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Abstract: Viologens are a highly advantageous class of compounds for the synthesis of functional
materials. Owing to their versatile structure, they can embed additional conjugated moieties, thus
representing a convenient platform, for example for organic semiconductors and other energy-related
uses. A straightforward synthesis of an extended viologen containing a bithiophene is described here,
together with its UV-visible absorption and fluorescence spectroscopy, showing multiple absorption
and emission bands. Thanks to its ease of synthesis and optical properties, this organic salt appears
to be of potential interest for various optoelectronic applications.

Keywords: viologen; fluorescent probe; Sonogashira reaction

1. Introduction

The thiophene motif is among the most frequently exploited ones in the construc-
tion of functional extended π-conjugated structures [1,2], both in small molecules and in
polymers [3–5]; indeed, thiophene versatility, stability, ease of functionalization and the
possibility to obtain both oligomers and polymers in a straightforward and controlled way
make its derivatives suitable building blocks for an ever-growing variety of materials [6].
The field of organic semiconductors [7,8], in particular, greatly profits from oligo- and
polythiophenes, thanks to their optoelectronic properties, such as luminescence, charge
carrier mobility and tunability of the HOMO-LUMO energy gap, which can be adjusted
by varying both the number of thiophene subunits and the chemical nature and posi-
tion of substituents on the heteroaromatic rings. For these reasons, some of the most
investigated applications of oligo- and polythiophenes are represented by organic light-
emitting diodes (OLEDs) [9], organic field-effect transistors (OFETs) [10], organic solar cells
(OSCs) and other photovoltaic applications [11,12], and conductivity-based sensors and
biosensors [13,14].

Another extensively studied family of heterocycle-containing compounds finding
many optoelectronic applications is represented by the so-called viologens [15,16], that is,
quaternary 4,4′-bipyridinium salts, for which several readily accessible synthetic methods
have been developed. These compounds are especially known for their redox properties
and electrochromism, their electron-accepting capability and their ability to form charge-
transfer complexes, therefore being of great interest for electrochromic devices, memory
devices, energy storage and production, among others [17]. An interesting feature of
viologens, besides the tunability of their physico-chemical properties by different function-
alizations on both the carbon and nitrogen atoms of the pyridyl ring, is that they retain their
characteristics even if the quaternarized pyridines are not directly connected, provided that
conjugation through the spacer subunits is ensured, thus forming extended viologens that
show a virtually limitless structural variability.

A very simple and efficient synthesis of a new extended viologen containing a bithio-
phene core, linked to the quaternary pyridinium rings by triple bonds, is presented here, to-
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gether with the description of its UV-visible absorption and fluorescence spectra; this water-
soluble salt shows interesting light-absorption and emission features and thus presents a
potential use as a fluorescent probe in applications such as fluorescence-based sensors.

2. Results and Discussion

The preparation of the extended viologen 4 was accomplished by a four-step synthesis
(Scheme 1), starting from commercially available 5,5′-diiodo-2,2′-bithiophene, which could
be easily functionalized through a palladium-catalyzed cross-coupling reaction, allowing for
linkage with a great variety of conjugated moieties. In particular, the introduction of acetylenic
units, afforded by the well-established Sonogashira reaction [18], appeared as a particularly
favorable choice for a twofold reason: firstly, the widely investigated effectiveness of triple
bonds in establishing conjugation and enabling electron transport [19,20]; and secondly, their
linear geometry, allowing in principle the rotation of aromatic rings attached to the sp carbons,
which could greatly affect both the structural and optical properties of compounds.
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Scheme 1. Synthesis of product 4; i. Pd(PPh3)4 (5 mol%), CuI (10 mol%), TMSA, toluene/i-Pr2NH 7:3,
r.t., 24 h; ii. KOH, THF/MeOH, r.t., 16 h; iii. 4-Iodopyridine, Pd(PPh3)2Cl2 (20 mol%), CuI (10 mol%),
THF/Et3N, 60 ◦C, 24 h; iv. MeI, CH2Cl2, 40 ◦C, 24 h.

The synthesis then started with a palladium-copper-catalyzed reaction between 5,5′-
diiodo-2,2′-bithiophene and the inexpensive building block trimethylsilylacetylene, ac-
cording to a classic literature procedure [21], in a toluene/diisopropylamine mixture; the
reaction gave the trimethylsilyl-protected bithiophene derivative 1, obtained as a yellow
solid with a nearly quantitative isolated yield (99%). This product was subsequently con-
verted into the corresponding terminal diyne by stirring in the presence of KOH overnight
at room temperature in a THF/MeOH mixture, affording 5,5′-diethynyl-2,2′-bithiophene
2 as a pale brown solid with 89% yield after aqueous workup and extraction with CHCl3
followed by column chromatography.

The subsequent introduction of the pyridyl rings was achieved through iterated
Sonogashira coupling between the dialkyne 2 and 2 equivalents of 4-iodopyridine, which
led to the formation of 5,5′-bis(pyridin-4-ylethynyl)-2,2′-bithiophene 3, obtained in 68%
yield after chromatographic purification, as a bright yellow solid. This compound was
finally converted into the corresponding quaternary bipyridinium salt 4 by methylation
of the nitrogen atoms, carried out in CH2Cl2 at 40 ◦C with an excess of iodomethane. The
expected product 4, insoluble in the reaction medium, precipitated from the solution upon
formation and was subsequently isolated by filtration of the mixture as a bright orange
powder, in 83% yield; 1H-NMR and 13C-NMR in DMSO-d6 confirmed its identity and
purity, without the need for further purification.

Although we did not perform 2D NMR experiments, the following signal assignments
are proposed in the 1D spectra, on the basis of the predicted structure of the compound.
The 1H-NMR spectrum of 4 (Figure S1) shows a singlet at δ 4.33 ppm, attributable to the
methyl groups attached to pyridine nitrogen atoms. As regards the pyridine hydrogen
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signals, the protons in positions 2 and 3, involved in a second-order AA’XX’ spin system,
give multiplets at δ 9.00 and δ 8.25, respectively. The signals of protons on the thiophene
rings can be easily detected as two doublets (J = 3.9 Hz) at δ 7.76 ppm and 7.67 ppm.

As regards the 13C-NMR spectrum (Figure S2), a signal at δ 48.3 ppm is observed for
the methyl groups, whereas the sp carbons of the triple bonds produce signals at 95.4 and
91.9 ppm. For the aromatic portion, the signal at δ 146.0 ppm is easily ascribed to carbons
adjacent to nitrogen on the pyridyl rings, while the one at δ 128.8 ppm is attributable to
those in position 3. The quaternary pyridyl carbon bearing the acetylene moiety afforded
the signal at δ 138.0 ppm; lastly, the quaternary thiophene carbons produce signals at δ
119.9 and 140.9 ppm, for those attached to the triple bonds and those adjacent to the other
thiophene ring, respectively, and the last two signals at δ 138.6 and 127.6 ppm are attributed
to the C-H thiophene carbons.

The product resulted in being fairly soluble in H2O and methanol; its UV-visible
absorption spectrum (Figure 1) was measured in water solution (c = 2.5× 10−4 M). It shows
several intense absorption bands between 190 and 500 nm: the first and most intense of
these has λmax = 193 nm, with εmax = 7988 M−1cm−1; then, two other bands in the UV region
are present, with λmax = 225 nm and 275 nm, respectively, and finally a large and intense
absorption band in the visible region presents λmax = 444 nm and εmax = 6658 M−1cm−1.
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Figure 1. UV-visible absorption spectrum (H2O, c = 2.5 × 10−4 M) of 4.

Fluorescence spectra (Figure 2) of 4 were also measured in water solution, using the
same concentration of the absorption one and two different λ of excitation, namely 225 and
275 nm, and they are characterized by multiple emission bands in the visible region, whose
intensity depends on the λexc. In the spectrum obtained using λexc = 225 nm (Figure 2a),
a very sharp peak with a maximum at λ = 455 nm can be seen, together with a peak of
very modest intensity having a maximum at λ = 494 nm and another weak and large band
between 500 and 645 nm. As for the spectrum corresponding to λexc = 275 nm (Figure 2b),
besides showing a very weak band centered at about 395 nm, it is characterized by an
intense convoluted band between 475 and 675 nm: it presents a sharp peak at λ = 544 nm,
and another weaker peak can be identified with a maximum for λ = 597 nm.
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3. Materials and Methods

All the reagents were purchased from Merck and TCI and used as received unless
otherwise stated. Dry solvents were distilled according to standard procedures: tetrahy-
drofuran was distilled over Na/benzophenone, triethylamine and diisopropylamine were
distilled over KOH, and dichloromethane was distilled over P2O5. Reactions and chro-
matographic separations were monitored by thin layer chromatography (TLC) on 0.25 mm
silica gel plates (Merck Kieselgel 60 F254) and revealed under a UV lamp (λ = 254 nm).
Column chromatography was carried out on silica gel Merck-Kieselgel 60 (0.063–0.20 mm,
70–230 mesh) as a stationary phase.

1H and 13C-NMR spectra were recorded on a Bruker Avance 400 spectrometer (400 MHz)
using 5 mm tubes and chloroform-d (CDCl3) and dimethyl sulfoxide-d6 (DMSO-d6) as
solvents. Spectral data of compounds 1 and 2 are in agreement with literature ones [22].

The UV-Vis spectrum was acquired with a Shimadzu (Japan) UV2600 UV-vis spec-
trophotometer, while fluorescence spectra were measured on a Cary Eclipse (Varian) spec-
trofluorometer using SUPRASIL quartz cells (10 × 10 mm).

Synthesis of 5,5′-bis((trimethylsilyl)ethynyl)-2,2′-bithiophene (1): In a flame-dried Schlenk
tube under argon atmosphere, 4 mL of a degassed and anhydrous 7:3 toluene/i-Pr2NH
mixture are introduced, followed by 400 mg (0.957 mmol) of 5,5′-diiodo-2,2′-bithiophene.
Then, 55 mg (0.048 mmol) of Pd(PPh3)4, 18 mg (0.096 mmol) of CuI and 0.32 mL (2.31 mmol)
of trimethylsilylacetylene are added, and the mixture is stirred for 24 h at room temperature.
After that, the solvents are evaporated under vacuum, and the residue is purified by column
chromatography in hexane in order to afford 350 mg (0.956 mmol) of pure 1 (99%) as a
yellow solid. 1H-NMR (CDCl3, 400 MHz) δ 7.13 (d, 2H, J = 3.8 Hz), 7.02 (d, 2H, J = 3.8 Hz),
0.28 (s, 18H); 13C-NMR (CDCl3, 100 MHz) δ 138.0, 133.5, 123.8, 122.5, 100.5, 97.2, −0.2.

Synthesis of 5,5′-diethynyl-2,2′-bithiophene (2): In a flame-dried round-bottom flask
under argon atmosphere, 350 mg (0.956 mmol) of 1 are dissolved in 5 mL of anhydrous
THF, and a solution of 325 mg (5.8 mmol) of anhydrous KOH in 2.5 mL of CH3OH is added;
the reaction mixture is stirred at room temperature overnight; then, CHCl3 is added, and
the solution is extracted with water (2 × 10 mL) and brine (2 × 10 mL). The organic phase
is dried over anhydrous Na2SO4 and concentrated under vacuum, after which the crude
product is purified by column chromatography in hexane, affording 183 mg (0.854 mmol)
of pure 2 as a pale brown solid (89%). 1H-NMR (CDCl3, 400 MHz) δ 7.19 (d, 2H, J = 3.8 Hz),
7.05 (d, 2H, J = 3.8 Hz), 3.44 (s, 2H); 13C-NMR (CDCl3, 100 MHz) δ 138.1, 134.0, 123.9, 121.5,
82.7, 76.7.

Synthesis of 5,5′-bis(pyridin-4-ylethynyl)-2,2′-bithiophene (3): In a flame-dried Schlenk
tube under argon atmosphere, 183 mg (0.854 mmol) of 2 are dissolved in 10 mL of a degassed
and anhydrous 1:1 THF/Et3N mixture; then, 120 mg (0.171 mmol) of Pd(PPh3)2Cl2, 16 mg
(0.086 mmol) of CuI and 528 mg (2.59 mmol) of 4-iodopyridine are added. The mixture is
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stirred for 24 h at 60 ◦C, after which it is cooled, washed with a saturated NH4Cl solution,
and the aqueous phase is washed with ethyl acetate (5 × 15 mL). The combined organic
phases are dried over anhydrous Na2SO4 and concentrated under vacuum; then, the crude
product is purified by column chromatography (1:1→ 2:8 hexane/ethyl acetate) in order to
afford 214 mg (0.581 mmol) of pure 3 as a yellow solid (68%). 1H-NMR (CDCl3, 400 MHz) δ
8.65 (m, 4H), 7.38 (m, 4H), 7.28 (d, 2H, J = 4.4 Hz), 7.15 (d, 2H, J = 4.4 Hz); 13C-NMR (CDCl3,
100 MHz) δ 149.8, 139.1, 134.3, 130.8, 125.2, 124.5, 121.6, 92.1, 87.0.

Synthesis of 4,4′-([2,2′-bithiophene]-5,5′-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium)
diiodide (4): In a flame-dried Schlenk tube, 214 mg (0.581 mmol) of 3 are dissolved in 15 mL
of anhydrous CH2Cl2, and 2.5 mL (40.0 mmol) of CH3I are added under argon atmosphere.
The mixture is stirred at 40◦ C for 24 h, after which it is cooled to room temperature and
filtered under vacuum; the solid is washed with portions of CH2Cl2 and dried for 1 h
under suction in order to yield 316 mg (0.484 mmol) of pure 4 as a dark orange solid
(83%). 1H-NMR (DMSO-d6, 400 MHz, Figure S1) δ 9.00 (m, 4H), 8.25 (m, 4H), 7.76 (d, 2H,
J = 3.9 Hz), 7.67 (d, 2H, J = 3.9 Hz), 4.33 (s, 6H); 13C-NMR (DMSO-d6, 100 MHz, Figure S2)
δ 146.0, 140.9, 138.6, 138.0, 128.8, 127.6, 119.9, 95.4, 91.9, 48.3.

4. Conclusions

A new bithiophene-containing extended viologen with acetylene moieties has been
synthesized in four steps, with a total yield of 50%, and its light absorption and emission in
H2O solution have been studied by UV-visible absorption and fluorescence spectroscopy. They
show intense and composite absorbance and emission bands, especially in the visible range;
this compound thus exhibits potential as a candidate in fluorescence-related applications.

Supplementary Materials: 1H (Figure S1) and 13C NMR (Figure S2) spectra of the title compound
can be downloaded.
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