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Abstract: The title compound was synthesized at a near-quantitative yield using the nucleophilic
aromatic substitution of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with perfluoropyridine (PFP).
The purity and structure were determined by NMR (1H, 13C, 19F), GC-EIMS, and single-crystal
X-ray crystallography.
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1. Introduction

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) is known to be a very strong N-base yet has
a low nucleophilicity. Its pKa value is reported to be 24.33 [1]; however, it has been commu-
nicated in the past that the slow ring-opening of DBU can occur in the presence of water to
form two possible products, either N-(3-aminopropyl) caprolactam or N-(3-aminopropyl)-
2-piperidinecarboxylic acid [2–4]. In 2003, Brzezinski et al. reported reactions between
chloropentafluorobenzene and strong N-bases such as DBN, DBU, TBD, and MTBD in
polar aprotic solvents with water [5]. They concluded that the only pathway to lactams
was first through the ring-opening of the N-bases followed by Meisenheimer complexes
with chloropentafluorobenzene. They communicated that no complex could be detected by
spectroscopic methods if chloropentafluorobenzene and strong N-bases are mixed without
water molecules.

In our case, with pentafluoropyridine (PFP) rather than chloropentaflurobenzene, the
pathway for reactivity with DBU is better described through its HOMO. The mechanism
of the reaction proposed is shown in Scheme 1. The highest energy electrons on PFP
occupy space delocalized over all the carbons except the 4-substituted carbon, leaving it
more susceptible to nucleophilic attack by DBU [6]. Therefore, PFP is a more versatile
starting material for nucleophilic aromatic substitution (SNAr) with DBU but has also
shown a broad reactivity range with many O-, N-, S-, and C-nucleophiles through an
exclusive attack at the 4-position [7,8]. For future work, using the PFP–DBU product,
sequential additions to the 2,6-positions could be accomplished, leaving the 3,5-fluorines
intact under specific solvent conditions. However, it is unknown whether the synthe-
sis of these new N-substituted lactams can be used in polymerization due to the sterics,
as reported by Puffr et al. [9]. Nonetheless, motivation for PFP incorporation into poly-
mer frameworks remains due to several examples of their processing in polymers such
as polyarylethers, fluorosilicones, dendrimers, and high-char-yield resins for demanding
aerospace applications [10] as well as expanding the utility of hydrofluoroethers (HFEs) [11].
These unique polymeric materials have shown marked improvement over conventional
state-of-the-art polymers in terms of their processability, mechanical strength, and compati-
bility with hybrid composites while retaining high temperature resistance. More recently,
PFP was used for the mechanochemical synthesis of perfluoropolyalkylether (PFPAE)
oligomers, which expands its utility for solvent-free polymerizations [12]. As an extension
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of this work, we report the detailed synthesis and structural characterization of a 2,3,5,6-
tetrafluoro-[N-(3-aminopropyl)-ε-caprolactam]-4-pyridine (1), as a new type of monomer
for SNAr polymerizations.
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Scheme 1. Suggested mechanism of the attack of DBU onto a PFP and its ring-opening with water.

2. Results and Discussion

The synthesis of 2,3,5,6-tetrafluoro-N-[(propyl)caprolactam]-4-pyridinamine (1) was
accomplished by the nucleophilic aromatic substitution of pentafluoropyridine (PFP) by
using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (Scheme 2). For the analysis, the product
was analyzed by 19F NMR, showing the regio-selective quantitative conversion of the
F4 (δ −130 ppm) from PFP to, exclusively, a set of equivalent F2,6 multiplets at δ −98.0-
(−88.2 ppm) and −165.5-(−153.9 ppm), respectively. There was a small trace of what is
believed to be HF2

− at a chemical shift of −151.9 ppm in “wet” acetonitrile, which has
been reported by Wilson and Christi [13]. Both 1H- and 13C-NMR helped in determining
the structure of the PFP–DBU product as the ring-opened DBU lactam. However, the
crystal structure was the true determining factor to fully verify the exact structure. After
the product was purified and dried, the appearance was a very light tan solid with a
49% overall isolated yield. GC-EIMS confirmed the purity to be >99% with an observed
molecular ion at [M]+ at m/z = 319.
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Crystals suitable for single-crystal X-ray diffraction were obtained by the dissolution
of 1 in absolute ethanol in a scintillation vial with slow evaporation of the solvent. The
molecular structure of 1 (Figure 1) shows the expected 2,3,5,6-tetrafluoropyridine group
attached via an amino-N-propyl linkage to the seven-membered lactam ring.
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3. Materials and Methods

Chemicals and solvents were purchased at the reagent grade through commercial sup-
pliers: perfluoropyridine (SynQuest), 1,8-diazabicyclo[5.4.0]undec-7-ene (Acros Organics),
and silica gel (Sorbtech, porosity: 60 A, particle size: 40–63 um, bulk density: 0.4–0.6 g/mL,
pH range: 6.5–7.5). 1H, 13C{1H}, and 19F NMR spectra were recorded on a Jeol 500 MHz
spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual
solvent peak was used as an internal reference: proton (acetonitrile-d3 δ 1.94), carbon
(acetonitrile-d3, C{D} multiplet and septet, respectively for δ 118.26 and 1.32 ppm), and
fluorine (C6F6 δ −164.9) was used as a reference. Data are reported as follows: chemical
shift, multiplicity (s = singlet, m = multiplet), coupling constants (Hz), and integration.
Gas chromatography mass spectrometry (GC-MS) analyses were performed on an Agilent
7890 gas chromatograph coupled to an Agilent 5975C electron impact mass spectrometer.
The GC method for analysis started with a 2 min solvent delay at 90 ◦C followed by a
15 ◦C/min heating to 325 ◦C, holding for 5 min. The column was a ZB-5 HT, length 30 m,
internal diameter (ID) 0.25 mm, film thickness = 0.25 um. The helium column flow rate
was 37.1 cm/s. Front inlet temperature was 250 ◦C with a pressure of 9.95 psi with a flow
rate of 24 mL/min and a septum purge of 3 mL/min.

3.1. Synthesis of 2,3,5,6-Tetrafluoro-N-[(propyl)caprolactam]-4-pyridinamine (1)

Pentafluoropyridine (1.11 g, 6.57 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (1.00 g,
6.56 mmol) in “wet” reagent-grade acetonitrile (15 mL) [14] where combined at 6 ◦C
(refrigerated) in a 50 mL round-bottomed flask, equipped with a magnetic stir bar and
air-cooled condenser under nitrogen. The reagents were allowed to stir and warm to room
temperature for 24 h. The reaction was monitored by GC/EIMS until there was no increase
in products. After the reaction, the 50 mL round-bottomed flask was transferred to a rotary
evaporator to remove most of the solvent to form a tacky, viscous liquid (2.164 g). The
viscous liquid was loaded on a 4 cm (diameter) × 3 cm (height) silica gel plug and rinsed
with additional acetonitrile, since TLC determined that the desired product could be easily
eluted by acetonitrile, leaving undesired materials on the silica gel plug. Finally, the eluted
product was placed on a rotary evaporator to remove most of the acetonitrile with a final
drying in a vacuum oven (20.9 mm Hg at 49 ◦C), affording a light tan solid (1.032 g, 49%).
1H NMR (CD3CN, 500 MHz) δ 6.5 (br, N-H, 1H), 3.40 (t, 3J = 7 Hz, 2H), 3.38 (t, 3J = 6 Hz,
2H), 3.33 (m, 2H), 2.46 (m, 2H), 1.71 (m, 2H), 1.69 (m, 2H), 1.59 (m, 2H), 1.58 (m, 2H);
13C{1H} NMR (CD3CN, 126 MHz) δ 177.0 (1C, C=O), 144.3 (dm, 2,6-position, 1J = 230 Hz,
2C), 138.4 (m, ipso, 1C), 131.4 (ddm, 3,5-position, 1J = 246 Hz, 2J = 32 Hz, 2C), 49.3 (1C),
44.3 (1C), 40.8 (1C), 36.7 (1C), 29.6 (1C), 28.3 (1C), 28.2 (1C), 23.3 (1C) 19F NMR (CD3CN,
471 MHz) δ −98.0 (m, 2,6-position, 2F), −165.5 (m, 3,5-position, 2F); GC–EIMS (70 eV) m/z
(% relative intensity) 319 ([M]+, 17), 185 (5), 179 (39), 177 (6), 154 (27), 153 (7), 141 (5), 140
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(27), 139 (5), 138 (13), 132 (12), 128 (8), 127 (100), 126 (20), 114 (25), 112 (19), 100 (7), 99 (36),
98 (32), 85 (11), 84 (16), 82 (8), 70 (23), 69 (15), 67 (6), 57 (10), 56 (19), 55 (27), 44 (28), 43 (18),
42 (17), 41 (26), see Supplementary Materials.

3.2. Single-Crystal XRD Determination

The single-crystal X-ray diffraction studies were carried out on a Rigaku Synergy-I
single crystal diffractometer equipped with a Cu Kα radiation source (λ = 1.542 Å) and a
Bantam HyPIX-3000 direct photon counting detector. A 0.18 × 0.14 × 0.09 mm3 translucent
yellowish-green rectangular prism crystal was mounted on a Cryoloop with Paratone-N
oil. Data were collected in a nitrogen gas stream at 100.00 (3) K using ϖ scans. Crystal-
to-detector distance was 40 mm using an exposure time of 0.2 s with a scan width of
0.50◦. Data collection was 99.80% complete to 69.351◦ in θ. A total of 14,769 reflections
were collected. A total of 2680 reflections were found to be symmetry independent, with
an Rint of 0.0257. Indexing and unit cell refinement indicated a primitive orthorhombic
lattice. The space group was found to be P21/n. The data were integrated using the
CrysAlisPro software program (Rigaku Oxford Diffraction, 2020, 1.171.43.90) and scaled
using an empirical absorption correction implemented in the SCALE 3 ABSPACK software
program as well as a numerical absorption correction based on Gaussian integration over
a multifaceted crystal model. Solution by direct methods (SHELXT-2018/2) produced a
complete phasing model consistent with the proposed structure. All non-hydrogen atoms
were refined anisotropically by full-matrix least-squares (SHELXL-2019/3). All carbon-
bonded hydrogen atoms were placed using a riding model with their positions constrained
relative to their parent atom using the appropriate HFIX command in SHELXL.

Supplementary Materials: The following supporting information is available online: 1H, 19F, 13C
NMR spectra and GC-MS for 1.
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