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Abstract: In recent years, dibenzyl disulfide (DBDS) in transformer oils has caused many trans-
former failures around the world, and its removal has attracted more attention. In this work, nine
imidazolium-based ionic liquids (ILs) were applied as effective, green desulfurization extractants
for DBDS-containing transformer oil for the first time. The results show that the desulfurization
ability of the ILs for DBDS followed the order of [BMIM]FeCl4 > [BMIM]N(CN)2 > [BMIM]SCN >
[BMIM](C4H9O)2PO2 > [BMIM]MeSO4 > [BMIM]NTf2 > [BMIM]OTf > [BMIM]PF6 > [BMIM]BF4.
Especially, [BMIM]FeCl4 ionic liquid had excellent removal efficiency for DBDS, with its S partition
coefficient KN (S) being up to 2642, which was much higher than the other eight imidazolium-based
ILs. Moreover, the extractive performance of [BMIM]FeCl4 increased with an increasing molar
ratio of FeCl3 to [BMIM]Cl, which was attributed to its Lewis acidity and fluidity. [BMIM]FeCl4
ionic liquid could also avail in the desulfurization of diphenyl sulfide (DPS) from model oils. The
experimental results demonstrate that π−π action, π-complexation, and Lewis acid−base interaction
played important roles in the desulfurization process. Finally, the ([BMIM]FeCl4) ionic liquid could
be recycled five times without a significant decrease in extractive ability.

Keywords: desulfurization; imidazolium-based ionic liquids; dibenzyl disulfide; extraction

1. Introduction

Transformer oils are essential for power transformers, which bear the function of insu-
lation and heat dissipation [1]. Recently, the shunt reactors and power fault failures caused
by corrosive sulfur have attracted increasing public attention [2,3]. The copper in the power
transformer is easily corroded by corrosive sulfur, resulting in a reduction in the dielectric
loss factor (tan δ) and a degeneration of metal and insulating paper [4,5]. When dibenzyl
disulfide (DBDS) concentration is higher than 20 ppm, it becomes the main corrosive sulfur
compound in the transformer oils. Specifications about DBDS content in transformer oils
are becoming increasingly stringent worldwide. The content of DBDS in transformer oil
was required to be less than 5 ppm by the new transformer oil standard IEC 60296 in
2012 [6]. Therefore, the removal of dibenzyl disulfide (DBDS) in transformer oils has be-
come an urgent subject [7,8]. Various technologies have been employed to deal with DBDS,
including adsorption desulfurization, oxidation desulfurization, extraction desulfurization,
and so on [3,9,10]. Adsorption desulfurization and extraction desulfurization are economic
and direct methods. Take the adsorption method, for example: silica gel and natural clays
could be applied to remove DBDS from transformer oils, but their adsorption capacities for
DBDS are relatively low, which limits their applications [11,12]. In comparison, extraction
desulfurization has higher efficiency and has been widely used by many researchers. Some
conventional extractants, such as polyalkyleneglycol, N, N-dimethylformamide, N-methyl
pyrrolidone, and N-methylimidazole, have been employed to extract dibenzyl disulfide [13].
However, these solvents show a certain solubility in oil, resulting in loss of extractant and
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cross-contamination [14,15]. Therefore, it is of great importance to explore extractants that
are environmentally friendly, highly efficient, and recyclable.

Ionic liquids (ILs) have been widely used as green solvents instead of organic solvents
due to their nonvolatility, immiscibility, thermal stability, and customizability. Consid-
ering the above advantages, much attention has been paid to the application of ILs in
extraction processes [16–18]. Imidazolium, pyrrolidinium, and pyridinium are typical
cations for ILs, which are widely employed to construct ILs for extraction use. For example,
imidazolium-based and pyrrolidinium-based ILs with different anions have recently been
reported to extract thiophene and benzothiophene. It was found that the imidazolium-
based ILs possessed the best extraction selectivity for thiophene and benzothiophene [19].
Imidazolium-based cationic ionic liquids (ILs) possessed good stability and fluidity, which
is one of the essential requirements for high extraction efficiency. Favorable viscosity is
an important factor in industrial application [20]. Based on the theory of hard and soft
acids and bases, Gao employed inorganic Lewis’s acids to remove 3-methylthiophene and
obtained excellent results [21]. Li et al. [16] proved that metal-based ILs have stronger
interaction with the sulfur compound with theoretical and experimental evidence. They
found that the desulfurization ability of metal-based ILs for dibenzothiophene (DBT) fol-
lowed the order FeCl3 > AlCl3 > ZnCl2 > Cu(I)Cl. DBDS possessed stronger alkalinity
than other corrosive sulfur compounds, which might be attributed to the increasing σ lone
pair electron of S atoms. Lewis acidic ILs containing metal halide anions, such as FeCl4−,
ZnCl3−, and AlCl4−, are active factors that affect the desulfurization results of ILs [22–26].

Hereby, 1-methylimidazolium was selected as the cation to construct ionic liquids
(ILs) with Lewis acidic 1-butyl-3-methylimidazolium chloride/FeCl3. Nine ILs were syn-
thesized and applied in DBDS extraction from transformer oil, which were expected to
effectively solve the insulation failures caused by corrosive sulfur in transformer oil. To
decipher the extractive mechanism, the interaction modes were analyzed via theoretic
calculation methods.

2. Results and Discussion
2.1. Desulfurization Performance of ILs

In this work, DBDS extraction efficiency of nine imidazolium-based ionic liquids,
including [BMIM]BF4, [BMIM]SCN, [BMIM]NTf2, [BMIM](C4H9O)2PO2, [BMIM]N(CN)2,
[BMIM]MeSO4, [BMIM]OTf, [BMIM]PF6, and [BMIM]FeCl4, was determined. Figure 1
shows that desulfurization efficiency of the nine ILs followed the order [BMIM]FeCl4 >
[BMIM]N(CN)2 > [BMIM]SCN > [BMIM](C4H9O)2PO2 > [BMIM]MeSO4 > [BMIM]NTf2 >
[BMIM]OTf > [BMIM]PF6 > [BMIM]BF4. The order of ionic liquids viscosity in Figure 2
is consistent with the above experimental results, except for [BMIM]NTf2, [BMIM]OTf,
and [BMIM]BF4. The lower the viscosity of the ionic liquid was, the more fully it could
contact transformer oils and the higher the extraction efficiency it could achieve. This result
indicates that the viscosity of ionic liquid played an important role in the extraction process.
However, [BMIM]FeCl4 and [BMIM]N(CN)2 with similar viscosity showed large extraction
differences, which might be caused by the differences in acidity.

KN referred to the concentration ratio of DBDS in extractant and in oil. For one IL, the
KN value was not correlated with DBDS content in transformer oil when the DBDS content
was low enough. Based on this, the KN value for each IL was measured using extraction
oils with different DBDS content. As presented in Figure 3, the KN values displayed the
same order as the DBDS removal efficiency list in Figure 1. [BMIM]FeCl4 showed the
most excellent desulfurization performance; its KN value reached as high as 6.2. The
KN values of [BMIM]OTf, [BMIM]PF6, and [BMIM]BF4 were only 1.35, 1.11, and 0.984 at
303 K, respectively. We could be certain that the difference in desulfurization efficiency of
these ionic liquids containing imidazolium cation had a great relationship with the anions.
Obviously, FeCl4− was more propitious to DBDS extraction under experimental conditions.
Moreover, the mass ratio of ionic liquids to oils also influenced DBDS removal rate. High
ionic liquid/oil ratio could lead to a higher DBDS removal rate. As for [BMIM]FeCl4, the
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removal ratio of DBDS could amount to 90% when the mass ratio of [BMIM]FeCl4 to oil
stood at 1.5. If deep desulfurization was needed, one could increase either the ratio of ILs
to oils or the extraction times.
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2.2. Effect of Molar Ratios of FeCl3/[BMIM]Cl on DBDS Extraction

As stated above, [BMIM]FeCl4 presented the best desulfurization efficiency among the
ILs. Thereby, [BMIM]FeCl4 was selected as the extractant to investigate the effect of ILs’ com-
positions on desulfurization performance. [BMIM]FeCl4 with different FeCl3/[BMIM]Cl
ratios (0.5:1, 0.7:1, 0.9:1, 1:1,1.1:1, 1.2:1, 1.5:1) was discussed. As depicted in Figure 4, the
desulfurization efficiency of ILs increased when the molar ratio of FeCl3 to [BMIM]Cl in-
creased from 0.5:1 to 1.5:1. The KN value reached as high as 2642 when the FeCl3/[BMIM]Cl
molar ratio increased to 1.5:1. The high KN value was due to the increased Lewis acidity of
the IL at higher molar ratio of FeCl3/[BMIM]Cl.
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Figure 4. Effect of molar ratios of FeCl3/[BMIM]Cl on extraction efficiency. (a) Molar ratio at 0.5~1.1;
(b) Molar ratio at 1.2 and 1.5

2.3. Extraction Properties of ILs towards Other Sulfur Species

To inspect the extraction performance of ILs towards other kind of sulfur species,
diphenyl sulfide (DPS) was used, which was another common corrosive sulfur in trans-
former oils. The extraction experiments were carried out at room temperature, and the
mass ratio of ILs and oils was 1:1. The results are presented in Figure 5. It was found
that [BMIM]FeCl4 also showed the best removal efficiency for DPS. The other two ILs,
[BMIM]N(CN)2 and [BMIM]SCN, exhibited lower extraction efficiency for DPS than
[BMIM]FeCl4, indicating that FeCl4− played an important role in extraction. It is worth
noting that the extraction efficiency of [BMIM]FeCl4 towards DPS was much lower than
that towards DBDS. The sulfur partition coefficient of DBDS in [BMIM]FeCl4 was 6 times
as high as that of DPS, suggesting that sulfur species also affect the interaction. It was ana-
lyzed that the electron density of sulfur substances was the main reason for the difference
in extraction efficiency. The higher π-electron density of DBDS contributed to the further
enhancement of interaction between sulfur substances and extractant.
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2.4. Determination of the Equilibrium Time

Figure 6 recorded the desulfurization efficiency of [BMIM]FeCl4 at 303 K at different
times. The desulfurization efficiency was measured at 3, 5, 10, and 15 min at 303 K with
the mass ratio of [BMIM]FeCl4 to oil at 1:1. As shown in Figure 6, the extraction process of
[BMIM]FeCl4 reached equilibrium within 1 min, which was ascribed to low viscosity and
strong acidity of [BMIM]FeCl4. On one hand, low viscosity of [BMIM]FeCl4 was beneficial
to dispersion mass transfer. On the other hand, its strong acidity enhanced its chemical
interaction with DBDS. Therefore, [BMIM]FeCl4 showed an excellent extractive rate, which
is an important factor in the industrial extraction process.
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2.5. Effect of Extraction Temperature on Desulfurization Performance of ILs

Figure 7 displays the influence of the extraction temperature on the desulfurization
efficiency of [BMIM]FeCl4 (1:1). The desulfurization performance of [BMIM]FeCl4 was
obviously influenced by temperature. The KN of DBDS decreased when the temperature
rose, which implied the extraction process was exothermic. Thereby, the desulfurization
process of [BMIM] FeCl4 could be directly performed at room temperature, which would
reduce energy consumption and the separation cost.

Molecules 2024, 29, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 7. Desulfurization efficiency of [BMIM]FeCl4 at different temperatures. 

2.6. Comparison with Other Extractants 
As stated above, [BMIM]FeCl4 presented high extraction efficiency for the DBDS. The 

KN of [BMIM]FeCl4 (1:1) could reach 6.2, which was superior to the commonly used ex-
traction in industry. The comparison between [BMIM]FeCl4 and other extractants is 
shown in Figure 8. The KN for DBDS exhibited an order of N-methyl-pyrrolidone (NMP) > 
[BMIM]FeCl4 > PEG-400 at 303 K. The differences in desulfurization performance were 
ascribed to different polarity and surface tension properties [27]. The polarity and surface 
tension of NMP were much higher than that of [BMIM]FeCl4 and PEG-400, resulting in 
excellent desulfurization efficiency. But NMP has obvious drawbacks in industrial appli-
cations because of its large solubility in oil [28]. 

 
Figure 8. Desulfurization of ILs and other extractants for DBDS. 

2.7. Accumulative Extraction of [BMIM]FeCl4 

The accumulative extraction experiment was carried out to evaluate desulfurization 
performance of [BMIM]FeCl4, as shown in Figure 9. It can be seen that the accumulative 
DBDS content of [BMIM]FeCl4 was much higher than that of other ILs. Moreover, DBDS 
content in [BMIM]FeCl4 kept rising during 20 accumulative extractions, which indicated 
that [BMIM]FeCl4 had a larger capacity for DBDS. 

Figure 7. Desulfurization efficiency of [BMIM]FeCl4 at different temperatures.



Molecules 2024, 29, 2395 6 of 11

2.6. Comparison with Other Extractants

As stated above, [BMIM]FeCl4 presented high extraction efficiency for the DBDS.
The KN of [BMIM]FeCl4 (1:1) could reach 6.2, which was superior to the commonly used
extraction in industry. The comparison between [BMIM]FeCl4 and other extractants is
shown in Figure 8. The KN for DBDS exhibited an order of N-methyl-pyrrolidone (NMP)
> [BMIM]FeCl4 > PEG-400 at 303 K. The differences in desulfurization performance were
ascribed to different polarity and surface tension properties [27]. The polarity and surface
tension of NMP were much higher than that of [BMIM]FeCl4 and PEG-400, resulting
in excellent desulfurization efficiency. But NMP has obvious drawbacks in industrial
applications because of its large solubility in oil [28].
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2.7. Accumulative Extraction of [BMIM]FeCl4
The accumulative extraction experiment was carried out to evaluate desulfurization

performance of [BMIM]FeCl4, as shown in Figure 9. It can be seen that the accumulative
DBDS content of [BMIM]FeCl4 was much higher than that of other ILs. Moreover, DBDS
content in [BMIM]FeCl4 kept rising during 20 accumulative extractions, which indicated
that [BMIM]FeCl4 had a larger capacity for DBDS.
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2.8. The Possible Extraction Mechanism

Based on extraction experiment results and characterization of imidazolium-based
ionic liquids, π−π action and Lewis’s acid–base action were presumed to account for excel-
lent desulfurization efficiency. For the imidazole cation, its π electron cloud could form π–π
interactions with benzene ring on DBDS. Furthermore, the methyl and butyl substituents on
the imidazole cation were electron-donating groups, which increased the polarizability and
aromatic π-electron density of the imidazole cation. Therefore, the methyl and butyl sub-
stituents on the imidazolium ring could strengthen the interaction between ILs with DBDS
through π–π stacking. The difference in desulfurization efficiency of these ILs was ascribed
to anions. Compared to metal-free ILs, [BMIM]FeCl4 exhibited much higher desulfurization
ability, which might be attributed to π-complexation and Lewis’s acid–base action interac-
tion between [BMIM]FeCl4 and DBDS. Firstly, the anti-bonding π orbitals on DBDS would
interact with the vacant s or d orbitals of Fe3+ (electron configuration: 1s2 2s2 2p6 3s2 3p6

3d5 4s0) via π-complexation interaction. The experimental results show that the extractive
efficiency of ILs increased with the increasing of molar ratios of FeCl3/[BMIM]Cl. The
higher FeCl3 content of ionic liquid gave stronger Lewis’s acidity and stronger acid–base
action. Meanwhile, the interaction intensity between ILs ([BMIM]FeCl4, [BMIM]BF4) and
DBDS was represented by interaction energy (∆E, kJ·mol−1), as shown in Figure 10. The
interaction energy (∆E) was calculated as –1.6 kcal mol−1 between [BMIM]FeCl4 and DBDS,
which was 0.5 kcal mol−1 lower than that between [BMIM]BF4 and DBDS. This was consis-
tent with the experimental results. However, the interaction energy between [BMIM]FeCl4
and DBDS was higher than that between ethanethiol and [BMIM]+ (–10.92 kcal mol−1) [29],
indicating that the attraction force of [BMIM]+ to DBDS was lower than that to ethanethiol.
This allowed an easier back-extraction operation in the regeneration step.
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2.9. Regeneration of [BMIM]FeCl4
Regeneration and low-cost recycling were very important factors during the indus-

trialization of extractants. To achieve the regeneration of [BMIM]FeCl4, organic solvent
cyclohexane was used to separate DBDS from the [BMIM]FeCl4. The desulfurization effi-
ciency of recycled [BMIM]FeCl4 is displayed in Figure 11. The desulfurization efficiency of
[BMIM]FeCl4 remained at 85.39% after five cycles. Thereby, [BMIM]FeCl4 presented with
good regeneration performance.
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3. Material and Method
3.1. Materials

N-methylimidazole, iron (III) chloride anhydrous, 1-chlorobutane, Ethyl acetate,
Dibenzyl disulfide (98%), n-hexadecane (98%), N-methyl-pyrrolidone (NMP), PEG-400, and
cyclohexane were purchased from Macklin (Shanghai, China). 1-butyl-3-methylimidazolium
dicyanamide [BMIM]N(CN)2, 1-butyl-3-methylimidazolium thiocyanate [BMIM]SCN, 1-
butyl-3-methylimidazolium dibutyl phosphate [BMIM](C4H9O)2PO2, 1-butyl-3-
methylimidazolium methyl sulfate [BMIM]MeSO4, 1-butyl-3-methylimidazolium
bis((trifluoromethyl)sulfonyl)imide [BMIM]NTf2, 1-butyl-3-methylimidazolium trifluo-
romethanesulfonate [BMIM]OTf, 1-butyl-3-methylimidazolium hexafluorophosphate
[BMIM]PF6, and 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM]BF4 were pro-
vided by Shanghai Cheng Jie Chemical Co., Ltd. (Shanghai, China). All reagents were of
analytical grade.

3.2. Preparation of [BMIM]Cl·xFeCl3
[BMIM]Cl·xFeCl3 ionic liquids were synthesized according to reference [30]. Certain

amounts of anhydrous FeCl3 (x mol, x = 0.5, 0.7, 0.9, 1.0, 1.1, 1.2, 1.5) were mixed with
[BMIM]Cl (1 mol) and stirred for 24 h at room temperature. Finally, a reddish-brown liquid,
[BMIM]Cl·xFeCl3, was obtained.

3.3. Extractive Desulfurization Experiment

The model oil was prepared by dissolving DBDS in n-hexadecane. The content of
DBDS was set at 150 ppm. Extraction processes were performed in a series of 10 mL
tubes. Ionic liquids with varying molar compositions were added into model oil containing
150 ppm of DBDS. Then, the mixtures were stirred for 30 min at 303 K. After extraction,
the mixture was separated after standing for 30 min. The oil sample was analyzed using
a Wufeng EX1600 high-performance liquid chromatography (HPLC) system equipped
with an LC-UV100plus detector at 215 nm and a C18-100-5 4E column to determine the
concentration of DBDS in the oil sample. The mobile phase in HPLC was 90% methanol
aqueous with a rate of 1 mL/min.

3.4. Separation Parameter Determination

According to the DBDS content in the extractant and in the oil, extraction efficiency (S-
removal) and distribution coefficient (KN) could be calculated using the following equations:

S-removal =
C0 − Ce

C0
× 100 (1)
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KN =
Ce

′

Ce
=

(m0C0 − meCe)/me
′

Ce
(2)

where C0 is the DBDS content in the original oil, and Ce is the DBDS content in the oil
phase after extraction. Ce

′ and Ce are the DBDS content in the extractant phase and oil,
respectively. m0, me, and me

′ are the mass of the original oil, the oil phase after extraction,
and the extractant phase after extraction, respectively.

3.5. Theoretical Calculation

To comprehend the desulfidation mechanism theoretically, the interactions between
[BMIM]FeCl4 and DBDS were analyzed using the Gaussian 09 program [30–32]. The
Cartesian coordinates of optimized structures, energies of ion pairs of RTILs, the optimized
structures, and the interaction energies were calculated at uωb97xd/6-311 + g(d,p) level
(see Supplementary Materials).

3.6. Regeneration of [BMIM]FeCl4
To check the reusability of [BMIM]FeCl4, the cyclohexane was chosen to re-extract

DBDS after extraction. Cyclohexane was added to the extractant phase and stirred for
30 min at 303 K. The regenerated IL was separated from cyclohexane via a separatory
method using a separating funnel. Subsequently, the IL containing trace cyclohexane was
evaporated under 70 ◦C under reduced pressure for 3 h. Then, the recovered IL was used
for the next cycle in extraction desulfurization.

4. Conclusions

In this work, a series of imidazolium-based ionic liquids with difference anions were
used in the extraction of dibenzyl disulfide (DBDS) from transformer oils. [BMIM]FeCl4
(1:1.5) showed the highest efficiency in DBDS extraction, whose S partition coefficient KN
reached as high as 2642. This benefited from the special Lewis acidity and polarity of
[BMIM]FeCl4. The extraction performance of [BMIM]FeCl4 for DBDS was superior to that
for DPS. The partition coefficient of DBDS in [BMIM]FeCl4 and oil was 6 times higher than
that of DPS, which was due to the difference in electron density on the sulfur atoms in
DBDS and DPS. The dominant interactions were assumed to be π−π action and Lewis’s
acid−base interaction between [BMIM]FeCl4 and DBDS. Bearing favorable recyclability
and high extraction efficiency, [BMIM]FeCl4 may be used as a potential extractant for the
extraction of DBDS from transformer oils if the costs are further controlled.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29102395/s1, Calculation details including tables show-
ing the Cartesian coordinates of optimized structures, calculated energies of ion pairs of RTILs, and
figures showing the optimized structures.
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