SUPPORTING INFORMATION

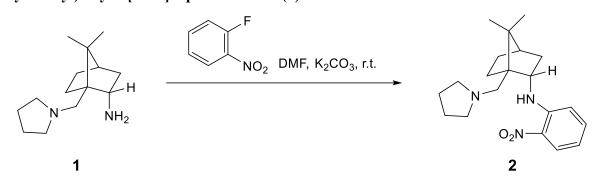
1-{(1*S*,2*S*,4*R*)-7,7-Dimethyl-1-[(pyrrolidin-1-yl)methyl]bicyclo[2.2.1]heptan-2-yl}-1*H*-benzo[*d*]imidazole

Luka Ciber, Franc Požgan, Jurij Svete, Bogdan Štefane, and Uroš Grošelj*

Chair of Organic Chemistry, Faculty of Chemistry and Chemical Technology, University of

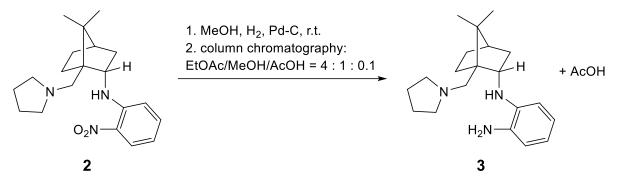
Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; E-mail: uros.groselj@fkkt.uni-lj.si

Table of contents

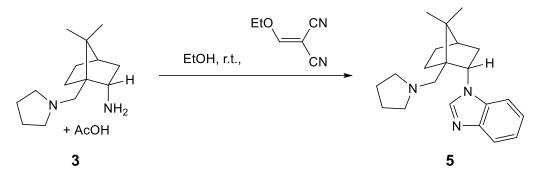

1. Materials and methods, syntheses, and characterization	2
2. NMR spectra	6
3. IR spectra	13
4. MS spectra	15
5. References	16

1. Materials and methods, syntheses, and characterization

Solvents for extractions and chromatography were of technical grade and were distilled prior to use. Extracts were dried over technical grade anhydrous Na₂SO₄. Melting points were determined on a Kofler micro hot stage and on SRS OptiMelt MPA100 - Automated Melting Point System (Stanford Research Systems, Sunnyvale, California, United States). The NMR spectra were obtained on a Bruker UltraShield 500 plus (Bruker, Billerica, Massachusetts, United States) at 500 MHz for ¹H and 126 MHz for ¹³C nucleus, using CDCl₃ with TMS as the internal standard, as solvents. Mass spectra were recorded on an Agilent 6224 Accurate Mass TOF LC/MS (Agilent Technologies, Santa Clara, California, United States), IR spectra on a Perkin-Elmer Spectrum BX FTIR spectrophotometer (PerkinElmer, Waltham, Massachusetts, United States). Column chromatography (CC) was performed on silica gel (Silica gel 60, particle size: 0.035-0.070 mm (Sigma-Aldrich, St. Louis, Missouri, United States)). All the commercially available chemicals used were purchased from Sigma-Aldrich (St. Louis, Missouri, United States). Catalytic hydrogenation was performed on a Parr Pressure Reaction Hydrogenation Apparatus (Moline, IL, USA). The optical rotation of optical active substances was measured on a Perkin Elmer 241 MC Polarimeter (PerkinElmer, Waltham, MA, USA) equipped with a Na lamp (sodium emission lines at 589.0 nm) at 20°C.


(1S,2S,4R)-7,7-Dimethyl-1-(pyrrolidin-1-ylmethyl)bicyclo[2.2.1]heptan-2-amine (1)¹ was prepared following the literature procedure.

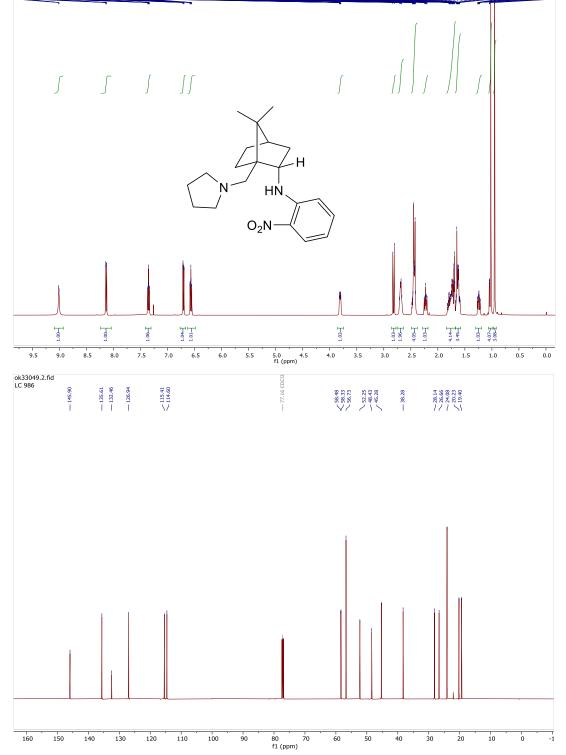
Synthesis of (1*S*,2*S*,4*R*)-7,7-dimethyl-*N*-(2-nitrophenyl)-1-(pyrrolidin-1ylmethyl)bicyclo[2.2.1]heptan-2-amine (2)


A mixture of (15,25,4R)-7,7-dimethyl-1-(pyrrolidin-1-ylmethyl)bicyclo[2.2.1]heptan-2-amine (1) (1.75 mmol, 343 mg), 1-fluoro-2-nitrobenzene (1.75 mmol, 0.185 mL), K₂CO₃ (1.75 mmol, 0.242 g), and DMF (5 mL) was stirred at 25°C for 24 h. Volatile component were evaporated *in vacuo*. The residue was purified by column chromatography (EtOAc). Fractions containing the product **2** were combined and volatile components evaporated *in vacuo*. Yield: 553 mg (1.61 mmol, 92%) of yellow solid; mp = 83.5–85.3°C. ¹H-NMR (500 MHz, CDCl₃): δ 0.95 (*s*, 3H); 1.02 (*s*, 3H); 1.01 – 1.06 (*m*, 1H); 1.24 (*ddd*, *J* = 4.4, 9.5, 12.3 Hz, 1H); 1.58 – 1.68 (*m*, 3H); 1.68 – 1.84 (*m*, 4H); 2.23 (*ddd*, *J* = 4.1, 9.5, 13.5 Hz, 1H); 2.38 – 2.49 (*m*, 4H); 2.69 (*q*, *J* = 7.3 Hz, 2H); 2.82 (*d*, *J* = 13.4 Hz, 1H); 3.81 (*d*, *J* = 10.1 Hz, 1H); 6.57 (*ddd*, *J* = 1.3, 6.9, 8.4 Hz, 1H); 6.71 (*dd*, *J* = 1.3, 8.9 Hz, 1H); 7.35 (*ddd*, *J* = 1.7, 6.9, 8.7 Hz, 1H); 8.14 (*dd*, *J* = 1.7, 8.7 Hz, 1H); 9.01 (*s*, 1H). ¹³C-NMR (126 MHz, CDCl₃): δ 19.40, 20.23, 24.08, 26.66, 28.14, 38.28, 45.28, 48.43, 52.25, 56.73, 58.33, 58.48, 114.60, 115.41, 126.94, 132.46, 135.61, 145.90.

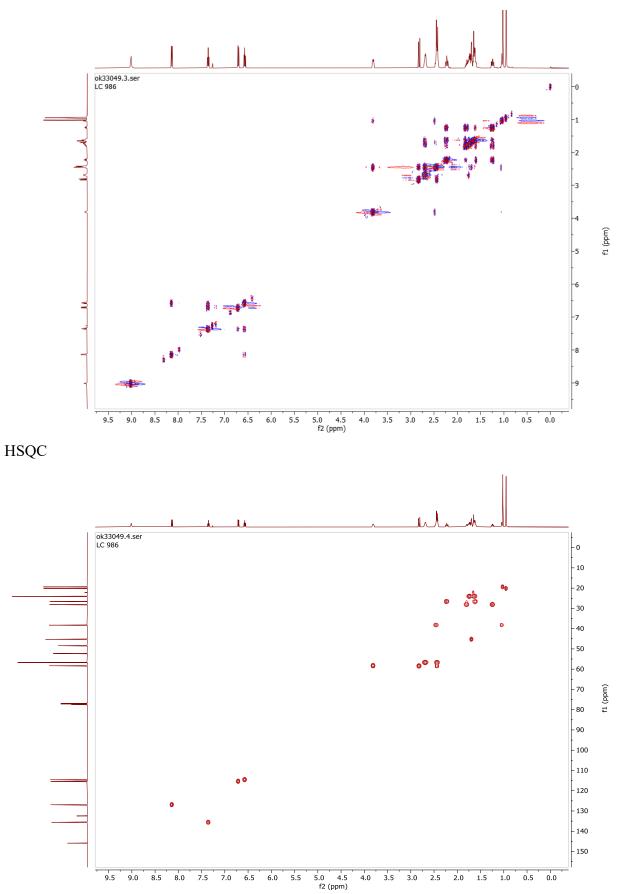
Synthesis of N¹-((1*S*,2*S*,4*R*)-7,7-dimethyl-1-(pyrrolidin-1-ylmethyl)bicyclo[2.2.1]heptan-2-yl)benzene-1,2-diamine (3)

A mixture of (1S,2S,4R)-7,7-dimethyl-N-(2-nitrophenyl)-1-(pyrrolidin-1-ylmethyl)bicyclo-[2.2.1]heptan-2-amine (2) (0.83 mmol, 285 mg), Pd-C ($\omega = 10\%$, 20 mg), and MeOH (5 mL) was shaken in a Paar shaker hydrogenation apparatus in H₂ atmosphere (3 bar) at 25°C for 6 h. The reaction mixture was filtrated to remove Pd-C, volatile components were evaporated in The residue was purified by column chromatography (Silica Gel 60; vacuo. EtOAc/MeOH/AcOH = 4:1:0.1). Fractions containing the product **3** were combined and volatile components evaporated in vacuo. Yield: 262 mg (0.70 mmol, 85%, acetic acid to amine **3** in a 1 : 1 ratio) of colorless oil. *v*_{max} 3378, 2954, 2877, 2791, 1616, 1571, 1507, 1441, 1416, 1389, 1354, 1323, 1254, 1231, 1156, 1069, 1037, 910, 868, 777, 740, 695, 670 cm⁻¹. ¹H-NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta 0.95 (s, 3\text{H})$; 0.98 - 1.03 (m, 1H); 1.02 (s, 3H); 1.33 (ddd, J = 4.6, 9.5, 1.33)12.4 Hz, 1H); 1.62 – 1.69 (*m*, 1H); 1.71 (*t*, *J* = 4.6 Hz, 1H); 1.79 – 1.88 (*m*, 5H); 1.99 (*s*, 3H); 2.41 – 2.57 (*m*, 2H); 2.88 (*d*, *J* = 2.5 Hz, 2H); 2.94 (*br s*, 2H); 3.12 (*br s*, 2H); 3.71 (*ddd*, *J* = 1.8, 3.9, 9.6 Hz, 1H); 6.18 (*br s*, 4H); 6.49 (*dd*, *J* = 1.3, 7.6 Hz, 1H); 6.62 – 6.67 (*m*, 2H); 6.71 (ddd, J = 2.7, 6.2, 7.7 Hz, 1H). ¹³C-NMR (126 MHz, CDCl₃): δ 19.33, 20.16, 22.93, 23.76, 26.34, 28.27, 38.34, 45.03, 49.77, 51.13, 56.93, 57.01, 60.65, 112.16, 115.23, 118.59, 119.04, 136.11, 136.25, 176.69.

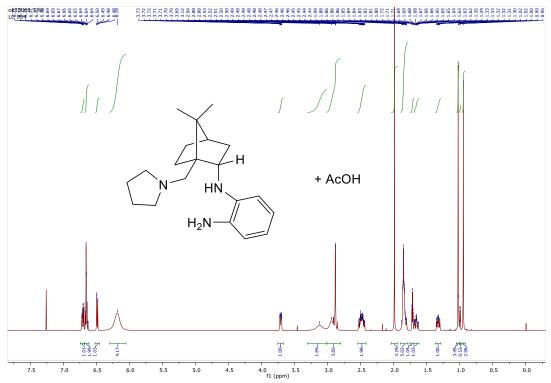
Synthesis of 1-((1*S*,2*S*,4*R*)-7,7-dimethyl-1-(pyrrolidin-1-ylmethyl)bicyclo[2.2.1]heptan-2yl)-1*H*-benzo[*d*]imidazole (5)

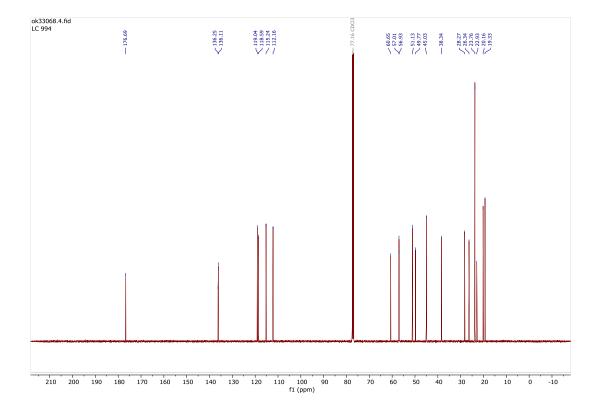


A mixture of N^1 -((1S,2S,4R)-7,7-dimethyl-1-(pyrrolidin-1-ylmethyl)bicyclo[2.2.1]heptan-2yl)benzene-1,2-diamine (3) (157 mg, 0.42 mmol; acetic acid to amine 3 in a 1 : 1 ratio) and 2-(ethoxymethylene)malononitrile (61 mg, 0.50 mmol) in dichloromethane (2 mL) was stirred at 25°C for 24 h. Volatile components were evaporated in vacuo. The residue was purified by column chromatography (Silica Gel 60; EtOAc/petroleum ether = 3 : 1). Fractions containing the product 5 were combined and volatile components evaporated in vacuo. Yield: 118 mg (0.365 mmol, 87%) of colorless semisolid. $[\alpha]_D^{r.t.} = -55.9$ (0.16, MeOH). EI-HRMS: m/z =324.2429 (MH⁺); $C_{21}H_{29}N_3$ requires: m/z = 324.2434 (MH⁺); v_{max} 2958, 2781, 2192, 1613, 1562, 1482, 1456, 1420, 1390, 1370, 1351, 1329, 1284, 1225, 1196, 1111, 1073, 1009, 907, 888, 797, 783, 766, 737, 643 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃): δ 0.98 – 1.10 (*m*, 2H); 1.06 (*s*, 3H); 1.17 (s, 3H); 1.17 – 1.26 (m, 2H); 1.56 – 1.66 (m, 2H); 1.73 – 1.83 (m, 1H); 1.86 (t, J =4.5 Hz, 1H); 1.89 - 2.01 (m, 3H); 2.03 - 2.09 (m, 1H); 2.14 - 2.24 (m, 2H); 2.36 (d, J = 13.1Hz, 1H); 2.59 – 2.69 (*m*, 1H); 2.78 (*d*, *J* = 13.2 Hz, 1H); 4.86 (*ddd*, *J* = 2.4, 5.0, 11.9 Hz, 1H); 7.19 - 7.25 (m, 2H); 7.39 - 7.44 (m, 1H); 7.71 - 7.77 (m, 1H); 8.17 (s, 1H). ¹³C-NMR (126) MHz, CDCl₃): δ 19.41, 20.79, 23.50, 27.00, 28.52, 37.42, 45.03, 50.85, 54.00, 55.64, 57.07, 59.81, 111.64, 119.62, 121.82, 121.96, 135.87, 142.22, 142.72.

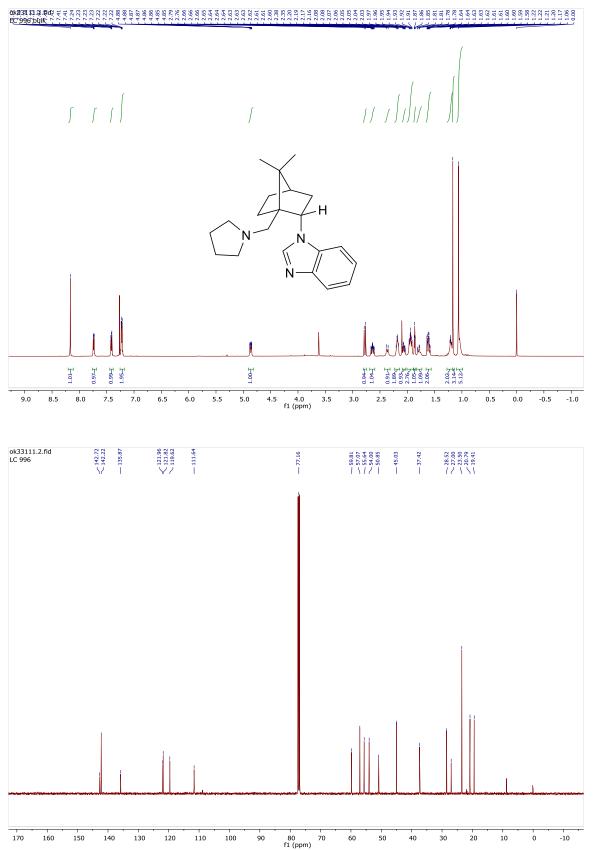

2. NMR spectra

(1S,2S,4R)-7,7-dimethyl-N-(2-nitrophenyl)-1-(pyrrolidin-1-

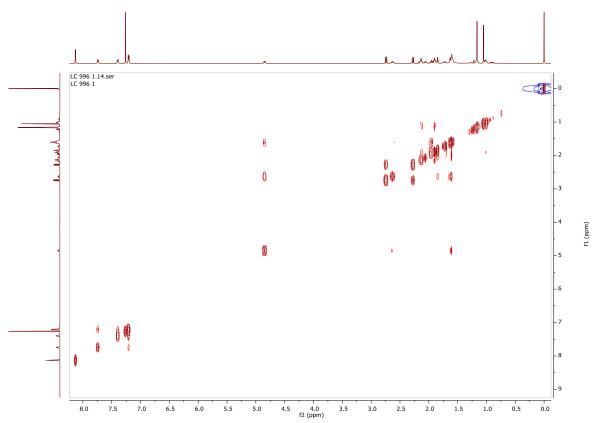

ylmethyl)bicyclo[2.2.1]heptan-2-amine (2)

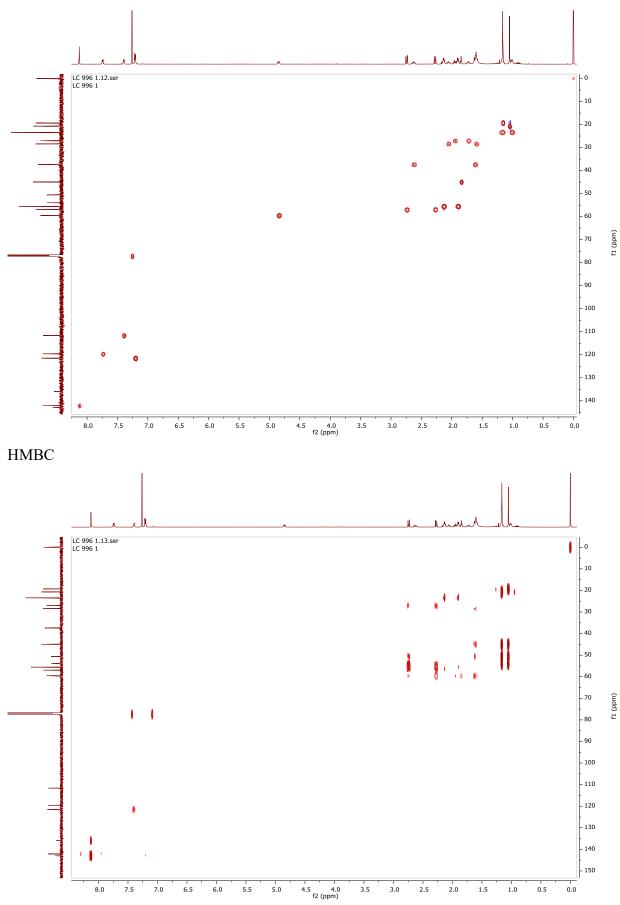


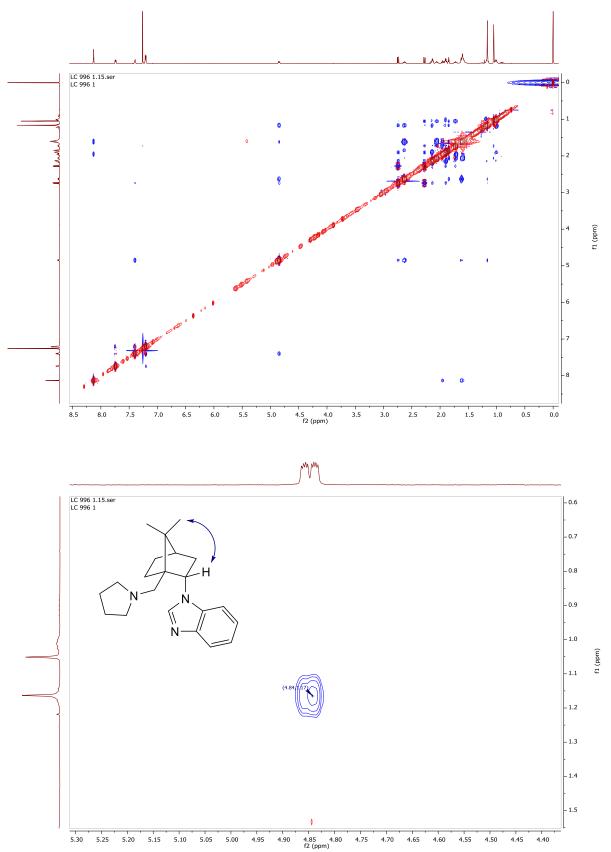
COSY

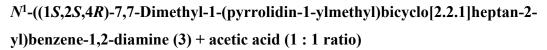


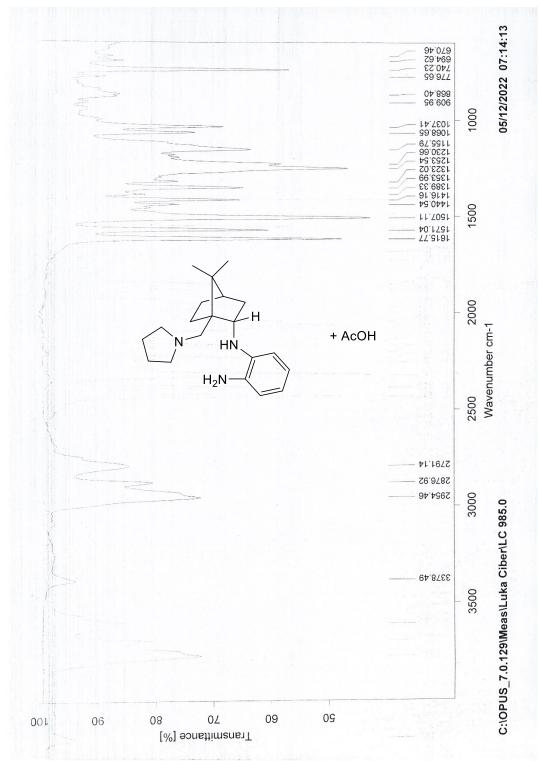
*N*¹-((1*S*,2*S*,4*R*)-7,7-Dimethyl-1-(pyrrolidin-1-ylmethyl)bicyclo[2.2.1]heptan-2yl)benzene-1,2-diamine (3) + acetic acid (1 : 1 ratio)


1-((1*S*,2*S*,4*R*)-7,7-Dimethyl-1-(pyrrolidin-1-ylmethyl)bicyclo[2.2.1]heptan-2-yl)-1*H*benzo[*d*]imidazole (5)

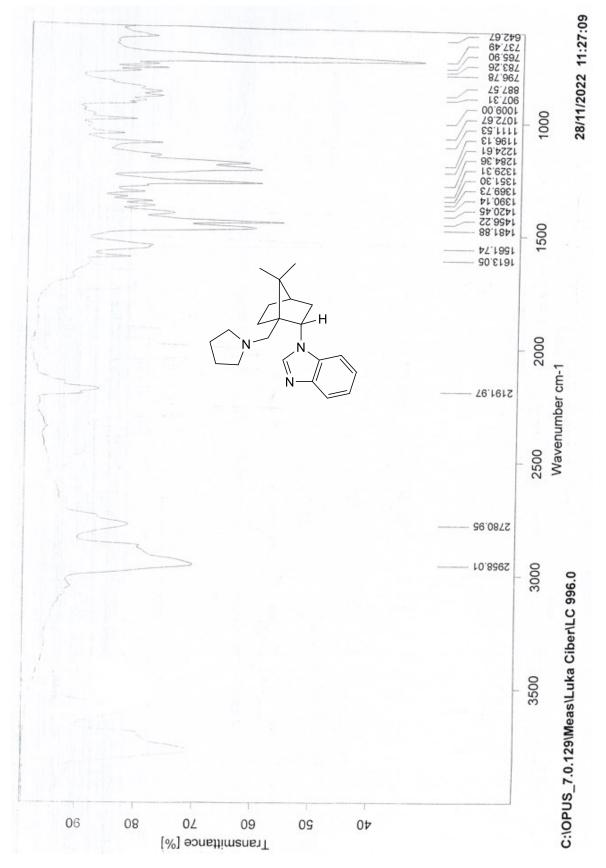

DEPT 135


COSY

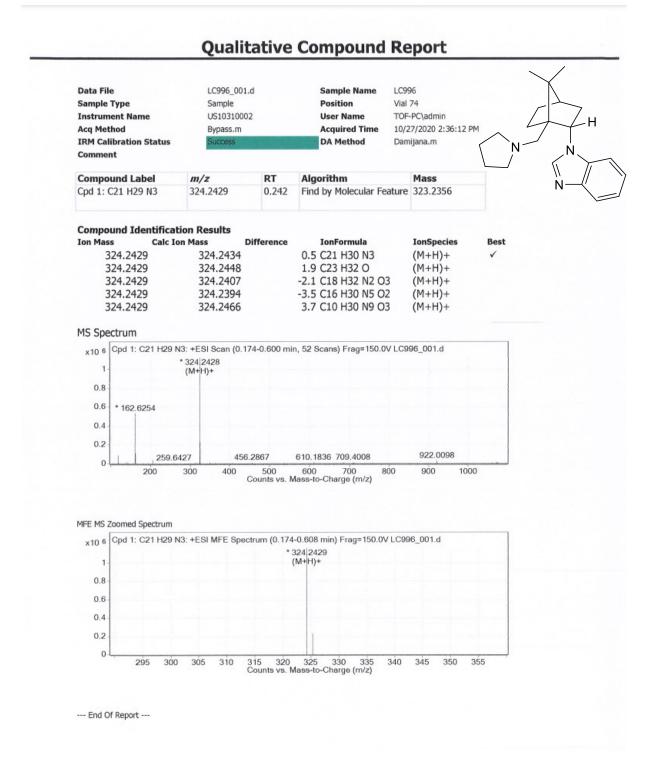




NOESY



3. IR spectra



1-((1*S*,2*S*,4*R*)-7,7-Dimethyl-1-(pyrrolidin-1-ylmethyl)bicyclo[2.2.1]heptan-2-yl)-1*H*-benzo[*d*]imidazole (5)

4. MS spectra 1-((1*S*,2*S*,4*R*)-7,7-Dimethyl-1-(pyrrolidin-1-ylmethyl)bicyclo[2.2.1]heptan-2-yl)-1*H*benzo[*d*]imidazole (5)

5. References

¹ S. Ričko, J. Svete, B. Štefane, A. Perdih, A. Golobič, A. Meden, U. Grošelj, 1,3-Diamine-Derived Bifunctional Organocatalyst Prepared from Camphor, *Adv. Synth. Catal.* **2016**, *358*, 3786–3796, <u>https://doi.org/10.1002/adsc.201600498</u>.