
Citation: Koustenis, K.; Dovrolis, N.;

Viazis, N.; Ioannou, A.; Bamias, G.;

Karamanolis, G.; Gazouli, M. Insights

into Therapeutic Response Prediction

for Ustekinumab in Ulcerative Colitis

Using an Ensemble Bioinformatics

Approach. Int. J. Mol. Sci. 2024, 25,

5532. https://doi.org/10.3390/

ijms25105532

Academic Editors: Alexandre G. De

Brevern and Fabio Polticelli

Received: 2 April 2024

Revised: 7 May 2024

Accepted: 16 May 2024

Published: 18 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Insights into Therapeutic Response Prediction for Ustekinumab
in Ulcerative Colitis Using an Ensemble Bioinformatics Approach
Kanellos Koustenis 1,†, Nikolas Dovrolis 2,† , Nikos Viazis 1 , Alexandros Ioannou 3, Giorgos Bamias 4,
George Karamanolis 5 and Maria Gazouli 2,*

1 Gastroenterology Department, Evangelismos-Polykliniki General Hospital, 115 27 Athens, Greece;
k.koustenis@yahoo.gr (K.K.); nikos.viazis@gmail.com (N.V.)

2 Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian
University of Athens, Michalakopoulou 176, 115 27 Athens, Greece; ndovroli@med.uoa.gr

3 Gastroenterology Unit, Alexandra Hospital, 115 28 Athens, Greece
4 GI-Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens,

Sotiria Hospital, 115 27 Athens, Greece; gbamias@gmail.com
5 Gastroenterology Unit, Second Department of Surgery, Aretaieio Hospital, Medical School, National and

Kapodistrian University of Athens, 115 27 Athens, Greece; georgekaramanolis@yahoo.co.uk
* Correspondence: mgazouli@med.uoa.gr
† These authors contributed equally to this work.

Abstract: Introduction: Optimizing treatment with biological agents is an ideal goal for patients
with ulcerative colitis (UC). Recent data suggest that mucosal inflammation patterns and serum
cytokine profiles differ between patients who respond and those who do not. Ustekinumab, a
monoclonal antibody targeting the p40 subunit of interleukin (IL)-12 and IL-23, has shown promise,
but predicting treatment response remains a challenge. We aimed to identify prognostic markers
of response to ustekinumab in patients with active UC, utilizing information from their mucosal
transcriptome. Methods: We performed a prospective observational study of 36 UC patients initiating
treatment with ustekinumab. Colonic mucosal biopsies were obtained before treatment initiation for
a gene expression analysis using a microarray panel of 84 inflammatory genes. A differential gene
expression analysis (DGEA), correlation analysis, and network centrality analysis on co-expression
networks were performed to identify potential biomarkers. Additionally, machine learning (ML)
models were employed to predict treatment response based on gene expression data. Results:
Seven genes, including BCL6, CXCL5, and FASLG, were significantly upregulated, while IL23A and
IL23R were downregulated in non-responders compared to responders. The co-expression analysis
revealed distinct patterns between responders and non-responders, with key genes like BCL6 and
CRP highlighted in responders and CCL11 and CCL22 in non-responders. The ML algorithms
demonstrated a high predictive power, emphasizing the significance of the IL23R, IL23A, and BCL6
genes. Conclusions: Our study identifies potential biomarkers associated with ustekinumab response
in UC patients, shedding light on its underlying mechanisms and variability in treatment outcomes.
Integrating transcriptomic approaches, including gene expression analyses and ML, offers valuable
insights for personalized treatment strategies and highlights avenues for further research to enhance
therapeutic outcomes for patients with UC.

Keywords: ulcerative colitis; ustekinumab; bioinformatics; prognostic markers

1. Introduction

Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD), characterized by
an intermittent and often recurrent course [1]. Its pathogenesis is a complex combination of
genetic, immunological, and environmental factors [2]. The prevalence of UC is higher in
Western societies, with newly industrialized countries experiencing a significant rise in its
incidence [3]. Given the chronic nature of the disease, prolonged treatment is frequently
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necessary, accompanied by frequent hospitalizations that impact patients’ quality of life
and contribute to the strain on healthcare systems [4,5].

Monoclonal antibodies targeting tumor necrosis factor-α (TNF-α) have revolutionized
treatment, emerging as the most effective and well-established option for UC [6]. As our
understanding of its underlying mechanisms deepens, the range of available treatments
expands, incorporating other biologic and innovative target therapies, such as monoclonal
antibodies against the α4β7 integrin receptor, those suppressing the interleukin-mediated
immune response, and molecules interfering with Janus kinase (JAK) pathways [7]. The
advent of biological agents has marked significant progress in inducing and maintaining
remission, reducing hospitalizations, and mitigating the need for surgery in severe or
recurrent cases. Nevertheless, more than half of patients exhibit inadequate responses or a
loss of response to any available treatment over time [8,9]. Ustekinumab is a human IgG1
monoclonal antibody to the p40 subunit of IL-12 and IL-23 that has been recently approved
for treatment of adults with UC. The UNIFI clinical trial and subsequent real-world studies
have proven its effectiveness and safety for the induction and maintenance of UC remission.
However, only 40% to 58% of patients are expected to achieve symptomatic remission
within the first 6 months of treatment, as per observational studies, leading to the precise
selection of patients with a higher likelihood of responding to this treatment [10].

At present, there is a lack of definitive prognostic markers of response to any bio-
logical agent, posing a challenge in terms of personalized treatment strategies. Previous
studies have attempted to correlate genetic polymorphisms found in IBD with response to
biological therapies, but these correlations have been weak, and the use of other methods
of molecular biology and genetics, such as transcriptomics technologies, are promoted for
further research [11,12]. Several attempts have been made to describe the transcriptional
landscape in patients with UC, mainly by hybridization methods, such as microarrays
of nucleotide oligomers [13,14]. Recent data indicate variations in mucosal inflammation
patterns and serum cytokine profiles between responders and non-responders to biologic
therapy. Studies have primarily focused on anti-TNF agents [15,16]. Similar studies involv-
ing vedolizumab show that its efficacy is linked to specific gene expression profiles prior to
treatment and the dysregulation of specific pathways of inflammation [17,18].

Given the recent approval of ustekinumab for UC, a notable gap exists in transcrip-
tional studies specific to this drug, with the current prognostic models including mainly
clinical parameters with vague results [10]. The aim of our study was to investigate prog-
nostic markers of response to ustekinumab of patients with UC, utilizing information from
their colonic transcriptome before treatment initiation.

2. Results
2.1. A Seven-Gene Signature Has the Potential to Predict Response to Ustekinumab

As described in our methodology, a DGEA was performed for gene expression at
baseline for the two sample groupings of the responders, who were used as controls, and
the non-responders. Only seven genes, as presented in Figure 1, effectively achieved
p < 0.05 due to what appears to be a high level of variability. In the non-responders, B-cell
lymphoma 6 (BCL6), C-X-C motif chemokine ligand 5 (CXCL5), and Fas ligand (FASLG)
show positive fold upregulations of 5.68, 5.67, and 3.93, respectively. Tumor necrosis
factor ligand superfamily member 14 (TNFSF14), while achieving statistical significance,
displays a modest upregulation of just 1.38-fold. On the other hand, interleukin-23 receptor
(IL23R), C-C chemokine receptor type 2 (CCR2), and interleukin-23 subunit alpha (IL23A)
are significantly downregulated with fold regulations of −13.59, −16.86, and −24.3, re-
spectively. While these seven genes provide strong indications of their ability to serve as
predictive biomarkers, we wanted to expand our investigation to include all genes that
present two or more times up- or downregulation to better understand the inflammatory
and immunological backgrounds of these patients.
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Figure 1. Genes significantly (p < 0.05) differentially expressed between ustekinumab responders and
non-responders at baseline.

In total, 29 out of the 84 investigated genes appear to be dysregulated using the
aforementioned criteria, including six of the seven statistically significant genes. In detail,
C-X-C motif chemokine ligand 2 (CXCL2) and C-X-C motif chemokine ligand 3 (CXCL3)
show the highest positive fold regulations of 6.95- and 6.66-fold, respectively, indicating
significant perturbation in the non-responders. BCL6, CXCL5, FASLG, C-reactive protein
(CRP), C-C motif chemokine ligand 21 (CCL21), C-X-C motif chemokine receptor 1 (CXCR1),
CD40 molecule (CD40), interleukin-22 (IL22), C-C motif chemokine ligand 11 (CCL11), C-
X-C motif chemokine ligand 1 (CXCL1), C-C motif chemokine ligand 2 (CCL2), C-C motif
chemokine ligand 16 (CCL16), interleukin-17A (IL17A), and interleukin-1 beta (IL1B) also
show expression upregulations ranging from 2.14- to 5.68-fold (Figure 2). As for the
downregulated genes (Figure 3), lymphocyte antigen 96 (LY96), CD40 ligand (CD40LG),
nitric oxide synthase 2 (NOS2), C-X-C motif chemokine ligand 10 (CXCL10), complement
C3a receptor 1 (C3AR1), C-C motif chemokine receptor 1 (CCR1), C-X-C motif chemokine
ligand 9 (CXCL9), integrin subunit beta 2 (ITGB2), C-C motif chemokine ligand 22 (CCL22),
C-C motif chemokine ligand 24 (CCL24), IL23R, CCR2, and IL23A are downregulated,
ranging from −2.07-fold to an impressive −24.3-fold, as previously noted. A summary of
all the up- and downregulated genes in the non-responders with a fold regulation of at
least ±two-fold is presented in Table 1.
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Table 1. Summary of all up- and downregulated genes in non-responders with a fold regulation of at
least ±2-fold.

Gene Fold Upregulation Gene Fold Downregulation

CXCL2 6.95 IL23A −24.3

CXCL3 6.66 CCR2 −16.86

BCL6 5.68 IL23R −13.59

CXCL5 5.67 CCL24 −12.61

FASLG 3.93 CCL22 −9.44

CRP 3.04 ITGB2 −2.73

CCL21 3.03 CXCL9 −2.68

CXCR1 2.86 CCR1 −2.63

CD40 2.68 C3AR1 −2.25

IL22 2.61 CXCL10 −2.17

CCL11 2.55 NOS2 −2.13

CXCL1 2.34 CD40LG −2.08

CCL2 2.2 LY96 −2.07

CCL16 2.19

IL17A 2.19

IL1B 2.14

2.2. Inflammation- and Autoimmunity-Related Gene Co-Expression Highlights Unique Biological
Backgrounds of Responders and Non-Responders

In order to delve deeper into the potential biomarkers identified through the DGEA
(those with a fold regulation of at least ±two and TNFSF14), within a broader biological
framework, it is crucial to examine distinct correlation patterns and the networks derived
from them, as elucidated by our analyses. We chose to examine each patient grouping sepa-
rately, aiming to deduce the roles of specific genes in the context of each group. Figure 4
distinctly illustrates that the responders and non-responders manifest contrasting correla-
tion patterns. In the former group, there appears to be less co-expression activity with only
38 genes presenting co-expression, while in the latter group, that number rises to 51. Re-
garding the initial seven genes highlighted from our DGEA, there is a significant difference
between their correlation patterns; for example, BCL6 is prominently featured in the respon-
ders’ results while its correlation activity is almost non-existent in the non-responders. The
opposite can be observed for IL23R and IL23A, which are strongly correlated with many
genes in the non-responders’ group and markedly sparse in the responders’ group. FASLG,
CXCL5, and, to a lesser extent, CCR2 appear to be equally implicated in the activity of both
sample groups, while TNFSF14 did not exhibit a strong correlation with any other gene in
either group.

To help us explore all the correlations further and quantify the gene significance within
each group, we constructed co-expression networks (Figure 5) and applied graph analysis
metrics to them. In the responders’ group, BCL6 and CRP are highlighted as the most
important hubs with a degree centrality (DC) of 9, followed by CCR1 and CCL16 (DC = 8),
C3AR1 (DC = 6), and CCR7 and CSF1 (DC = 4). The results of betweenness centrality (BC)
highlighted a number of genes as important mediators of the network. In ascending order,
the top 10 are CCR1, CRP, CSF1, BCL6, C3AR1, CCL16, CCL11, CD40, CXCL1, and CCR7
with respective BC values of 0.41, 0.27, 0.20, 0.17, 0.16, 0.12, 0.11, 0.11, 0.11, and 0.01. For
the non-responders, the network, as expected from the corresponding correlation results, is
much more complex. Interestingly, the top two hubs highlighted by this approach, CCL11
(DC = 9) and CCL22 (DC = 8), were not genes with a p < 0.05 dysregulation and showed
only a moderate level of upregulation in the non-responders for the former and a moderate
level of downregulation for the latter. The rest of the observed hubs include IL23R and
CCR1 with DC values = 6; C3AR1, CRP, IL22, IL1B, CXCR1, CD40, CCR2, CCL13, CD40LG,
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FASLG, IL1RN, and CXCL10 with DC values = 5; and CCL19, CXCL9, CCL24, and CEBPB
with DC values of 4. By examining the network bottlenecks based on their BC values, we
observe the following genes in the top 10 spots: CCL13 (BC = 0.35), CCL22 (BC =0.33),
CCL11 (BC = 0.18), CCR2 (BC =0.16), IL23R (BC = 0.15), CD40 (BC = 0.14), CRP (BC = 0.14),
C3AR1 (BC = 0.13), CXCR1 (BC = 0.13), and IL1A (BC = 0.11). Once more, we see CCL11
and CCL22 in these results, which highlights their crucial significance within the network.
Studying the results of the two networks side by side, we also find some commonalities,
like CRP, CCR1, and C3AR1 as hubs in both and CCR1, CRP, C3AR1, CCL11, and CD40 as
shared bottlenecks.
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2.3. Machine Learning Based on Expression Data Successfully Classifies Response to Ustekinumab

As described previously, five different machine models were employed to test their
classification power for our data. Their inherent ability to discern between different
data groups, in our case, the expression data from the responders and non-responders to
ustekinumab at baseline, and knowing the outcome a priori is the textbook definition of
supervised learning. All the algorithms performed very well, as seen in Figure 6, albeit
all suffering from the same restrictions of our relatively small dataset size. During all
our tests, XGBoost performed consistently well with a minimal set of features and the
ability to classify all of our samples by mainly taking into account the expressions of IL23A,
IL23R, and BCL6 and achieving an AUC of 1. It is worth noting here that all 84 gene
expression values were provided to our models, highlighting the extreme edges of our
DGEA spectrum that left CCR2 out, for which the correlation analysis showed comparable
levels of involvement between responders and non-responders and is a good indicator of
its efficiency. XRT and DRF, both advanced implementations of random forests, exhibited
variations in our tests but ultimately reached an AUC of 1 in the iteration depicted in
Figure 6 with the specific set of features. It is worth noting here that DRF also included
LTA and TLR5 in its top features, two genes which were not found to be dysregulated by
DGEA, while XRT only uses LTA in addition to other dysregulated genes. GBM and GLM
achieve an AUC of 0.925 and 0.95, respectively, with GLM deviating in the importance of
the features significantly from the other algorithms, reporting CCL5, FASLG, and BCL6 as
the top important features. Four of the algorithms, with the exception of GLM as mentioned
previously, report IL23A as their most important feature, most probably because of its high
dysregulation in the non-responders’ group.
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3. Discussion

With the ongoing incorporation of newer therapeutic approaches like ustekinumab
for the treatment of UC, the identification of prediction biomarkers for response is a key
aim. In the present study, we focused on colonic mucosal tissues of UC in order to identify
differential gene expression signatures that can predict responders and non-responders
to ustekinumab therapy. Our multi-approach study of the gene expression of UC colonic
mucosa reveals new insights into the pathophysiology mechanisms underlying the disease
and might explain the variability in clinical outcomes.

Herein, we highlight a subset of seven genes with differential gene expressions that can
effectively differentiate between non-responders and responders to treatment for samples
obtained just before the initiation of ustekinumab. Non-responders were characterized by
the upregulation of BCL6, CXCL5, and FASLG. It is known that BCL6 mRNA is upregulated
in UC patients compared to the healthy population, and it has been suggested that BCL6
can regulate the follicular helper T (Tfh) cells/follicular regulatory T (Tfr) cells ratio in
the intestinal germinal center, promoting the development of UC, since an increase in the
expression of BCL6 mRNA suggests an increase in the number of Tfh cells [19]. Furthermore,
ustekinumab therapy has been found to affect Tfh cell differentiation in Crohn’s disease
in which Tfh cell frequencies decrease after the initiation of UST therapy in patients with
clinical responses [20]. These studies help justify our findings of increased BCL6 expression
in non-responders. Similarly, CXCL5 is also reported to be upregulated in patients with
IBD [21]. In further agreement with our findings, Pavlidis et al. [22] reported that the
enrichment of IL-22-responsive transcriptional networks that include CXCL5 is associated
with poor response to ustekinumab therapy in patients with UC. Additionally, He et al. [23]
suggested that CXCL5 is among the significant DEGs that may be better predictors of
ustekinumab non-response in patients with Crohn’s disease.

Regarding the association between FASLG mRNA expression and ustekinumab treat-
ment failure, there are not yet any studies to clarify this. It is, however, known that FasL
is expressed in CD3 lymphocytes infiltrating into UC, indicating that Fas-FasL-induced
apoptosis contributes to the mucosal damage of ulcerative colitis [24]. It is possible that the
dysregulation of apoptotic pathways, including those involving FASLG, may contribute
to ustekinumab treatment resistance. Lastly, TNFSF14 mRNA was found to be slightly
upregulated in non-responders vs responders. Alternatively, IL23A mRNA expression was
found to be significantly downregulated in non-responders at baseline. Our results are in
agreement with the previous study by Nishioka et al. [25], which supported that diminished
mucosal IL23A expression was mainly associated with ustekinumab resistance. Addition-
ally, the fact that IL23R was also found to be significantly downregulated in non-responders
can be explained by the preferential activation of memory T cells expressing IL23R by
IL23A [26]. Regarding CCR2, it is known that it is a chemokine receptor involved in the
migration of conventional dendritic cells (cDCs), mainly in the context of the colon [27],
and that its interaction with C-C motif chemokine ligand 20 (CCL20), which is secreted by
colonic cells, assists in the precise migration of cDCs to different parts of the GI tract, where
they are involved in immune surveillance and maintaining immune balance [28].

Expanding our results, we have elucidated several more genes in patients with UC
who are unresponsive to ustekinumab therapy. Among them, CXCL2 and CXCL3 showed
significant levels of induction in non-responders, while lower levels of upregulation were
observed for IL22, IL17A, IL1B, and CXCL1, which is in agreement with previous studies
that show that the enrichment of IL-22-responsive transcriptional networks is associated
with resistance to ustekinumab treatment in patients with UC [22].

To further our understanding of the immunological background of the resistance to
ustekinumab therapy and unmask biological processes involved in these mechanisms,
we performed a co-expression network analysis similar to what has recently been used to
identify functional gene modules [29]. In responders, our analysis highlights BCL6 and CRP
as crucial hub genes, with BCL6 implicated in regulating the differentiation and function of
various immune cells, including B cells and T cells, and modulating inflammation-related
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signaling pathways [19,30]. Additionally, CRP is a known inflammatory marker [31] whose
levels have been contradictorily associated with response to biological therapies. A negative
correlation between CRP levels and response to anti-TNF therapies has been reported in
UC [32]; however, these observations were not consistent with ustekinumab therapy [33].
Regarding non-responders, the crucial hubs involved the CCL11 and CCL22 genes. It is
known that CCL11 is implicated in Th2 inflammatory diseases, and it has recently been
reported that CCL11 gene expression can be a predictive marker for ustekinumab response
in patients with Crohn’s disease [23]. CCL22 is constitutively expressed under homeostatic
situations and inducible upon inflammation, while numerous immune cell types, like
macrophages, dendritic cells (DCs), B cells, and T cells, secrete CCL22 upon activation [34].
While CCL11 is shared as a hub for both networks, indicating a more disease-centric role,
CCL22 appears to be specific to non-responders. Regardless, the high involvement of
both CCL11 and CCL22 as hubs and bottlenecks in our networks suggests their critical
involvement in patients’ unresponsiveness to therapy and merits further investigation. The
same can be said for other genes that are highly involved in regulating these networks
while not significantly differentially expressed, like CCL13, which has previously been
associated with response to α4β7 integrin antagonists [35], and CCL16, which is yet to be
implicated in UC treatment but is involved in its pathophysiology [36].

The ML results of this study further reinforce the value of expression data in predicting
response to ustekinumab. Almost all algorithms performed well, reaching AUC values
of or close to one, but the XGBOOST and GBM algorithms overperformed by requiring
only a short subset of genes to produce good results. This comes as no surprise since
they are modern, robust algorithms that have shown good predictive results in previous
works [37–40] using a variety of data as their input. These two algorithms are in agreement
on the highly predictive nature of IL23R, IL23A, and BCL6, while GBM also utilizes CCL23,
another staple of IBD pathophysiology [21], for its predictions. However, it has to be noted
that even though ML approaches are in agreement with all the other approaches showcased
in this study, they do suffer from the limited sample size, since they were created to process
larger amounts of data.

While the preliminary findings of this study are promising, it is crucial to acknowledge
the need for further research and independent validation to solidify our conclusions. This
study, conducted on a limited number of patients within our available resources, offers
valuable insights but may not capture the full spectrum of variability present in the broader
population affected by UC. Expanding the scope of this research through larger sample
sizes and diverse patient cohorts is essential to ensure the generalizability and reliability of
our findings. By including a more extensive range of demographic, clinical, and genetic
factors, future studies can better elucidate the factors influencing therapeutic response to
biologics across different patient subgroups. Independent validation by other research
groups is equally critical. Replicating the results in diverse clinical settings and populations
can help confirm the robustness and reproducibility of the observed associations, reducing
the risk of bias and increasing our confidence in the conclusions drawn.

Future research efforts should aim to address these limitations by employing rigorous
study designs, incorporating long-term follow-up data, and employing advanced statistical
methodologies to account for confounding variables.

Overall, despite these limitations, through a variety of computational approaches, our
study showcases the predictive power of mucosal expression data in predicting patient
response to ustekinumab treatment. We also highlight key genes that are supplementary to
the therapeutic regimen to improve response that might be targeted in the future or that
could be studied on more easily accessible samples (e.g., blood draws) to enable faster
implementation.

Expanding on the critical need for biologics in treating ulcerative colitis (UC), it
is essential to understand the profound impact these therapeutic interventions have on
patients’ quality of life. When conventional treatments fail to elicit a response, patients
often find themselves in a challenging cycle of switching from one therapy to another,
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which not only disrupts their daily lives but also adds emotional and financial burdens. In
addition, biologics offer a targeted and often more effective treatment option by stabilizing
disease activity and inducing remission, providing patients with the opportunity to regain
control over their lives. This restoration of quality of life cannot be overstated, as UC
can profoundly impact one’s daily activities, work productivity, and social interactions.
The ability to predict therapeutic responses to these biologics holds immense promise in
further optimizing treatment outcomes. The clinical applications of this work are manifold.
Firstly, these markers will enable clinicians to personalize treatment strategies, tailoring
interventions to individual patients based on their predicted response profiles. This not only
enhances treatment efficacy but also minimizes unnecessary exposure to medications that
may not yield the desired results. Furthermore, predictive response to biologics empowers
patients by providing them with realistic expectations regarding treatment outcomes.
Armed with this knowledge, patients can make informed decisions about their healthcare
journey, potentially reducing anxiety and uncertainty surrounding their condition. From a
healthcare system perspective, predicting therapeutic response to biologics can optimize
resource allocation and healthcare spending. By identifying the patients who are likely to
benefit most from specific biologic therapies, healthcare providers can streamline treatment
pathways, reduce trial-and-error approaches, and ultimately improve patient outcomes
while minimizing healthcare costs. In research settings, such predictive biomarkers offer
invaluable insights into the underlying mechanisms of UC and may pave the way for
the development of novel treatment strategies. By elucidating the factors that influence
treatment response, researchers can uncover new therapeutic targets and refine existing
treatment algorithms, ultimately advancing the field of gastroenterology and improving
patient care.

4. Material and Methods
4.1. Patients

We performed a prospective, observational study of adult patients with a regular
follow-up at Evangelismos, Sotiria, and Alexandra General Hospitals, three tertiary gas-
trointestinal (GI) centers in Greece. All patients were diagnosed with active UC and
commenced treatment with ustekinumab between March 2022 and August 2023. The
diagnosis of the disease was established based on well-defined clinical, endoscopic, and
histological criteria [19]. The study was approved by the hospitals’ institutional review
boards, and all patients provided their informed consent to participate (479/15-12-2022).
They received an initial weight-based intravenous induction dose of ustekinumab (ap-
proximately 6mg/kg), followed by 90 mg of subcutaneous injection of the drug every
8 weeks, according to the standard administration protocol. Patients were evaluated at
baseline, while predefined clinical and laboratory evaluations were recorded 6 months
after treatment initiation. Before the start of ustekinumab therapy, biopsies were obtained
during patients endoscopies from the most inflamed areas of the colon (usually at the site
20−30 cm proximal from the anal verge). The samples were obtained from each patient
and placed immediately in RNALater buffer (Ambion, Austin, TX, USA) and preserved
at −80 ◦C until further analysis. Disease activity was assessed by the Mayo score [41]. At
6 months post-treatment initiation, patients underwent repeated endoscopy to determine
the endoscopic severity, and the total Mayo score was reevaluated. The main endpoint of
our study was clinical remission at that timepoint, defined as a total Mayo score ≤ 2 with
no subscore > 1.

The characteristics of responders and non-responders are shown in Table 2.
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Table 2. Clinoepidemiological characteristics of disease in patients with active UC at baseline who
responded (n = 22) or did not respond (n = 14) to ustekinumab.

Responders
(n = 22)

Non-Responders
(n = 14) p *

Male (%) 16 (72.73) 10 (71.43) 0.932

Age, years, mean (SD) 48.43 ± 15.37 55.86 ± 19.37 0.205

Montreal classification, n (%)

0.721
E1 1 (4.55) 0 (0)
E2 9 (40.91) 6 (42.86)
E3 12 (54.55) 8 (57.14)

Mayo score, median 7.5 7 0.517

Smoking status, n (%)

0.377
Never 8 (36.36) 3 (21.43)

Former 4 (18.18) 1 (7.14)
Active 10 (45.46) 10 (71.43)

Anti-TNF exposed, n (%)
0.755Yes 9 (40.91) 5 (35.71)

No 13 (59.09) 9 (64.29)

WBC, mean (SD) 8389.58 ± 3082.1 7951.67 ± 1917.6 0.656

CRP (mg/dL), mean (SD) 0.97 ± 1.11 1.95 ± 2.94 0.166

Platelets, mean (SD) 352,680 ± 118,288 274,727.3 ± 103,577 0.07

Hemoglobulin, mean (SD) 12.31 ± 1.71 13.45 ± 2.10 0.09

* indicates χ2 test, Abbreviations: WBC, white blood cells. Normal values are as follows: WBC 4000–11,000/µL;
platelets 150,000–400,000/µL; hemoglobulin 13–17 g/dL for men and 12–16g/dL for women; albumin
3.5–5.5 g/dL.

4.2. Differential Gene Expression Analysis (DGEA)

Total RNA was extracted from preserved mucosal biopsies using the Qiagen AllPrep
RNA/DNA Mini Kit (Qiagen, Hilden, Germany). Subsequently, cDNA synthesis was
carried out with the RT2 First Strand Kit (Qiagen) per the manufacturer’s instructions.
Gene expression analysis was conducted using the Human Inflammatory Response &
Autoimmunity PCR Array (PAHS-077Z, Qiagen) RT2 profiler with RT2 qPCR SYBR Green
Master Mix (Qiagen) testing for a total of 84 genes.

Samples were divided into responders to therapy, used as our control group, and non-
responders. Differential gene expression analysis (DGEA) was performed using the RT2

Profiler PCR Array Data Analysis software (version 3.5) from Qiagen. All samples met the
quality criteria for PCR array reproducibility, RT efficiency, and absence of genomic DNA
contamination. In brief, for within-sample normalization, the 2−∆Ct method was applied
using five housekeeping genes (ACTB, B2M, GAPDH, HPRT1, and RPLP0). Fold change
(FC) was determined by the 2−∆∆Ct method and is reported as the fold regulation in the
results, which is more biologically relevant (genes exhibiting under-expression are denoted
as the negative reciprocal of the fold change, while overexpressed genes are presented as the
fold change). The statistical significance was assessed through Student’s t-tests conducted
on the replicate 2−∆Ct values for each gene in both responders’ and non-responders’ groups.
All results were investigated based either on their statistical significance (p < 0.05) or on their
fold regulation thresholds of <−2 or >2 (non-responders versus responders). DGEA plots
were created in R v. 4.3.0 [42] for which log2(1/∆Ct) values were employed to normalize
and highlight expression differences using the ggplot2 [43] package.

4.3. Gene Expression Correlation Patterns

Correlation analyses are crucial for understanding complex biological systems and
highlighting potential relationships between genes. By examining co-expression patterns,
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we gain insights into the regulatory mechanisms underlying various biological processes
and bring forth genes that exhibit coordinated expression changes across different condi-
tions. To supplement our DGEA analysis and identify how the dysregulated genes found
may interact with the rest of the genes in our panel, we employed an R-based pipeline.
Our pipeline calculated the Spearman’s correlation coefficient (rho) for each gene pair and
constructed a correlation matrix using the cor() function for each patient group (responders
and non-responders). Spearman’s non-parametric test was selected, among the available
correlation algorithms, based on the Shapiro–Wilk normality test, which showed that not
all gene expressions were normally distributed. The correlation matrix was then filtered for
only gene pairs exhibiting rho values less than −0.9 and higher than 0.9 to only capture
strong relationships. Visualization of these correlations was produced using the ggcorrplot
v. 0.1.4.1 package [44].

4.4. Analysis of the Co-Expression Network

Graph representation of genes correlated via their gene-expression produces a co-
expression network capable of offering a holistic view of cellular processes by identifying
key regulators and pathways. It enables the use of statistical network metrics, which are
pivotal for uncovering the underlying structure and dynamics of gene interactions within
biological systems. We used the Cytoscape v.3.10.1 [45] software to visualize and perform
network analysis on the interactions of genes, based on our previous correlation analysis,
separately in our sample groupings. Each gene represents a node on our network while its
correlation coefficient is provided as the weight of the edges between each gene pair. We
report biologically-relevant metrics [46,47], such as degree centrality (DC), which indicates
the number of regulatory interactions among genes (high DC nodes/genes, called hubs,
may be crucial regulators of gene expression and may have significant impact on cellular
functions and phenotypes), and betweenness centrality (BC), which highlights nodes/genes
that often acts as mediators of gene–gene interactions quantifying the extent to which a
node/gene lies on the shortest paths between others in the network (often referred to
as bottlenecks that control the flow of information). By quantifying the importance of
these nodes/genes in responders and non-responders separately, we are able to discern
specific patterns and genes that uniquely characterize each group and can potentially hold
prognostic value.

4.5. Machine Learning Approaches

Finally, since our aim is to identify predictive markers to response to treatment, we
employed an ML pipeline that enhances the DGEA. ML of gene expression data offers the
advantage of uncovering complex patterns and relationships that may not be captured by
traditional DGEA methods, allowing for a more nuanced and comprehensive understand-
ing of biological processes while allowing us to see if specific markers can predict response
to treatment and performance [48,49]. Our methodology is based on the h2o v.3.42.0.2
R package [50] and employs five different ML models, for which we calculate their area
under the curve (AUC) metrics to measure their predictive power in discerning responders
and non-responders to ustekinumab therapy. We report the AUCs and top 10 important
features (genes) for each of the following algorithms: gradient boosting machine (GBM),
XGBoost (eXtreme gradient boosting), extreme random trees (XRT), generalized linear
model (GLM), and distributed random forest (DRF). The algorithms were selected for
their robustness and previous effectiveness for biological data [51,52]. All models were
trained using a five-fold cross-validation approach on 60% of our available samples (n = 23)
and tested on the remaining 40% (n = 13) using datasets containing samples from both
responders and non-responders.
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