, enormous efforts have been invested in Si photonics techniques and critical breakthroughs 

and milestones have been achieved. Various passive components [1], active devises like lasers [2], and 

high speed modulators [3] have been reported. Being the device that ends the optical path, 

photodetectors, which convert light back into electrical signals, are vital component for Si photonic 

integrated circuits. In fact, the trigger of the past decade’s Si photonics upsurge was the first successful 

demonstration of the high-efficiency Germanium photodetector [4]. Although Si photodetectors have 

been widely used in optical receivers in the wavelength range around 850 nm, its relatively large 

bandgap of 1.12 eV corresponding to an absorption cutoff wavelength of ~1.1 μm hinders Si 

photodetectors’ application in the longer wavelength range of 1.3 and 1.55 μm. For a more seamless 

integration with current long-haul communication technology, a material with strong absorption 

coefficient in the 1.30–1.55 μm is very desirable. 

Among the available choices, III-V compound semiconductors possess the advantage of high 

absorption efficiency, high carrier drift velocity and mature design and fabrication technology for 

optical devices. Therefore, integration of high performance III-V photodetectors onto the Si platform 

by flip-chip bonding or direct heteroepitaxy has been widely reported. However, the introduction of 

III-V materials into Si process is at the expense of high cost, increased complexity and potential 

introduction of doping contaminants into the Si CMOS devices since III-V materials also act as 

dopants for group IV materials. 

Germanium, a group IV material the same as Si, avoids the cross contamination issue. Though Ge is 

also an indirect bandgap (Eg = 0.66 eV) material like Si, its direct bandgap of 0.8 eV is only 140 meV 

above the dominant indirect bandgap. As a result, Ge offers much higher optical absorption  

in 1.3–1.55 μm wavelength range, thus making Ge-based photodetectors promising candidates for Si 

photonics integration. However, the 4% lattice mismatch between Ge and Si places challenging 

obstacle towards monolithic integration of high-quality low dislocation density Ge devices through Ge 

on Si heteroepitaxy. Nevertheless, to date, device-grade single-crystalline Ge films have been 

demonstrated by many groups with practical high performance Ge photodetectors. 

In this review paper, we first introduce in Section 2 the various Ge growth techniques. Different 

photodetector electrical structures and light coupling schemes are briefly described in Sections 3 and 4, 

respectively. In Section 5, the historical research trends along with the performances of Ge 

photodetectors reported by various research groups are summarized, along with the remaining 

technical issues and future research directions. Conclusions are presented in Section 6. 
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2. Ge Growth Techniques 

Tracing back in history, the first Ge on Si detector was reported in 1984 by Luryi et al. [5]. The 

demonstrated detector showed 41% quantum efficiency at a wavelength of 1.45 μm, where an  

MBE-grown 1,800 Ǻ n + GexSi1-x alloy (graded in ten steps from x = 0 to x = 1) acted as a buffer layer 

for the heteroepitaxy of Ge on Si. Since then, various techniques with their own pros and cons have 

been pursued for the growth of Ge films on Si surfaces. The main quality criterion of the Ge layer can 

be categorized as: procedure complexity, material cost, growth temperature, and the resulting Ge layer’s 

dislocation density and strain. 

2.1. Poly Ge Films 

For ease of integration of near-infrared detectors with standard Silicon process lines for signal 

acquisition, amplification and processing, low temperature growth of Ge layers is much desired.  

In 2000, a Ge deposition approach based on the thermal evaporation with process temperatures as low  

as ~300 °C was first proposed in the pioneering work conducted by Masini et al. [6]. It was found that 

polycrystalline Ge deposition can be possible at substrate temperatures as low as 300 °C, as confirmed 

by the Raman spectra results (Figure 1). This method allows simple and low cost integration with Si 

processes. Monolithic integration of an array of eight polycrystalline Ge pixels with CMOS readout 

electronics was demonstrated based on this method [7], shortly after which Colace et al. [8]  

reported the realization of a digital camera, further confirming the process compatibility of the  

low-temperature approach.  

Figure 1. (a) Raman spectra of the Ge on Si samples grown at different temperatures by 

thermal evaporation method. From [6]. (b) Photograph of one pixel of the digital camera 

(top) and a sketch of its cross section. From [8]. 

 

(a)           (b) 
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Moreover, although the low temperature deposition introduces a relatively high density of defects 

and dislocations into the poly-Ge layer and worsens the electrical properties compared to crystalline 

Ge films, it was shown recently that by a careful design, acceptable performance of the polycrystalline 

Ge photodetector for Si photonics integration can be obtained, with responsivities between 0.1 A/W  

and 0.3 A/W [9]. 

2.2. Crystalline Ge Growth with Graded SiGe Buffer Layers  

In the early stage of crystalline Ge film epitaxy on Si wafers, a compositionally graded SiGe region 

was commonly adopted as buffer layer. This approach was first adopted in the SiGe/Si system by  

Luryi et al. [5] and later improved by Fitzgerald et al. in 1990 [10]. Multiple buffer layers with 

increasing Ge content were adopted to relax the high strain between Ge and Si, which minimizes 

dislocation nucleation and reduces the threading dislocations. The final strain-relaxed Si1-xGex layers 

grown on these graded layers showed low density of threading-dislocations, 4 × 105 cm−2 for x = 0.23 

and 3 × 106 cm−2 for x = 0.50. 

However, the graded SiGe buffer method usually requires a thick 10 μm buffer for pure Ge epitaxy 

on Si, while in modern Si photonics technology, Ge photodetectors are favorably fabricated in close 

adjacency with Si optical waveguide facilitating evanescent or butt-coupling of the optical power. As a 

result, a new technique with thin buffer layers is still needed. 

2.3. Two Step LT/HT Ge Growth 

The origin of the two-step LT/HT (low temperature/high temperature) growth technique can be 

traced back to 1986 for GaAs growth on Si by Fan et al. [11]. Its application in the epitaxially grown 

Ge on Si was first proposed and utilized by Colace et al. [12] in a ultra high vacuum chemical vapor 

deposition (UHVCVD) growth reactor in 1998, since when it has attracted wide interest for Ge 

epitaxial growth. In the two-step Ge growth procedure, first, after thorough cleaning, the substrate is 

maintained at low temperature (~300–400 °C), and a thin layer of Ge buffer layer (~50–100 nm) is 

grown to prevent strain release through undesirable island growth. Second, the substrate temperature is 

elevated to ~550–700 °C and a thick Ge layer with reduced threading dislocation density is grown on 

top of the low-temperature thin Ge buffer. It should be noted that the two-step Ge method can be 

adopted not only in UHVCVD systems, but also in growth tools such as reduced-pressure CVD 

(RPCVD) [13] and molecule beam epitaxy (MBE) [14]. 

The Ge layers growth by two-step Ge epitaxy typically suffers from a high threading dislocation 

density (TDD) in the order of 108–109 cm−2. Therefore, high temperature annealling is employed by 

many groups to reduce the TDD to an acceptable level. For example, the research of Luan et al. 

indicates that the TDD in two-step Ge layer can be significantly reduced by cyclic thermal annealing. 

The optimized annealing condition (900 °C/10 min, 780 °C/10 min, cycle number: 10) can reduce the 

threading dislocation density to ~2 × 107 cm−2 [15,16]. Ge photodetectors based on this process were 

successfully demonstrated to have improved performance [15,17]. However, the annealing process 

increases the thermal budget undesirable for photodetectors’ integration with Si MOSFET. Therefore, 

a number of experiments have been reported to demonstrate high Ge detector performance which are 
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based on low-temperature anneal or even no additional thermal anneal [18,19]. In Table 1, some of the 

currently active groups’ Ge growth methods are summarized.  

Table 1. Summary of recent Ge epitaxy method from selected groups. 

  Group Year Ref. Tool 
Low Temp. 

buffer 

High Temp. 

Ge 
Anneal Aneal condition 

RMS 

(nm) 

TDD  

(cm−2) 

tw
o-

st
ep

 L
T

/H
T

 g
ro

w
th

 

IEF 2004 [13] RPCVD 
400 °C  

25 nm Ge 

<750 °C  

730 nm 
yes 

750/875 °C, 

10 cycles  
2.2 <2 × 108 

IEF 2009 [20] RPCVD 
400 °C  

40 nm Ge 

730 °C  

300 nm 
yes not specified - - 

Intel 2006 [21] RPCVD 
400 °C  

100 nm Ge 

670 °C  

1.2 μm 
yes 900 °C, 15 min - ~1 × 107 

IBM 2004 [22] UHVCVD 
350 °C  

50 nm Ge 

600 °C  

400 nm 
yes 

780/900 °C, 

10 cycles  
- ~1 × 108 

Univ. stuttgart 2005 [14] MBE 
thin LT 

buffer 

550° C  

1 μm 
no - - - 

MIT 1999 [16] UHVCVD 
350 °C  

30 nm Ge 

600 °C  

1 μm 
yes 

780/900 °C, 

10 cycles  
- ~2 × 107 

MIT 2007 [23] UHVCVD 
360 °C  

60 nm Ge 

730 °C  

1.1 μm 
yes 

650/850 °C,  

cyclic  
- - 

Luxtera 2007 [24] RPCVD no buffer 350 °C 200 nm no - - - 

Kotura 2010 [19] CVD 
400 °C  

100 nm Ge 

670 °C  

1.1 μm 
yes not specified - - 

ETRI 2009 [25] RPCVD 
400 °C  

100 nm Ge 

650 °C  

1.2/1.7 μm 
no - 1.3 - 

Univ. Roma Tre 2006 [18] UHVCVD 
350 °C  

thin Ge 

600 °C  

1 μm 
no - - - 

S
iG

e 
bu

ff
er

 

Unvi. Texas 2004 [26] UHVCVD 1 μm SiGe 400 °C 2.5 μm yes 750 °C, 15 min - - 

Canon ANELVA 2006 [27] UHVCVD 

450–520 °C 

13 nm SiGe 

370 °C  

30 nm Ge 

550–600 °C  

1 μm 
yes 800 °C, 15 min 0.44 - 

IME 2007 [28] UHVCVD 

350–400 °C 

30 nm SiGe 

350–400 °C 

30 nm Ge 

550–600 °C  

100 nm 
no - 1.4 ~1 × 107 

H2 anneal Stanford 2008 [29] RPCVD 
350 °C  

200 nm Ge 

600 °C  

400 nm 
yes 

800 °C, 30 min,  

in H2  
~1 0.8–1 × 107 

LEPECVD Como 2009 [30] LEPECVD no buffer 
500–600 °C  

1 μm 
yes 

600/780 °C,  

3 cycles  
- 2 × 107 

2.4. Other Ge Growth Methods 

Many attempts to modify the two-step Ge growth procedure have been reported. An UHV-CVD 

growth of high quality Ge on Si substrate using modified two-step Ge growth method combining with 

intermediate thin SiGe buffer layers was proposed first by Huang et al. in 2004 [26].The buffer region 

consisted of 0.6-μm-thick Si0.45Ge0.55 and 0.4-μm-thick Si0.35Ge0.65 layers. In-situ annealling  

for 15 min at 750 °C was carried out to further reduce the dislocation density. The thickness of the 

SiGe buffer was further reduced by Nakatsuru et al. [27] by employing a 13 nm-thick Si0.5Ge0.5 buffer 

layer grown at 450–520 °C. After post-deposition annealling of 800 °C/15 min, the Ge layer shows a 

low roughness of 0.44 nm. Loh et al. [28] also reported an epi-Ge layer based on the SiGe buffer 

method, where the SiGe buffer is grown at low temperature of 350–400 °C with the thickness of 

around 30 nm (Figures 2(a,b)).  
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Figure 2. (a) HR-TEM image of epitaxial Ge layer using two-step Ge growth method 

combining with an intermediate SiGe buffer layer. (b) Zoom-in image of the 

heterostructure epitaxial layers of Si/ Si0.75Ge0.25 /Ge. From [31]. 

 
(a)         (b) 

 

Another way to improve Ge film quality is H2 annealing, which was reported by Choi et al. [29]. 

The demonstrated 800 °C/30 min anneal in H2 ambient is able to effectively improve the Ge film 

quality in terms of surface roughness and TDD. It is proposed that the increased atom mobility caused 

by hydrogen/Ge bonding is the main mechanism for the improved film surface planarity and  

defect density. 

Recently, a new Ge epitaxy procedure based on low-energy plasma-enhanced chemical vapor 

deposition (LEPECVD) was demonstrated [30]. Thanks to the high deposition rates and high 

concentration of atomic H present in the chamber, Ge films with smooth surfaces and TDD ~2 × 107 

are achieved under low thermal budget. Moreover, the fabricated diode shows much lower dark current 

compared to the devices from UHVCVD method with comparable dislocation density. This is 

attributed to the improved passivation resulting from the dense plasma in the LEPECVD which is 

known to be efficient in generating atomic hydrogen radicals. 

3. Photodetector Electrical Structures 

Until now, a number of Ge based photodetectors with different structures are reported. Brief 

descriptions of typical photodetector structures will be given here for better understanding. 

3.1. PIN Detectors 

PN junctions are one of the most commonly used configurations for semiconductor photodetectors. 

The PIN diode where “I” stands for intrinsic, includes an intrinsic region in between the P and N 

regions. Due to the built-in potential or external reverse bias, the intrinsic region is depleted and has 

high resistivity, so that the voltage drop takes place mainly in this region, giving rise to high electric 

fields for effective collection of photo-generated electron-hole pairs (EHP). In this configuration, the 

thickness of the intrinsic region is always many times larger than the highly-doped regions so that most 

of the EHP’s are generated within the intrinsic region where the strong electric field helps to sweep the 

EHP to the adjacent p+/n+ region faster than diffusion. Another advantage of the PIN structure is that 

the depletion-region thickness (the intrinsic layer) can be tailored to optimize both the quantum 
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efficiency and response bandwidth. In Ge PIN photodetectors, while the photoabsorption intrinsic 

layer is usually Ge for effective absorption around 1.55 μm , the p+ and n+ region can be formed either 

by implantation [32] or in-situ doping to form p+ and n+ regions for the PIN structure [14]. Another 

way is to use p+/n+ single crystalline Si substrates or deposited polycrystalline Si heterojunctions [33]. 

3.2. Metal-Semiconductor-Metal (MSM) Detectors 

PIN photodiodes produce a voltage drop across the diode terminals in response to an external 

optical input. Such devices are categorized as photovoltaic devices. On the other hand, MSM 

photodetectors are photoconductive devices whose conductivity is altered when an optical illumination 

is imposed. Therefore, MSM photodetectors are only functional under non-zero external bias. MSM 

photodetectors possess the advantage of low capacitance and relative ease of fabrication. The 

intrinsically low capacitance resulting from its configuration has always been utilized to fabricate  

high-speed large area detectors. One issue in early Ge MSM photodetectors was their high dark current 

density, which gives rise to high stand-by power consumption, thus making Ge MSM photodetectors 

unfavorable and impractical. Due to the narrow bandgap and strong Fermi-level pinning of the 

metal/Ge interface at valence band, hole injection over Schottky Barrier Height (SBH) is the major 

component of the dark current in Ge MSM detectors. Regarding this issue, application of dopant 

segregation (DS) to Ge MSM photodetectors for dark current suppression was experimentally 

demonstrated by Zang et al. [34-36]. Metal-Ge Schottky barrier height modification by an intermediate 

layer of large bandgap material such as amorphous Ge and SiC is also proposed [37]. While the 

demonstrated Ge MSM detectors are able to achieve dark current suppression of two to four orders of 

magnitude, it is still an open question whether these MSM Ge photodetectors are competitive with  

PIN devices. 

3.3. Avalanche PD 

The simplest avalanche photodiode (APD) has a similar device structure to a p-i-n photodiode. 

However, a voltage close to its breakdown is usually applied to APD for detection of low power signal 

with high sensitivity. Under sufficiently higher external bias, electrical field in the photodiode’s 

depletion region becomes high enough to initiate impact ionization which is responsible for carrier 

multiplication. Therefore, one absorbed incoming photon does not only generate one electron/hole pair 

but rather a large number of EPHs leading to a quantum efficiency potentially large than unity. The 

most important performance indices for APD is excess noise factor quantified by effective ratio of 

electron and hole ionization rate (keff), gain-efficiency product and sensitivity. 

3.4. Dark Current Criteria for Photodetectors  

An important issue in integrated photodetectors is dark current, which increases the power 

consumption of the receiver. Most importantly, shot noise associated with this leakage current 

undesirably degrades the Signal-to-Noise Ratio (SNR) leading to increased bit error rates (BERs).  

Generally, dark currents less than 1 µA are referred to as acceptable value for a high-speed receiver 

design, below which the transimpedance amplifier (TIA) noise is the main noise source [23,38,39]. In 
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practice, a precise value of the required dark current depends upon the speed of operation and the 

amplifier design. In the recent successful demonstration of an Ge-on-Si photodetector-based receiver, 

photodetectors with dark current of both ~10 nA [38] and ~2 µA [24] were reported. Depending on the 

receiver design, a higher dark current level is tolerable with certain sacrifices in the receiver 

parameters. For example, Vivien et al. [40] have shown that with an increase of the input power of 

about 20% in comparison with photodetector without dark current, a photodetector with 300 µA dark 

current is still able to ensure a BER of 10−18 at a frequency close to 50 GHz. The conclusion was 

drawn based on SPICE simulation taking into account of feedback resistance noise, the shot noise from 

detector dark current and photocurrent sources, and the transistor channel noise [41]. For the detailed 

modeling of the precise criteria for the dark current in high speed receiver, the readers are referred  

to [42] for further understanding.  

4. Ge Photodetector Light Coupling Schemes  

4.1. Normal Incidence Photodetectors and the Bandwidth-Efficiency Tradeoff 

Normal incidence (NI) photodetectors are also known as vertical photodetectors or surface 

illuminated photodetectors. Normal incidence is the simplest light coupling scheme with incoming 

light illuminated on the top or bottom surface of the detector. Almost all the electrical structures, i.e., 

PIN, MSM and avalanche, can be fabricated in the fashion of NI photodetectors.  

Figure 3. A Calculated carrier-transit-time-limiting bandwidth and efficiencies of normal 

incidence PIN Ge photodetector. 

 
 

Due to its low process complexity, NI photodetectors are widely used in communication 

technologies. However, they suffer from an inherent drawback due to the bandwidth-efficiency 

tradeoff. This tradeoff results from the opposite requirement of the thickness of the photoabsorption 

layer for high bandwidth and high efficiency [43]. The carrier-transit-time-limiting bandwidth ft can be 

expressed as [44]:  

0.45tf d


              (1) 

While the ideal efficiency η assuming zero reflection and full carrier collection is: 

1 de                (2) 
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where υ is carrier transit velocity, d is intrinsic region’s thickness and α is material’s absorption 

coefficient. Using υ = 6 × 106 cm/s for Ge and α = 4,000 cm−1, the carrier-transit-time-limiting 

bandwidth and efficiencies versus intrinsic region thickness can be plotted as Figure 3. As can be seen, 

for a Ge device with 3dB bandwidth of 100 GHz, an intrinsic layer thinner than 0.27 μm is required 

with a resulting efficiency of ~10%. 

4.2. Resonant Cavity Enhanced (RCE) Detectors 

To overcome the tradeoff between bandwidth and efficiency in NI detectors, one method is to 

sandwich a thin layer of photo absorbing material between two light reflectors so that cavity resonance 

is enhanced [45,46]. In this structure, light is ideally trapped between the two reflectors and travels 

through the center light absorber multiple times until fully absorbed. At the same time, the 

photoabsorption layer can be thin enough to achieve high bandwidth. Another advantage of RCE 

detectors is the wavelength selectivity. When the light reflector is fabricated in the form of a Bragg 

reflector, only light in a small range of certain wavelengths is reflected effectively so as to produce 

high efficiency. The RCE device’s light selectivity makes it especially useful for wavelength division 

multiplexing (WDM) systems. 

Figure 4. Cross-sectional view of the back-illuminated Ge-SOI Schottky photodetector. From [45]. 

 
 

Ge RCE Schottky photodetectors (Figure 4) were demonstrated by Dosunmu et al. [45] in 2005. 

The resonant cavity was formed between the Au reflecting top metal contact and the SOI substrate. 

The backside of the SOI wafer was polished to facilitate light coupling. Schottky contact was formed 

between the top contact Au and the Ge layer while the bottom contact of Au and p+-Si was ohmic 

contact. The resonant wavelength was found at around 1,538 nm, leading to an increased quantum 

efficiency of 59%. 

Although RCE photodetectors solve the bandwidth-efficiency tradeoff to some extent, the 

fabrication of high reflectivity mirrors increase the design and process complexity significantly. The 

multiple layers needed for effective reflection also make RCE detectors difficult integrate with other 

functional devices. Therefore, other methods with more process and integration friendliness are  

still required. 
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4.3. Waveguide Photodetectors 

Waveguide integrated photodetectors have been considered to be one of the most promising 

candidates for overcoming the bandwidth-efficiency tradeoff in normal incidence detectors. In this 

configuration, a light signal is delivered to the device by in-plane optical waveguide rather than top 

down, permitting the bandwidth and efficiency to be determined almost independently because the 

efficiency is specified no longer by the photoabsorption layer thickness, but rather by the waveguide 

length. Furthermore, large scale integration of Si optical and electrical devices requires all devices to 

be fabricated on the same planar wafer, which makes an optical waveguide indispensable. Thus 

integration of a waveguide with photodetectors seems to be a natural choice. The development of  

Ge-on-Si photodetectors has been going on for more than ten years. In Table 2 and Figure 5, 

performances reported for some typical Ge photodetectors are summarized. 

Table 2. Summary of performances from selected Ge photodetectors. 

Year Reference 1st author structure 
Idark(µA)@ 

−1 V 

Responsivity 

@λ = 1.55 µm 

@−1 V (A/W) 

Highest 3 dB 

electrical bandwidth 

(GHz) 

APD  

gain-bandwidth 

product (GHz) 

2000 [4] L. Colace NI PIN 12 0.25 ~0.4@−4 V - 

2002 [17] S. Fama NI PIN 1.2 0.75 2.5@−1 V - 

2005 [14] M. Jutzi NI PIN 0.08 0.035@0 V 39@−2 V - 

2005 [33] J. Liu NI PIN ~0.8 0.56 8.5@−1 V - 

2005 [45] O. I. Dosunmu NI PIN RCE 0.38@−5 V 0.73 12.1@−3 V - 

2006 [18] L. Colace NI PIN ~10 0.2 10@−1 V - 

2007 [40] L. Vivien WG MSM 130 1 25@−6 V - 

2007 [23] D. Ahn WG PIN 0.9 0.87 7.5@−3 V - 

2007 [47] T. Yin WG PIN 0.267@−2 V 1.16@−2 V 29.4@−2 V - 

2008 [48] J. Wang WG PIN 0.06 0.65 18@−1 V - 

2009 [49] L. Chen WG MSM 4@−5 V ~1 40@−5 V - 

2009 [50] S. Klinger NI PIN ~0.10 0.05@−2 V 49@−2 V - 

2009 [25], D. Suh NI PIN 0.042 0.47 36@−3 V - 

2009 [20] L. Vivien WG PIN ~1 1 42@−4 V  - 

2009 [51] D. Suh WG PIN 0.072 0.8 47@−3 V - 

2010 [19] D. Feng WG PIN 1.3 1.1 36.8@−3 V - 

2010 [52] S. Assefa WG MSM 90 0.14 40@−2 V - 

2008 [53] Y. Kang NI SACM APD ~10@25 V ~15.6@~25 V@1.3 μm ~12@~25 V 340 

2010 [54] K. Ang WG SACM APD ~100@23 V 16.8@~23 V 5@~23 V 105 

2010 [55] S. Assefa WG MSM APD ~100@ - ~35@1.5 V 350 

  



Sensors 2011, 11                            

 

706

Figure 5. Bandwidth and responsivity of selected Ge photodetectors. 

 

5. Research Trends in Ge Photodetectors 

In this section, historical research trends are identified and described. The remaining technical 

issues and future directions are also discussed here. 

5.1. Normal Incidence to Waveguide Integration 

At the starting stage of Ge-on-Si photodetector development for Si photonics applications,  

normal incidence Ge photodetectors were first fabricated and comprehensively  

studied [4,14,17,18,22,33,50,53,56-64] due to their ease of processing. 

Figure 6. 3D view of the PIN Ge photodiode with 49 GHz bandwidth. From [50]. 

 
 

Due to the bandwidth-efficiency tradeoff, typical NI incidence Ge photodetectors offer moderate 

quantum efficiencies and bandwidths. Among the reported NI photodetectors, Klinger et al. [50] 

reported the highest bandwidth of 49 GHz for Ge-based photodetectors. The Ge p-i-n photodiode was 

fabricated in Ge grown by MBE two-step Ge growth (Figure 6). Given the nominal Ge intrinsic layer 
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thickness of 300 nm, detector diameter of 10 μm and the series resistance of 25 Ω, the theoretical 

bandwidth of 54.3 GHz corresponds well with the experimental value. It should be noted that the 

reported improved 3 dB frequency of 49 GHz from previous result (39 GHz) [14] is mainly due to the 

reduced series resistance (Rs) of 15 Ω from 32 Ω. The reported responsivity at 1,550 nm is ~0.05 A/W 

limited by small device footprint and relatively large density of defects in the Ge layer. 

In terms of high responsivity, a thick Ge absorption layer is need. The highest reported value  

at 1,550 nm wavelength for NI photodetector is 0.75 A/W from a PIN diode with ~4 μm thick Ge layer 

fabricated and reported by Fama and coworkers [17]. The Ge layer was epitaxially grown on a Si 

substrate by two-step UHVCVD combined with high temperature cyclic annealling for the reduction of 

dislocation density. A time response of less than 200 ps and operation >2.5 Gb/s was also demonstrated. 

The study of the Ge normal incidence photodetectors provides valuable insights into the Ge/Si 

system and its properties. As the Ge growth technique becomes mature and the particulars of Ge/Si 

devices have been studied in detail, research has gradually been redirected to the integration of Ge 

photodetectors on Si waveguides to decouple the tradeoff between bandwidth and efficiency 

mentioned above. Since Si photonics also require devices to be monolithically integrated on the same 

Si substrate using an on-wafer optical waveguide, integration of Ge photodetectors with waveguides 

seems mandatory. 

To date, a number of groups have demonstrated waveguided Ge photodetectors, including  

MIT [1,23,65-67], IEF [20,40], IME [35,48,54,68,69], INTEL [47,70], IBM [52,55,71] and  

Kotura [19,72]. Both PIN and MSM structures are reported in these waveguide photodetectors with 

comparable performance and high speeds of around 40 GBit/s. 

5.2. Improvement of Speed Performance of Waveguide Ge Photodetectors 

Another trend of the continuous evolvement of Ge photodetectors is the increase of detector 

bandwidth. At the starting point of Ge detectors’ integration with Si waveguides, Ge growth on SOI 

wafers and optical coupling between Ge detectors and Si optical waveguides was first explored. The 

reported detectors are ~100 μm long to ensure full absorption of light around 1.55 μm wavelength, 

inevitably leading to large device capacitance so that the bandwidth are limited <10 GHz by RC delay. 

Nowadays, special care in design is given to detector’s bandwidth performance. With adoption of 

shorter devices, sophisticated radio-frequency coplanar waveguides (CPW), metal interconnections 

and frequency measurement technologies, 40 Gbit/s operation was reported by several  

groups [47,49,52,73], with waveguide detector bandwidths as high as 47 GHz [73]. 

5.3. Zero-Bias PIN Photodiode 

As discussed in Section 3.4, high dark current leads to high stand-by power consumption in addition 

to the degraded SNR. Moreover, it is desirable for the detector and the receiver circuit to operate on a 

single power supply which often restricts the bias voltage for photodetector to be less  

than 1.5 V [74]. As a result, there has been an increasing research interest in the development of  

low-bias or even zero bias PIN photodiodes. 

In terms of responsivity, Liu et al. [33] measured their Ge PIN detector’s responsivity over the wide 

spectrum of 650 nm–1,650 nm. The reported responsivity at 0 V bias is more than 98% of the saturated 
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value at 2 V reverse bias, which was attributed to high carrier collection efficiency resulting from the 

high built-in electric field in the diode’s depletion region. High speed operation at zero-bias was 

demonstrated by Jutzi et al. [14]. From PIN Ge detectors with diameter of 10 μm, a record high  

zero-bias 3 dB bandwidth of 25.1 GHz was obtained (see Figure 7). 

Figure 7. Normalized frequency response at a wavelength of 1,552 nm for PIN detectors 

with diameters varying from 10 to 30 μm. From [14]. 

 
5.4. Avalanche Photodetectors 

For Ge photodetectors’ application in Si photonics IC, a next level pre-amplifier is necessary to 

further transform the current signal into a voltage signal for later CMOS IC processing. Avalanche 

photodetectors offers much lower signal-to-noise ratio compared to PIN or MSM structures. Therefore, 

more and more interest is being focused on Ge-based avalanche photodetectors. Recently, Intel [53], 

IBM [55] and IME [54] have all reported successful fabrication of such devices. 

The first Ge-based APD was demonstrated by Kang et al. [53]. For the reported device, a  

separate-absorption-charge-multiplication (SACM) configuration (Figure 8) is used to take advantage 

of both Si’s low noise property and Ge’s strong absorption near 1.55 μm wavelength. The device 

exhibits low excess noise with low keff of ~0.09. The reported sensitivity of −28 dBm at 10 Gb/s is 

equivalent to a commercial III-V APD and the bandwidth-efficiency product of 340 GHz is even 

higher than its III-V counterpart, thanks to much lower k value of Si compare to InP material. 

Figure 8. Schematic of Ge/Si APD with a typical SACM configuration. From [53]. 
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Another Ge APD configuration is a conventional MSM structure with nano-engineered  

metal-to-metal spacing as small as 200 nn reported by Assefa et al. [55]. With a low bias voltage  

of ~1.5 V, the electric field in the immediate vicinity of the metal contact is already high enough to 

initiate avalanche amplification. Although the whole APD structure is built on Ge, whose properties 

are not optimized for APD, the device exhibits a excess noise factor with keff ~ 0.2, high speed  

of ~40 GHz, and bandwidth-efficiency product of 350 GHz at the wavelength of 1.3 μm. Although the 

high dark current due to the small metal spacing requires more optimization, the Ge MSM APD shows 

great potential for the application of Ge in avalanche photodetection. 

The APD devices reported above are working at 1.3 μm due to the incorporation of Si into Ge 

which gives rise to undesired reduction of the absorption efficiency at 1,550 nm. Using two-step Ge 

growth with a SiGe buffer layer method, the first waveguide-base Ge APD working at 1.55 μm was 

reported by Ang et al. [54]. The device is fabricated based on a SACM structure. A waveguide was 

used to increase device efficiency and facilitate future Si photonics integration. The reported high 

responsivity at unity gain was as high as ~0.8 A/W and a product bandwidth-efficiency of 105 GHz  

was achieved. 

5.5. Remaining Technical Issues and Future Research Trends 

5.5.1. Pursuit of Higher Bandwidth 

Nowadays, the reported Ge photodetectors’ bandwidths are approaching 50 GHz, ready for  

near-future 40 Gb/s applications. On the other hand, in correspondence with III-V photodetectors, it 

can be seen that there is still much room for enhancement. For bandwidths beyond 100 GHz, much 

thinner Ge intrinsic layers should be used. As in the high frequency region, undesirable parasitic effect 

such as contact resistance, stray capacitance and inductance may become the main limiting factors in 

bandwidth performance. Given the fact that reducing the intrinsic region’s thickness for smaller carrier 

transition time at the same time leads to increase of device capacitance, the mushroom-mesa  

structure [43] (Figure 9) may be of help for further bandwidth evolution, since it is capable of reducing 

the Rs and capacitance simultaneously. 

Figure 9. Schematic view of III-V photodetector based on mushroom structure. From [43]. 
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5.5.2. Monolithic Integration of Ge Photodetectors with CMOS Integrated Circuits 

Essential for future Si EPIC is the co-integration of Ge photodetectors with functional CMOS 

circuits, which brings optical detection and further signal processing together. Therefore, there has 

been much effort in pursuing such integration. However, fabrication of high performance Ge 

photodetectors together with conventional CMOS devices comes with several technical issues that 

must be addressed, including the thermal budget issue, the cross contamination issues and the  

non-planarity issue due to Ge layer thickness. 

To avoid the high temperatures needed during two-step Ge growth and subsequent cyclic annealling 

for dislocation density reduction, thermal evaporation polycrystalline Ge with full compatibility with 

CMOS fabrication due to its deposition temperature as low as ~300 °C was demonstrated [6]. However, 

the relatively inferior electrical quality of the Ge limits the performance of the photodetector making 

this technique not suitable for high-speed high efficiency Si EPIC for future data transmission. 

Another study [38] uses a wire-bonding technique to connect separately-manufactured Ge 

photodetectors and a Si CMOS amplifier (see Figure 10). While this approach reduces the process 

complexity and cost considerably, undesirable large parasitic capacitance from the bonding pad and 

inductance from the bonding wire inevitably sacrifice the speed performance. 

Figure 10. Optical micrograph showing a Ge-on-SOI photodiode wire-bonded to a  

high-gain CMOS IC. High-magnification optical and SEM micrographs of the photodiode 

are also shown. From [38]. 

 
 

Masini et al. [24] reported the first successful monolithic integration of a Ge photodetector with 

CMOS on the same wafer (Figure 11). Special attention was given to the thermal budget planning in 

the process design. Since high temperature is compulsory for gate oxide growth, Ge grow was inserted 

after the gate processing. Furthermore, to avoid damage by high temperature Ge layer epitaxy, 

reduced-press chemical vapor deposition (RPCVD) at 350 °C was used. Also, no high temperature 

annealling was carried out. To address the non-planarity issue normally induced by thick Ge of several 

microns used for efficient light absorption, a waveguided photodetector with a thin Ge layer  

of ~200 nm was used. Since with low temperature Ge growth and no curing annealling, the  
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fabricated 25 μm-long detector demonstrated large dark current of 10 μA @−1 V and relatively low 

responsivity of ~0.6 A/W at 1,554 nm. 

Figure 11. A four-channel, 10 Gbps monolithic optical receiver in 130 nm CMOS with 

integrated Ge waveguide photodetectors. From [24]. 

 

Figure 12. (a) Schematic showing the “electronic-first and photonic-last” integration 

approach for monolithically fabricating the Ge p-i-n photodetector and Si CMOS circuit on 

common SOI platform. (b) Comparable threshold voltages were observed in both n-MOS 

and p-MOS transistors despite the introduction of an additional thermal budget during the 

Ge epitaxy growth. From [75]. 

 
(a)              (b) 
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The impact of high temperature prebake treatment before Ge epitaxy on the monolithic integration 

was studied by Ang et al. [75]. For UHVCVD Ge epitaxy, an 800 °C prebake before actual growth is 

usually necessary for removal of native oxide from Si surface to ensure Ge epitaxy quality. However, 

such high temperature causes thermally enhanced dopant diffusion in CMOS devices leading to 

possible shift in transistor’s threshold voltage (Vth). This concern is especially the case for short 

channel devices since the impact of dopant diffusion is larger. It was found that for transistors with 

effective channel length of ~180 nm, the additional 800 °C thermal budget virtually have no apparent 

impact on the Vth (Figure 12(b)). However, for the state-of-the-art aggressively scaled down devices 

with critical dimension well below 100 nm, whether the influence of the 800 °C prebake is still 

negligible leaves an open question. As a result, research and development of low temperature Ge 

growth technique with low dislocation density Ge film would be expected to be one of the most 

focused directions for future research. The reported monolithic integration scheme is also based on 

“electronic-first and photonic-last” approach (Figure 12(a)) to avoid Ge degradation and cross 

contamination during the high temperature gate oxidation and dopant activation in Si transistors. 

5.5.3. Plasmonics for Extreme Light Concentration 

For higher speed, lower noise and suppressed power consumption, photodetectors are being 

fabricated in smaller dimensions [76]. However, previously the physical dimensions of the 

photodetectors were limited in the micrometer range by classical diffraction theory. 

Recently, the amazing ability of plasmonic structures to concentrate light both laterally and in the 

depth of a semiconductor material beyond the diffraction limit into the deep-subwavelength-dimension 

was reported by Ishi et al. [77] A concentric grating surface plasmon antenna of 10 μm diameter was 

demonstrated to concentrate light into the center Si mesa Schottky diode of an active area  

of 300 nm in diameter (Figure 13). The observed more than 20-fold enhancement in photocurrent 

confirms the plasmonic effect. The estimated bandwidth of such small detector exceeds 100 GHz. 

Because of its promise in Ge photodetector’s drastic miniaturization into the nano-scale domain and 

expected high speed, plasmonics technology’s application in Ge-based detectors are being actively 

pursued both theoretically [78] and experimentally [79] making it one of the major research directions 

in the future. 

Figure 13. Concentric grating coupler used in the nano-photodiode. From [77].  
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6. Conclusions 

This paper summarizes the historical and current trends of Ge-on-Si photodetectors development, 

which is essential for Si EPIC integration. Various electrical structures (PIN, MSM, and avalanche) 

and optical coupling schemes (normal incidence, resonant cavity enhancement and waveguide 

integration) have been adopted in Ge photodetectors, demonstrating high responsivity  

approaching 100% quantum efficiency and high speed operation at around 40 Gb/s. With practical Si 

photonics EPIC around the corner, higher speed, easier integration with CMOS fabrication and novel 

approaches such as plasmonics-enabled nano-scale detector will become the main focuses of research 

in the near future. 
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