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Abstract: Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn.
It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However,
the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed
to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c
nude mice, and explore its potential mechanism based on network pharmacology prediction and
experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets
related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3,
SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and
may be the key targets of silibinin for treating tumors. The predicted target proteins according to
network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude
mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability,
proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth
and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the
expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3,
JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt
signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC,
MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into
the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support
for the anti-tumor uses of silibinin.

Keywords: silibinin; anti-tumor; network pharmacology; adenoid cystic carcinoma; Western blot
analysis

1. Introduction

At present, tumors have become the second leading cause of global mortality following
cardiovascular diseases, and the number of patients is steadily increasing year by year [1].
According to statistics, in 2018, there were about 18.1 million new cases of cancer worldwide,
and about 9.6 million deaths from cancer, which indicates a serious threat to human life.
Therefore, the search for highly effective and low-toxicity drugs for the treatment of cancer
has become an important public health problem [2].
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Traditional Chinese Medicine (TCM) has become an effective method to prevent
and cure tumors because of its unique advantages and minimal side effects [3]. The
flavonoids are widely found in various plant components of Chinese herbal medicines
such as flowers, leaves and fruits. It has many pharmacological activities, such as anti-
proliferative, anti-oxidative and anti-inflammatory activity and the ability to lower blood
sugar levels; therefore, it can be applied to the clinical treatment of tumors, cardiovascular
disease, diabetes and other diseases [4,5]. The TCM herb, Silybum marianum (L.) Gaertn (also
known as Shuifeiji in Chinese) from the Compositae family, has been used for treating liver
diseases, lowering blood lipids, anti-tumor activity, etc. [6–10]. Silibinin is a biologically
active flavonoid ingredient extracted from the seeds of S. marianum (L.) Gaertn. It has the
functions of protecting the liver, anti-tumor effects, diabetes prevention, lowering of blood
lipid content and anti-oxidation effects [11,12]. Studies have shown that silibinin has a
good inhibitory effect on a variety of tumors, especially liver tumors [11,13–15]. However,
the molecular anti-tumor mechanism of silibinin is still unclear.

Network pharmacology based on gene, protein and disease database information
has become an emerging and effective strategy to observe drug action at the organ and
organism levels and investigate the pharmacological mechanism of TCMs and their active
ingredients [16,17]. This method is used to predict compound–proteins/genes–disease
relationships from a network perspective relating to drugs, bioactivity and diseases, and
can be applied in different fields such as pharmacological mechanistic studies, drug devel-
opment and targeted exploration [18,19]. The mechanisms of Tanshinone IIA for treating
liver fibrosis were predicted using a network pharmacology approach [20].

In this study, network pharmacology was employed to analyze the targets and mecha-
nism of silibinin in the treatment of tumors. The predicted targets were verified using a
Western blot method on adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice. This
is the first time that the tumor treatment mechanism of silibinin has been studied through
network pharmacology and experimental verification methods. The results might provide
a research foundation for the improved application of silibinin in tumor treatment.

2. Results
2.1. Network Pharmacology Analysis
2.1.1. Target Proteins of Silibinin

A total of 347 targets interacting with silibinin (Table S1) were collected from the
PharmMapper (Version 2017), SEA and STITCH databases. Seventy-five targets related to
the tumor growth process for silibinin were filtrated by TTD and CTD databases and the
data was combined with that from existing literature reports (Table 1).

Table 1. Target information of silibinin.

No. Target Uniprot ID Target Name

T1 cGMP-specific 3,5-cyclic phosphodiesterase T94879 PDE5A
T2 Estrogen receptor T89534 ESR1
T3 Stromelysin-1 T86702 MMP3
T4 Cholinesterase T99799 BCHE
T5 Mitogen-activated protein kinase 10 T85421 MAPK10
T6 Estrogen receptor beta T80896 ESR2
T7 Transthyretin T86462 TTR
T8 Proto-oncogene serine/threonine-protein kinase Pim-1 T50594 PIM1
T9 U1 small nuclear ribonucleoprotein A P09012 SNRPA

T10 Glutathione S-transferase P T21669 GSTP1
T11 Tyrosine-protein phosphatase non-receptor type 1 T89529 PTPN1
T12 Peroxisome proliferator-activated receptor gamma P37231 PPARG
T13 Cathepsin D T67102 CTSD
T14 Macrophage migration inhibitory factor T39977 MIF
T15 Cell division protein kinase 2 P24941 CDK2
T16 Serine/threonine-protein kinase Chk1 T62449 CHK1
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Table 1. Cont.

No. Target Uniprot ID Target Name

T17 Mineralocorticoid receptor T72168 MR
T18 Leukotriene A-4 hydrolase T03691 LTA4H
T19 Progesterone receptor T22939 PGR
T20 Cyclin-A2 T58470 CCNA2
T21 cAMP-specific 3,5-cyclic phosphodiesterase 4B T10265 PDE4B
T22 Glutamate carboxypeptidase 2 T97071 FOLH1
T23 Collagenase 3 T34296 MMP13
T24 Phosphoserine phosphatase P78330 PSPH
T25 Peroxisome proliferator-activated receptor delta Q03181 PPARD
T26 Proto-oncogene tyrosine-protein kinase Src T85943 SRC
T27 Thymidylate synthase T98397 TYMS
T28 Androgen receptor T11211 AR
T29 Cell division protein kinase 6 T89361 CDK6
T30 Aldo-keto reductase family 1 member C1 Q04828 AKR1C1
T31 cAMP-specific 3,5-cyclic phosphodiesterase 4D T02001 PDE4D
T32 Casein kinase II subunit alpha P68400 CSNK2A1
T33 Chloride intracellular channel protein 1 O00299 CLIC1
T34 Heparin-binding growth factor 1 T18639 FGF1
T35 Glycogen synthase kinase-3 beta T70977 GSK3B
T36 cAMP-dependent protein kinase catalytic subunit alpha P17612 PRKACA
T37 Carbonyl reductase [NADPH] 1 T70518 CBR1
T38 Inosine-5-monophosphate dehydrogenase 2 T89360 IMPDH2
T39 L-lactate dehydrogenase B chain P07195 LDHB
T40 Heat shock cognate 71 kDa protein P11142 HSPA8
T41 Superoxide dismutase [Mn], mitochondrial P04179 SOD2
T42 Retinoic acid receptor RXR-alpha T13726 RXRA
T43 Caspase-3 T57943 CASP3
T44 Vascular endothelial growth factor receptor 2 P35968 VEGFR2
T45 Coagulation factor VII T43332 F7
T46 Cytochrome P450 2C9 T19244 CYP2C9
T47 Triosephosphate isomerase T59130 TPI
T48 Peroxisome proliferator-activated receptor alpha T86591 PPARα
T49 Catalase T01597 CAT
T50 Hepatocyte growth factor receptor T40474 MET
T51 Serine/threonine-protein kinase 6 O14965 AURKA
T52 Prostatic acid phosphatase T93283 ACPP
T53 Serine/threonine-protein kinase PAK 6 Q9NQU5 PAK6
T54 Disintegrin and metalloproteinase domain-containing protein 17 P78536 ADAM17
T55 Thymidine kinase, cytosolic P04183 TK1
T56 Protein-glutamine gamma-glutamyltransferase E Q08188 TGM3
T57 Histone deacetylase 8 T28887 HDAC8
T58 Receptor tyrosine-protein kinase erbB-4 T92057 ELNE
T59 Fructose-bisphosphate aldolase A P04075 ERBB4
T60 Uridine-cytidine kinase 2 Q9BZX2 ALDOA
T61 Fatty acid-binding protein, adipocyte T07217 UCK2
T62 Proactivator polypeptide P07602 FABP4
T63 Tyrosine-protein kinase JAK2 T87554 PSAP
T64 Hepatocyte growth factor P14210 JAK2
T65 Renin P00797 HGF
T66 Fatty acid-binding protein, brain O15540 REN
T67 Bifunctional 3-phosphoadenosine 5-phosphosulfate synthetase 1 O43252 FABP7
T68 Baculoviral IAP repeat-containing protein 4 P98170 PAPSS1
T69 Endoplasmic reticulum mannosyl-oligosaccharide 1,2-alpha-mannosidase Q9UKM7 XIAP
T70 Nitric oxide synthase, inducible T02703 MAN1B1
T71 Interleukin-2 T61698 NOS2
T72 Glucocorticoid receptor P04150 IL2
T73 Angiopoietin-1 receptor Q02763 NR3C1
T74 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2 Q9NRX3 NDUFA4L2
T75 Prostaglandin D2 receptor Q13258 PGD
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2.1.2. GO Enrichment Analysis for Targets

In order to gain a comprehensive understanding of the functions of these targets,
we used DAVID online analysis to conduct a functional enrichment analysis of the target
genes [21,22]. Herein, GO terms (p < 0.001) showed that the targets were mainly associ-
ated with transcription initiation from an RNA polymerase II promoter, and the negative
regulation of apoptosis (in biological process, BP), cytosol and nucleoplasm (in cellular
component, CC), as well as steroid hormone receptor activity, RNA polymerase II transcrip-
tion factor activity, ligand-activated sequence-specific DNA binding, enzyme binding, and
drug binding (in molecular function, MF) (Figure 1).
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Figure 1. GO enrichment analysis of the identified targets in terms of biological process (blue),
cellular components (yellow) and molecular function (green). The order of importance in each term
was ranked by −Log10 (p-value) with bar chart. The red line chart shows the number of targets in
each term.
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2.1.3. Network Construction and Mechanism Analysis

The selected target protein information was imported into the DAVID database to
obtain the pathways of target enrichment. The T-P network was constructed using Cy-
toscape software to visualize the corresponding relationship between targets and pathways
(Figure 2). The main pathways in the T-P network included cancer pathways (degree = 16),
PI3K-Akt signaling pathway (degree = 9), proteoglycans in cancer (degree = 7), measles
(degree = 7), focal adhesion (degree = 7) and viral carcinogenesis (degree = 7). The main
targets were MAPK10 (degree = 16), GSK3B (degree = 11), SRC (degree = 11), CDK2
(degree = 10), PRKACA (degree = 10) and CASP3 (degree = 9).
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Figure 2. The T-P network of silibinin. The circles are targets, and the arrows represent pathways for
which the size is proportional to its degree.

To further investigate the significance of the selected targets, the PPI of the aforemen-
tioned target proteins was constructed using the String platform, and the PPI network was
generated through Cytoscape 3.6.1 (Figure 3). The PPI network consisted of 69 nodes and
303 edges, and a large number of edges indicates stronger protein interactions. CASP3,
SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT exhibited stronger interactions with other
factors, suggesting that they may be the key targets for tumor treatment.
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2.2. Silibinin Inhibited ACC2 Cell Viability and Proliferation

The cytotoxicity of silibinin against ACC2 cells was investigated using the MTT assay.
When ACC2 cells were incubated with different concentrations of silibinin for 24 h, a dose-
dependent decrease in cell viability was observed (Figure 4). The IC50 value (concentration
that inhibits cell growth by 50%) was 59.54 ± 2.32 µg/mL.
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Figure 4. The ACC2 cell viability after treatment with silibinin. * p < 0.05, ** p < 0.01 vs. CTL, CTL:
normal control group.

The cell proliferation effect of silibinin was examined using cell dual staining with
Hoechst 33342 and EdU dye and visualized by a fluorescence microscope. Hoechst 33342 is
a cell-penetrant fluorescent dye, and is used to label the DNA of healthy cells [23]. EdU
is an alkynylsubstituted thymidine analogue that specifically labels the replicating DNA
of cells [24]. The cells in the normal control group showed strong green fluorescence after
incubation with EdU for 2 h (Figure 5). The fluorescence was decreased in a dose-dependent
manner in the silibinin groups. Based on the above results, it could be concluded that
silibinin exhibited the inhibition effects of cell viability and proliferation.
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concentrations of silibinin. Scale bar = 100 µm. (B) Percentage of EdU-positive cells after treatment
with different concentrations of silibinin. * p < 0.05, ** p < 0.01 vs. CTL, CTL: normal control group.

2.3. Detection of Apoptosis by Hoechst 33342/PI Staining In Vitro

The apoptosis of ACC2 cells treated with different concentrations of silibinin was
investigated using the Hoechst 33342/PI double-staining strategy. Hoechst 33342 is used to
label the DNA of healthy cells [23], whereas, the PI can bind with DNA in apoptosis cells,
producing red fluorescence [25]. The cells in the normal control group (CTL) showed strong
blue fluorescence stained by Hoechst 33342 dye and weak red fluorescence produced in a
small amount of death cells stained with PI dye (Figure 6). After treatment with different
concentrations of silibinin, there was an obvious enhancement of red fluorescence signal
in a dose-dependent manner. The above results indicate that silibinin could induce the
apoptosis of ACC2 cells.

2.4. Cell Migration Effect of Silibinin In Vitro

The ability of silibinin to inhibit ACC2 cell migration was examined by the wound
closure assay described previously [26,27]. The cells were treated with various concentra-
tions of silibinin for 48 h after scraping using a pipette tip. The migration distance was
photographed every 24 h. In the normal control group, the wound had almost closed
after 48 h, whereas treatment with silibinin resulted in a significantly larger wound area
(Figure 7). The results indicate that silibinin displayed an excellent ability to inhibit ACC2
cell migration.

2.5. Effect of Silibinin on Tumor-Related Targets In Vitro

The network pharmacology results showed that cleaved CASP3, SRC, MMP3, PPARα,
JAK, JNK and CDK6 are potential targets of silibinin for the treatment of tumors. In order
to verify whether these targets played a role in the treatment of tumors via silibinin as we
expected, the expression levels of these proteins were detected in vitro using Western blot
analysis. As shown in Figure 8, treatment of cells with silibinin significantly reduced the
expression of cleaved CASP3, MMP3, SRC, JNK and CDK6 and increased the expression of
PPARα and JAK.
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Figure 7. (A) The pictures of ACC2 cell migration in wound closure assay at 0, 24 and 48 h. The
red dashed lines indicate the boundary of the wound. (B) The rate of wound closure of ACC2 cells
treated with silibinin at 48 h. ** p < 0.01 vs. CTL, CTL: normal control group.
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2.6. Effect of Silibinin on Tumor-Bearing Mice

In this experiment, the body weight of the mice and the tumor volume were recorded
to additionally illustrate the effect of silibinin on tumor-bearing mice (Figure 9A,B). The
tumor volume of all mice showed an increasing trend, but compared with that of the model
control group, the volume of the administration group increased more slowly, especially in
the high-dose group. The body weight of all mice was increased during administration.
However, the weight of mice in the model control group was lower than that of mice in
other groups.
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Histopathological sections can visibly assess the effect of silibinin on tumor-bearing
mice. The result of H&E staining of tumor tissues showed that the salivary gland structure
of the model group was disordered, and the overall staining of the nucleus and cell
membrane was poor (Figure 9C). There are many cancer cells, which are large in size, rich
in cytoplasm and display a disordered and compact cell arrangement. The cell volume
shrunk obviously, and the nucleolus and nuclear membrane were not clear, which affected
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the interpretation of the slice. After silibinin treatment, the salivary gland structure of the
tissue was clearer, the cells were fewer in number, the integrity of the nucleus and cell
membrane was relatively good, the nucleolus was small, the cell density was loose, and
some nuclei and cytoplasm showed pyknotic necrosis-like changes.

2.7. Effect of Silibinin on Tumor-Related Targets In Vivo

Silibinin could decrease the tumor volume and delay the tumor tissue development.
Moreover, the in vitro Western blot results indicate that the possible molecular mechanism
involved inhibiting cleaved CASP3, MMP3, SRC, MAPK10 and CDK6, and activating
PPARα, JAK. In order to verify whether these targets played a role in the silibinin-based
treatment of tumors in mice, the expression levels of CASP3, MMP3, PPARα and JAK
were detected in vivo using Western blot analysis (Figure 10). The results indicate that
the expression of CASP3, PPARα and JAK was increased and that of MMP3 was reduced.
These results are consistent with the Western blot results of the cell experiments.
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3. Material and Methods
3.1. Network Pharmacology Analysis
3.1.1. Target Fishing

To identify potential targets of silibinin, its sdf format was uploaded to the databases
of PharmMapper (http://www.lilab-ecust.cn/pharmmapper/index.html, accessed on 25
May 2022) [28], Similarity Ensemble Approach (SEA, http://sea.bkslab.org/, accessed on
25 May 2022) [29] and STITCH (http://stitch.embl.de/, accessed on 25 May 2022) [30].
The potential targets were filtrated using the Therapeutic Target Database (TTD, https:
//idrblab.net/ttd/, accessed on 25 May 2022) and Comparative Toxicogenomics Database
(CTD, http://ctdbase.org/, accessed on 25 May 2022) (screening species was “Homo
sapiens”) in combination with existing literature reports to obtain targets related to the
tumor process. The selected target proteins were utilized to construct a protein–protein
interaction (PPI) network model on the String (https://string-db.org/, accessed on 25 May
2022) platform [31].

3.1.2. KEGG Pathway and Gene Ontology (GO) Terms Analysis

The selected target protein information was imported into the Database for Annotation,
Visualization and Integrated Discovery (DAVID, https://david.ncifcrf.gov/, accessed
on 26 May 2022) [21] to obtain information on KEGG pathways and GO terms of the
target enrichment. OFFICIAL GENE SYMBOL and Homo Sapiens were selected as the
background. p < 0.05 was the screening condition for KEGG pathways and GO terms,
which excluded a wide range of pathways and GO terms.

http://www.lilab-ecust.cn/pharmmapper/index.html
http://sea.bkslab.org/
http://stitch.embl.de/
https://idrblab.net/ttd/
https://idrblab.net/ttd/
http://ctdbase.org/
https://string-db.org/
https://david.ncifcrf.gov/
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3.1.3. Network Construction and Analysis

Data for the correlation between silibinin and selected targets and selected targets and
pathways obtained through screening, were integrated into the excel tables. Subsequently,
target–pathway (T-P) networks were constructed by Cytoscape 3.6.1 software to visualize
the data. The PPI of selected target proteins was established using the String (https:
//string-db.org/, accessed on 28 May 2022) platform, and the PPI network was then
generated by Cytoscape 3.6.1.

3.2. Chemicals and Reagents

Silibinin (purity ≥ 99.0%) and hematoxylin and eosin (H&E) were procured from
Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China). Other solvents and
reagents were obtained as analytical grade and used without further purification. 3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was purchased from Sigma
(Tokyo, Japan). Hoechst 33342/propidium iodide (PI) double staining kit was bought from
Genview (Beijing, China), and a 5-ethynyl-20-deoxyuridine (EdU) assay kit was acquired
from Ribobio (Guangzhou, China). Antibodies including Anti-CASP3, Anti-MMP3, Anti-
SRC, Anti-MAPK10, Anti-CDK6, Anti-PPARα and Anti-JAK were obtained from Cell
Signaling Technology (Shanghai, China).

3.3. Cell Culture and Treatments

ACC2 cells were procured from the cell bank of the Shanghai Institute for Biological
Sciences, Chinese Academy of Sciences (Shanghai, China). The cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM), supplemented with 10% fetal bovine serum
(FBS), 100 U/mL of penicillin and 100 mg/mL of streptomycin (Thermo Fisher Scientific,
Waltham, MA, USA) in a 5% CO2 incubator at 37 ◦C. Cell suspensions with 1 × 104 cells/mL
of 100 µL were added to a 96-well plate. The groups included a normal control group,
and silibinin groups (6.25, 12.5, 25, 50, 75 and 100 µg/mL). After incubation for 24 h, the
medium in the test wells were replaced with DMEM medium containing 0.5% DMSO, and
six concentrations of silibinin (6.25, 12.5, 25, 50, 75 and 100 µg/mL). The wells containing
0.1% DMSO were set as a normal control group. Five replicates were set for each group.
Then, ACC2 cells were collected and lysed using RIPA buffer.

3.4. MTT Assay

The cell viability was assessed using the MTT method [32]. After incubation with
test compounds for 24 h, MTT (5 mg/mL, 10 µL) was added to each well. Following an
additional 4 h incubation, DMSO (200 µL) was added. The optical density (OD) values
were measured at 560 nm using a microplate reader. All experiments were conducted in
triplicate.

3.5. Cell Proliferation

The cell proliferation of silibinin was assessed using the EdU assay kit (Ribobio), as
previously described [33]. In brief, 100 µL cell suspensions containing 5 × 104 cells/well
were seeded into a 96-well glass plate and incubated overnight. Then, the cells were
exposed to test compounds for 24 h. The cell culture medium was replaced with fresh
medium containing 50 µM EdU and incubated for an additional 2 h. Then, the cells were
fixed with 4% formaldehyde for 20 min, permeated with 0.5% Triton X-100 for 10 min,
cultured with Apollo reaction mixture for 30 min, and stained with Hoechst 33342 for
10 min. The cell images were obtained using a fluorescence microscope and analyzed using
ImageJ software (version 1.53 src). The proliferation rate was determined as the ratio of
EdU-positive cells to Hoechst 33342-positive cells in each field.

3.6. Cell Apoptosis

The pro-apoptotic effects of silibinin on ACC2 cells were assessed using Hoechst
33342/PI double staining, as previously described [33]. The cell suspensions with 5000

https://string-db.org/
https://string-db.org/
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cells/well were placed in 96-well plates and incubated for 24 h. The cells were adminis-
trated with silibinin (12.5, 25, 50, 75 and 100 µg/mL) for 24 h. The apoptotic cells were
detected using fluorescence microscopy, after double staining with Hoechst 33342/PI for
15 min in the dark at 37 ◦C. The apoptotic cells were identified based on the positive
staining of PI and Hoechst 33342, as well as the absence of nuclear fragmentation. The
apoptosis rate was determined by the ratio of PI-positive cells to Hoechst 33342-positive
cells in each field. The experiments were conducted in triplicate.

3.7. Wound Closure Assay

The ACC2 migration assay was conducted using the wound-healing method, as previ-
ously described [26,27,33]. The cells of 3 × 105 cells/well were cultured in 24-well plates
for 24 h, and horizontally scraped using a sterile pipette tip. The cells were subsequently
washed twice using phosphate-buffered saline. Then, fresh medium containing 10% FBS
and silibinin (12.5, 25, 50, 75 and 100 µg/mL) was added. Images were captured at 0, 24
and 48 h after wounding and analyzed with Image-Pro Plus software (version 6.0). The
experiments were performed in triplicate.

3.8. Animals and Treatment

Twenty-eight male Balb/c nude mice at four weeks were obtained from GemPhar-
matech Co., Ltd. (Nanjing, China. License number: SCXK(Su)2018-0008). The experiment
was conducted according to the standard ethical guidelines that were approved by the
Ethics Committee of the Jiangxi Zhonghong Boyuan Biotech Co., Ltd. (Nanchang, China,
2022040101). All mice were bred at 20~26 ◦C and 40~70% humidity under a 12 h light/dark
cycle with enough food and water. After a week of acclimation, the mice were inoculated
with ACC-2 cells for tumor formation, and divided into four groups (n = 7): a model control
group (inoculated with ACC-2 cells) and three silibinin treatment groups: a high-dosage
silibinin group (Sily-H), medium-dosage silibinin group (Sily-M) and low-dosage silibinin
group (Sily-L). After tumor formation, the mice in the model control group were adminis-
trated with brine. The mice in the Sily-H, Sily-M and Sily-L groups were given silibinin at
dosages of 250, 125, 62.5 mg/kg/d, respectively, by intraperitoneal injection for two weeks.
All mice were fasted immediately after modeling, provided with adequate water simulta-
neously, and euthanized after 8 h. The tumor tissues were excised for histopathological
and Western blot analyses, as well as protein extraction. All mice were fasted immediately
after the modeling process and after 8 h.

3.9. Histopathological Analysis

The histopathological analysis was performed as in our previous study [34]. The
tumor tissue sections were fixed with fixative for 24 h, embedded in paraffin and sliced
into 4 µm thick sections. The paraffin sections were dewaxed, and then stained with H&E.
The changes to cells and tumor sections were recorded by microscope (CX41, Olympus,
Tokyo, Japan).

3.10. Western Blot Analysis

Protein concentrations of ACC-2 cells and tumor tissues were quantified by the BCA
protein assay kit (Beyotime, Shanghai, China). An equal amount of protein in each group
was separated using SDS-PAGE gel electrophoresis and transferred onto a nitrocellulose
membrane. After being blocked with 5% BSA for 1 h, the membranes were incubated
overnight at 4 ◦C with primary antibodies (Anti-CASP3, Anti-MMP3, Anti-SRC, Anti-
MAPK10, Anti-CDK6, Anti-PPARα and Anti-JAK). The membranes were then washed
three times with tris-buffered saline + 0.1% Tween 20, and incubated for 1 h with the
corresponding secondary antibodies at 37 ◦C. The visualization of the protein bands was
performed with an ECL advanced Western blotting detection kit.
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3.11. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 7.0, and data were pre-
sented as mean ± standard deviation (SD). The t-test was used as a simple comparison test.

4. Discussion

Tumors seriously threaten human life, and have become the second leading cause of
death in the world after cardiovascular diseases [1]. TCM can prevent and treat tumors
effectively with its unique advantages and minimal side effects [3]. S. marianum (L.) Gaertn,
a TCM herb, has been used to treat liver diseases for thousands of years [6]. Silibinin is the
active ingredient with multiple activities, including protecting the liver, lowering blood
lipid content and anti-oxidation and anti-tumor effects [10]. Silibinin can initiate apoptosis
mechanisms (including intracellular and extracellular mechanisms) and induce the death
of various cancer cells. It can strongly inhibit DNA synthesis and regulate the level of
enzymes related to apoptosis [35–37]. It also has a synergistic effect with doxorubicin,
cisplatin, carboplatin, etc., and increases the apoptosis rate of tumor cells after combined
use [38,39]. Therefore, it has important clinical significance for tumor treatment. However,
the molecular anti-tumor mechanism of silibinin is still unclear. In this study, we used
network pharmacology and in vitro and in vivo experiments to analyze and verify the
potential targets and mechanism of silibinin in the treatment of tumors for the first time.
The predicted targets were verified by the Western blot method on ACC2 cells.

Network pharmacology with the relevant databases and software was used to predict
potential targets like CASP3, SRC, ESR1 and JAK2 and pathways such as PI3K-Akt, pro-
teoglycans and focal adhesion in cancer. Based on the results of silibinin on ACC2 cells,
it could be concluded that silibinin (concentrations from 25 to 100 µg/mL) exhibited the
inhibition effects of cell viability, proliferation and migration, as well as the induction effects
of cell apoptosis. We found that the treatment of ACC2 cells with silibinin significantly
reduced the expression of cleaved CASP3, MMP3, SRC, JNK and CDK6 and increased the
expression of PPARα and JAK (Figure 8). This was also confirmed by in vivo Western blot
mouse experiments.

CASP3, which can be initiated by extrinsic (death receptor) and intrinsic (mitochon-
drial) apoptotic pathways, can cleave a variety of substrates including itself, and then lead
to DNA fragmentation, eventually resulting in cell death. Cleaved CASP3 promotes the
repopulation of tumors from a small number of surviving cells, and elevated expression
levels of cleaved (and thus activated) CASP3 in tumors are associated with poorer treatment
outcomes in cancer patients [40]. The SRC family kinases play a role in cell proliferation,
differentiation, stress, apoptosis and ECM accumulation [41]. Additionally, they activate
numerous downstream signaling pathways such as MAPK, PI3K/Akt and TLR4 [42,43].
MMP3 is involved in the family of MMPs and participates in the process of metastasis with
the ability of cleaving various matrix protein substrates such as collagen types, fibronectin,
gelatins, proteoglycanase and E-cadherin [44]. MMP3 is over-expressed in various hu-
man tumor tissues, and is considered a potential diagnostic or prognostic biomarker of
some cancers [45–48]. PPARα is one of the peroxisome-proliferator-activated receptors
(PPARs) [49]. Previous studies have proved that PPARα plays a key role in regulating
cell autophagy, metabolic homeostasis and tumorigenesis. PPARα and retinoid X receptor
(RXR) bind to specific DNA sequences in the form of heterodimers, thereby stimulating
the transcription of multiple target genes [50,51]. JAK is a non-transmembrane tyrosine
kinase. The JAK pathway is a classic cell signal-transduction pathway, which plays an
important role in regulating the proliferation, migration, differentiation, and cell cycle of
normal cells. At the same time, the activation of the JAK pathway is also related to the
occurrence, growth, transfer and apoptosis of tumor cells [52]. MAPK10 is a member of
the JNK subgroup in the MAPK superfamily and has been proposed as an epigenetically
inactive tumor suppressor [53]. CDK promotes the activities of cell life [54]. The decrease
in CDK6 expression level indicates that silibinin might cause the G1 phase block of the cell
cycle, inducing cell apoptosis.
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These results revealed that the mechanisms of silibinin for the treatment of tumors were
related to the inhibition of cleaved CASP3, MMP3, SRC, MAPK10, CDK6 and activation of
PPARα, JAK, which lead to the inhibition of cell viability, proliferation and migration, as
well as cell apoptosis. These proteins are predominantly involved in cancer pathways, the
PI3K-Akt signaling pathway and viral carcinogenesis pathways. The findings of the present
study further demonstrate that silibinin treated tumors via a combination of multiple targets
and pathways. Moreover, these targets may be combined to evaluate the therapeutic effect
of silibinin. Our study may contribute to the application of silibinin in clinical tumor
therapy and lies a foundation for its development in the future.

5. Conclusions

Natural compounds play a huge role in global healthcare and traditional medicine
systems. Silibinin has been found to have good anti-tumor activity. Studies have shown that
silibinin can participate in different stages of carcinogenesis: proliferation inhibition, cell
cycle regulation, cell apoptosis induction, angiogenesis inhibition, migration inhibition, etc.
In this study, according to network pharmacology predictions, the ACC2 cells and Balb/c
nude mice were used as the research object to explore the anti-tumor effects of silibinin,
and validate silibinin’s potential anti-tumor mechanism. Our study demonstrates that
silibinin could significantly inhibit cell viability, proliferation and migration, and induce cell
apoptosis, thus exerting an anti-tumor effect. The possible molecular mechanism involves
inhibiting cleaved CASP3, MMP3, SRC, MAPK10 and CDK6, and activating PPARα and
JAK, which are typically involved in cancer pathways, the PI3K-Akt signaling pathway and
viral carcinogenesis pathways. Overall, our results suggest that silibinin has the potential
to alleviate tumors through its impact on multiple targets and signaling pathways. These
results provide a comprehensive understanding of the pharmacological mechanisms of
silibinin in tumor treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29081901/s1, Table S1: The targets interacting with
silybinin.
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