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Abstract: Prediction of the antibacterial activity of new chemical compounds is an important task,
due to the growing problem of bacterial drug resistance. Generalized linear models (GLMs) were
created using 85 amidrazone derivatives based on the results of antimicrobial activity tests, deter-
mined as the minimum inhibitory concentration (MIC) against Gram-positive bacteria: Staphylococcus
aureus, Enterococcus faecalis, Micrococcus luteus, Nocardia corallina, and Mycobacterium smegmatis. For
the analysis of compounds characterized by experimentally measured MIC values, we included
physicochemical properties (e.g., molecular weight, number of hydrogen donors and acceptors,
topological polar surface area, compound percentages of carbon, nitrogen, and oxygen, melting
points, and lipophilicity) as potential predictors. The presence of R1 and R2 substituents, as well as
interactions between melting temperature and R1 or R2 substituents, were also considered. The set of
potential predictors also included possible biological effects (e.g., antibacterial, antituberculotic) of
tested compounds calculated with the PASS (Prediction of Activity Spectra for Substances) program.
Using GLMs with least absolute shrinkage and selection (LASSO), least-angle regression, and step-
wise selection, statistically significant models with the optimal value of the adjusted determination
coefficient and of seven fit criteria were chosen, e.g., Akaike’s information criterion. The most often
selected variables were as follows: molecular weight, PASS_antieczematic, PASS_anti-inflam, squared
melting temperature, PASS_antitumor, and experimental lipophilicity. Additionally, relevant to the
bacterial strain, the interactions between melting temperature and R1 or R2 substituents were selected,
indicating that the relationship between MIC and melting temperature depends on the type of R1 or
R2 substituent.

Keywords: antibacterial activity; amidrazones; Gram-positive bacteria; GLMs; LASSO; least-angle
regression; stepwise; variables selection; triazoles; cyclic imides

1. Introduction

The increasing number of bacterial infections is one of the challenges of modern
medicine [1]. Searching for new therapeutic substances remains an actual question and task
for many scientists. Despite huge developments in medicine, chemistry, and biochemistry,
there are still rare diseases without effective therapies so far [2]. At the same time, the
increasing drug resistance of pathogenic bacterial strains creates the risk that, in a few years,
we will be left without an effective weapon against these microorganisms [3,4]. Different
bacterial strains exhibit varying resistance to widely used drugs [5,6].
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Bacterial drug resistance mechanisms have evolved due to the presence of selective
pressure. The main known mechanisms of resistance include the limitation of drug ab-
sorption, modification of drug targets, drug inactivation, and active drug efflux. Antibiotic
resistance in Gram-positive cocci is still a current problem, and the selection pressure of
antibiotics is one of the most important factors contributing to its spread. Methicillin-
resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE), which
cause nosocomial infections, are of particular concern. Additionally, many Gram-positive
bacteria often have high natural intrinsic antimicrobial resistance. The genetic and bio-
chemical basis of antimicrobial resistance in these groups of bacteria is diverse and often
varies within genera and/or species [7]. Therefore, effectively treating resistant bacterial
infections is an important problem in contemporary medicine. Many antibiotics are no
longer sufficiently effective, thus prompting the examination of the antibacterial activity of
compounds isolated from plants [8,9] or forest-derived soil microorganisms [10] against
significant bacteria.

Amidrazone derivatives are known for their wide biological activity, including an-
tibacterial, antifungal, anti-inflammatory, cytoprotective, and anticancer effects [11]. Pre-
vious studies have demonstrated that unsubstituted amidrazones and their chloride or
bromide salts exhibit good antibacterial activity. Due to our experience in the synthesis
of N3-substituted amidrazone derivatives, compounds such as acyclic derivatives [12],
1,2,4-triazole derivatives [13] and cyclic imides [14] were selected for this research. In this
study, we attempted to determine the influence of the R1 and R2 substituents and other
structural factors of new N3-amidrazone derivatives on their antibacterial against selected
strains of Gram-positive bacteria.

The search for new drugs is a long-standing and expensive process, with as many
as 90% of promising substances being discarded for failing to meet the strict demands of
several clinical trial phases [15]. Multidimensional statistical methods or machine learning
procedures might be useful tools in the earliest stages of drug design [5,16,17]. These
modern methods are increasingly used in areas such as the financial sector, energy sector,
entertainment, and health care, in addition to the academic environment [18]. Artificial
intelligence methods are increasingly used in structure-based drug discovery [19].

Innovative machine learning methods can be helpful in medicinal chemistry. These
types of tools are increasingly used at the earliest stages of drug design, and their effec-
tiveness is a key benefit of this approach. This method was used to study the activity of
synthetic and natural small molecules and peptides against Gram-negative and Gram-
positive bacteria and mycobacteria, including multidrug-resistant strains [5]. Currently
used antibiotics act on one of the pathways necessary for the survival of bacterial cells,
including cell wall synthesis and the biosynthesis of nucleic acids or proteins. Due to the
rapidly developing antibiotic resistance (e.g., production of enzymes inactivating antibi-
otics, modifications in the targeted pathways), it is important to select new biochemical
and therapeutic targets for antibacterial drugs [5,20]. An interesting approach is to block
the biosynthesis of peptidoglycan, the main component of the bacterial cell wall, not by tar-
geting membrane-bound extracellular enzymes but at the cytoplasmic stage of biosynthesis
by inhibiting Mur enzymes, which are essential for bacterial survival [21].

A deep neural network was applied to find molecules that are structurally divergent
from conventional antibiotics and display bactericidal activity against a wide phylogenetic
spectrum of bacterial strains [22]. Various types of data serve as the basis of analysis
using machine learning methods, including omics data [15]. Generalized linear models
(GLMs) were applied to predict minimum inhibitory concentrations (MICs) based on
growth curves [23].

On the contrary, we decided to model the values of MIC for five bacterial stains based
on the results of our experiments, supplemented with theoretical data describing chemical
structure, using a GLM [24,25]. While GLMs with main effects and interaction analysis
have been applied by other authors, they focused on plant drugs against Pseudomonas
fluorescens [8] and examined differences between groups and incubation times.
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In the synthesis of new chemical compounds, it is essential to theoretically assess
their biological properties, such as antibacterial activity, anti-inflammatory properties,
anti-cancer potential, and others. Developing statistical models using measurements from
experiments and theoretical values associated with chemical structure characterization may
prove useful for this purpose. We are interested in identifying crucial factors for models that
could facilitate the design of new chemical compounds with potential antibacterial activity.

The presented work aimed to create a model for the antibacterial activity of amidrazone
derivatives by evaluating their MICs using generalized linear models (GLMs). Models of
growth inhibition by eighty-five N3-substituted amidrazone derivatives were examined
for the following five strains of Gram-positive bacteria: Staphylococcus aureus, Enterococcus
faecalis, Micrococcus luteus, Nocardia corallina, and Mycobacterium smegmatis.

2. Results

The models for predicting MICs, an in vitro measure of the pharmacodynamic potency
of the drug [26], were developed for five bacterial strains. Experimental and theoretical
data from 85 N3-substituted amidrazone derivatives, including derivatives of 1,2,4-triazole
and cyclic imides (general structures are shown in Figure 1, full formulas in Figures S1–S3
in the Supplementary Materials), were used to build models.
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Figure 1. General formulas of (a) parent N3-substituted amidrazones, (b) acyclic derivatives,
(c) 1,2,4-triazole derivatives, and (d) cyclic imides used to build models; where R1 = 2-pyridyl,
4-pyridyl, or phenyl; R2 = 2-pyridyl, 4-methylphenyl, 4-nitrophenyl, or phenyl; R3 and R4 depend on
the anhydride used in the synthesis.

The influence of R1 and R2 substituents was analyzed in the models, but due to the
large number of categories causing greater computational complexity, the influence of R3
and R4 substituents was omitted.

Values of MIC for the five bacterial strains were the explained variables in building
GLMs. For each Gram-positive bacterial strain, least absolute shrinkage and selection
operator (LASSO), least-angle regression (LAR) and stepwise selections were applied to
create GLMs. The meaning of potential variables as well as methods of their calculation
are given in Table 1. Variables such as molecular weight (MW), theoretical measure of
lipophilicity (miLOGP), donors of hydrogen (Donors_H), acceptors of hydrogen (Accep-
tors_H), and topological polar surface area (TPSA) [27] were calculated by Molinspiration
online software [28] using the Simplified Molecular Input Line Entry System (SMILES)
codes of studied compounds. SMILES codes and the percentages of carbon, nitrogen, and
oxygen of compounds were generated using the ChemSketch program. Variables denoting
biological activity such as antibacterial (PASS_antibact), anti-inflammatory (PASS_anti-
inflam), antieczematic (PASS_antieczematic), antitumor (PASS_antitumor), antituberculosis
(PASS_antituberculosi) were calculated with PASS Online software version 2.0 [29,30], using
the SMILES codes. Variables such as PASS_anti*PASS_antib, meltingTemp*R1_substituent,
meltingTemp*R2_substituent, meltingTemp*R2_substituent, and meltingTe*meltingTem
were calculated directly by the Statistical Analysis System (SAS) [31]. The remaining two
variables melting point (meltingTemp) and experimental lipophilicity (RMoExper) were
collected through experiments. Experimental lipophilicity values were evaluated using
reversed-phase thin-layer chromatography (TLC) [32]. Discrete descriptors such as R1 and
R2 were incorporated into this study as binary dummy variables.
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Table 1. Potential variables in models.

Abbreviation Description Data Source

1 MW molecular weight Molinspiration [28]
2 RmoExper lipophilicity index (experimental lipophilicity) experimental [32]
3 miLOGP theoretical lipophilicity Molinspiration [28]
4 PASS_antibact antibacterial activity calculated using PASS program PASS [29]
5 PASS_anti*PASS_antib PASS antibacterial activity squared SAS [31]
6 PASS_anti-inflam anti-inflammatory activity calculated using PASS program PASS [29]
7 PASS_antieczematic antieczematic activity calculated using PASS program PASS [29]
8 PASS_antitumor antitumor activity calculated using PASS program PASS [29]
9 PASS_antituberculosi antituberculotic activity calculated using PASS program PASS [29]
10 perc_O percent of oxygen ChemSketch [33]
11 perc_N percent of nitrogen ChemSketch [33]
12 perc_C percent of carbon ChemSketch [33]
13 Donors_H donors H Molinspiration [28]
14 Acceptors_H acceptors H Molinspiration [28]
15 TPSA topological polar surface area Molinspiration [28]
16 R1_substituent substituent R1 (2-pyridyl, 4-pyridyl, phenyl) Figures S1–S3
17 R2_substituent substituent R2 (2-pyridyl, 4-methylphenyl, 4-nitrophenyl, phenyl) Figures S1–S3
18 meltingTemp*R1_substituent interaction term of meltingTemp with R1_substituent SAS [31]
19 meltingTemp*R2_substituent interaction term of meltingTemp with R2_substituent SAS [31]
20 meltingTemp melting temperature experimental
21 meltingTe*meltingTem melting temperature squared SAS [31]

Estimated parameters for the best models, according to fit and performance measures
such as adjusted determination coefficient (Adj R2), Akaike’s information criterion (AIC),
corrected Akaike’s information criterion (AICC), Mallows’ C(p) statistic, two information
criteria as Sawa’s Bayesian Information Criterion (BIC) and Schwarz Bayesian Criterion
(SBC), predicted residual sum of squares (PRESS), and mean square error on the vali-
dation set (described in the Section 4) are presented in Tables 2–7, while the remaining
Tables S1–S24 can be found in the Supplementary Materials. In Tables S2–S16 fit statistics
for models are given with F-values and p-values from analysis of variance (ANOVA) results.

The models for the analyzed bacterial strains differed in the number of selected
important variables and the quality of prediction, and measured various criteria including
adjusted coefficient of determination R2 and other fit and performance criteria. Therefore,
the details of outcomes are presented in subsections. The unstandardized estimate for the
i-th coefficient in the models is denoted by bi, while the standardized estimate for the i-th
coefficient in the models is denoted by βi.

Thus, MIC (M) was modeled after the calculation of GLM selection in equations with
unstandardized coefficients, as follows:

M = b0 + ∑ bi xi (1)

or with standardized coefficient (without intercept) as follows:

M = ∑ βi xi (2)

where the summing is performed from one to the number of selected predictors, p.
Unstandardized coefficients are useful in the biochemical interpretation of models

obtained as GLM results (given in the left part of Tables 2–7). When assuming a model
without an interaction term, the value of the unstandardized coefficients denotes the change
in the MIC variable (denoted as M in the above equations) with a one-unit increment in the
explanatory variable (main effect) xi. More precisely, positive values of the unstandardized
coefficient estimate, bi, of the numerical predictive variable, xi, result in an increase in
the MIC value on average by bi when the explaining variable is changed by one unit.
Conversely, negative values indicate a decrease. This also holds if this variable is the
melting temperature, in the case of the absence of interaction of melting temperature with
any substituent R1 or R2 in the found model.
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Table 2. S. aureus parameter estimates for LASSO models optimized by the seven fit criteria.

Parameter
Estimate bi Standardized Estimate βi Mean Selection

% from
Bootstrap

Model 1, 2,
and 5 ****

Model 3, 4,
and 6 **** Model 7 *** Model 1, 2,

and 5 ****
Model 3, 4,
and 6 **** Model 7 ***

Intercept 873.169475 1114.556967 896.693393 0 0 0

MW −2.046303 −2.012174 −0.174756 −0.171842 61.51

PASS_anti-inflam 617.458702 340.124433 615.083438 0.325141 0.179103 0.327629 56.96

PASS_antitumor −1243.082270 −981.273647 −1179.549012 −0.391309 −0.308895 −0.356949 82.10

perc_N 4.769786 8.932653 0.040680 0.071365 30.81

TPSA 2.715861 0.178460 40.87

R2_substituent_4-nitrophenyl −658.793078 −0.648931 39.80

meltingTemp*R2_substituent_2-
pyridyl −0.339383 −0.161304 −0.022462 −0.073312 −0.034844 −0.004726 52.94

meltingTemp*R2_substituent_4-
methylphenyl 0.401398 0.394636 0.433419 0.094897 0.093298 0.088599 67.59

meltingTemp*R2_substituent_4-
nitrophenyl 5.050186 1.760136 1.068188 0.862991 0.300777 0.170470 86.96

meltingTemp*R1_substituent_2-
pyridyl −0.234074 −0.554738 −0.064224 −0.150870 44.10

meltingTe*meltingTem 0.001853 0.002906 0.001773 0.090542 0.142001 0.091189 75.87

PASS_antieczematic 14.583163 0.010580 21.26

perc_C −4.911495 −0.059439 18.14

Acceptors_H −30.086571 −0.105408 36.66

R1_substituent_4-pyridyl 41.829359 0.051032 17.94

R2 0.5160 0.4542 0.4983 0.5160 0.4542 0.4983

Adj R2 0.4410 0.4032 0.3645 0.4410 0.4032 0.3645

#effects 12 8 13 11 7 12

Model 1 by Adj R2, Model 2 by AIC, Model 3 by AICC, Model 4 by BIC, Model 5 by C(p), Model 6 by SBC, and
Model 7 by average squared error validation (ASE Val); **** p < 0.0001; *** p = 0.0006.

However, explaining variables are measured by different scales, so unstandardized
coefficients depend on the scales. To interpret the objective meaning of variables (or effects)
from a chemical point of view, standardized coefficients in the GLM (presented numerically
or graphically) are used for inference. Standardized coefficients are obtained by dividing
unstandardized coefficients by standard deviations of the respective explanatory variables.
For the comparison of the impact of any predicting variable xi on the MIC variable, the stan-
dardized coefficients are interpreted similarly, in terms of changes measured in standard
deviations. Specifically, for numerical explaining variables, the positive (negative) values of
estimates of the standardized coefficients βi (presented in the right part of Tables 2–7) are on
average associated with one standard deviation (SD) increase (decrease) of the predictor by
βi, assuming the other variables remain unchanged (and again assuming lack of interaction
of this variable with any substituent R1 or R2 in the found model).
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Table 3. S. aureus parameter estimates for LAR models optimized by seven fit criteria.

Parameter
Estimate bi Standardized Estimate βi Mean Selection

% from
BootstrapModel 1 **** Model 2, 3, 4,

and 5 **** Model 6 **** Model 7 *** Model 1 **** Model 2, 3, 4,
and 5 **** Model 6 **** Model 7 ***

Intercept 462.898124 462.505125 583.823298 381.403651 0 0 0 0

MW −1.069639 −0.568965 −0.259356 −0.091348 −0.048590 −0.021098 86.01

PASS_anti-inflam 463.251051 411.429060 316.932193 470.435188 0.243939 0.216650 0.166890 0.237494 23.13

PASS_antieczematic 163.963667 148.389990 295.282144 0.127085 0.115014 0.213817 33.73

PASS_antitumor −1369.627613 −1267.557881 −926.310045 −1199.879404 −0.431145 −0.399014 −0.291593 −0.384189 52.26

PASS_antituberculosi 199.819895 158.913470 7.935571 0.081416 0.064749 0.003424 37.16

perc_N 4.202615 10.150326 0.035843 0.088231 10.10

R2_substituent_4-
methylphenyl 21.291074 0.026453 11.90

meltingTemp*R2_substituent_4-
nitrophenyl 1.553781 1.088246 0.474492 0.265515 0.185963 0.071326 10.07

meltingTemp*R1_substituent_4-
pyridyl 0.189909 0.045909 24.60

meltingTemp 3.393038 2.624292 0.178016 0.435941 0.337172 0.023650 65.09

meltingTe*meltingTem −0.008066 −0.006092 −0.394171 −0.297722 35.79

PASS_antibact 44.616304 0.012817 38.34

perc_C −0.395393 −0.004806 9.99

R2 0.4978 0.4680 0.3131 0.4879 0.4978 0.4680 0.3131 0.4879

Adj R2 0.4200 0.4104 0.2959 0.3715 0.4200 0.4104 0.2959 0.3715

#effects 12 9 3 11 11 8 2 10

Model 1 by Adj R2, Model 2 by AIC, Model 3 by AICC, Model 4 by BIC, Model 5 by C(p), Model 6 by SBC, Model 7 by ASE Val; **** p < 0.0001; *** p = 0.0004.
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Table 4. S. aureus parameter estimates for stepwise models optimized by eight criteria.

Parameter

Estimate bi Standardized Estimate βi Mean
Selection %

from
Bootstrap

Model 1, 2, 3,
4, 5, and 7

****

Model 6
**** Model 8 ****

Model 1, 2,
3, 4, 5, and

7 ****
Model 6 **** Model 8

****

Intercept 2429.212180 1853.690776 654.612436 0 0 0

miLOGP 76.605993 0.205949 24.58

PASS_anti-inflam 732.638700 820.792894 689.123870 0.385793 0.432213 0.367067 29.94

PASS_antitumor −1628.150512 −1633.785168 −1564.692751 −0.512525 −0.514299 −0.473499 19.70

perc_C −29.306596 −18.583962 −0.374185 −0.237279 14.80

R2 0.4415 0.4256 0.4321 0.4415 0.4256 0.4321

Adj R2 0.4129 0.4038 0.4115 0.4129 0.4038 0.4115

#effects 5 4 3 4 3 2

Model 1 by Adj R2, Model 2 by AIC, Model 3 by AICC, Model 4 by BIC, Model 5 by C(p), Model 6 by SBC, Model
7 by PRESS, Model 8 by ASE Val; **** p < 0.0001.

Table 5. N. corallina parameter estimates for stepwise models optimized by eight fit criteria.

Parameter

Estimate bi Standardized Estimate βi Mean
Selection %

from
Bootstrap

Model 1, 2, 3,
5, and 6 ****

Model 4
and 7 **** Model 8 ***

Model 1, 2,
3, 5, and 6

****

Model 4 and
7 ****

Model 8
***

Intercept 1390.328152 1291.954852 705.248202 0 0 0

MW −8.219504 −6.992417 −1.060433 −0.902121 42.46

RmoExper 89.254456 83.115214 111.265824 0.276959 0.257909 0.355463 39.91

miLOGP 138.390618 130.292793 0.638554 0.601189 14.90

PASS_anti-inflam −836.304090 −758.846240 −0.626581 −0.568547 42.31

PASS_antieczematic −251.261248 −384.382216 −364.349190 −0.293190 −0.448525 −0.444599 61.77

PASS_antitumor −711.157471 −0.324943 17.99

meltingTe*R2_substit
2-pyridyl 20.988569 14.778770 7.312478 5.148966 41.97

meltingTe*R2_substit
4-methylphenyl 21.371754 15.514874 5.927923 4.303389 41.97

meltingTe*R2_substit
4-nitrophenyl 21.756328 15.380206 6.202207 4.384528 41.97

meltingTe*R2_substit
phenyl 19.951998 14.272193 8.530327 6.101969 41.97

meltingTe*meltingTem −0.060928 −0.042149 −3.875007 −2.680625 37.34

R2 0.6645 0.6316 0.3146 0.6645 0.6316 0.3146

Adj R2 0.5674 0.5371 0.2730 0.5674 0.5371 0.2730

#effects 12 11 3 11 10 2

Model 1 by Adj R2, Model 2 by AIC, Model 3 by AICC, Model 4 by BIC, Model 5 by C(p), Model 6 by SBC, Model
7 by PRESS, Model 8 by ASE Val; **** p < 0.0001; *** p = 0.0020.
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Table 6. M. luteus parameter estimates for stepwise models optimized by seven fit criteria.

Parameter

Estimate bi Standardized Estimate βi Mean
Selection
% from

Bootstrap

Model 1,
2, 4, 5,

and 7 ****

Model 3
****

Model 6
****

Model 8
***

Model 1,
2, 4, 5,

and 7 ****

Model 3
****

Model 6
****

Model 8
***

Intercept 1140.676275 828.893739 −9.630019 705.248202 0 0 0 0

MW −3.248648 −2.773553 −0.356696 −0.304531 60.12

RmoExper 251.327244 234.240999 186.230637 0.682719 0.636305 0.505887 88.91

PASS_antieczematic −224.221116 −245.759841 −0.231603 −0.253851 39.67

PASS_antituberculosi 404.111567 390.887022 0.206186 0.199439 41.54

meltingTemp −1.067538 −0.173456 19.75

PASS_anti-inflam −775.174645 −0.631067 25.45

Donors_H −146.944623 −0.771423 36.64

R2 0.4149 0.3890 0.2559 0.3155 0.4149 0.3890 0.2559 0.3155

Adj R2 0.3564 0.3410 0.2421 0.2795 0.3564 0.3410 0.2421 0.2795

#effects 6 5 2 3 5 4 1 2

Model 1 by Adj R2, Model 2 by AIC, Model 3 by AICC, Model 4 by BIC, Model 5 by C(p), Model 6 by SBC, Model
7 by PRESS, Model 8 by ASE Val; **** p < 0.0001; *** p = 0.0007.

Table 7. E. faecalis parameter estimates for stepwise models optimized by eight fit criteria.

Parameter

Estimates bi Standardized Estimates βi
Mean

Selection %
from Bootstrap

Model 1, 2, 3,
4, 5, and 7

****
Model 6 **** Model 8 ***

Model 1, 2, 3,
4, 5, and 7

****
Model 6 **** Model 8 ***

Intercept 2131.035479 1766.168419 2399.703970 0 0 0

MW −7.857123 −5.743976 −6.011646 −0.645950 −0.472224 −0.492079 80.76

RmoExper 297.848654 263.084487 0.605812 0.535104 94.21

PASS_antibact −6923.260504 −6688.826548 −1.974104 −1.907257 10.04

PASS_anti*PASS_antib 24935 23661 2.242303 2.127725 5.69

PASS_anti-inflam −662.638878 −827.312567 −0.329342 −0.435166 10.26

PASS_antituberculosi 855.244926 865.830163 0.326730 0.330774 13.77

meltingTe*R1_substit
2-pyridyl 2.496836 0.653657 33.47

meltingTe*R1_substit
4-pyridyl 0.931634 0.203136 33.47

meltingTe*R1_substit
phenyl 2.178632 0.490410 33.47

meltingTe*meltingTem 0.005607 0.267285 15.83

R2 0.5679 0.4266 0.2944 0.5679 0.4266 0.2944

Adj R2 0.4834 0.3693 0.2372 0.4834 0.3693 0.2372

#effects 10 6 4 9 5 3

Model 1 by Adj R2, Model 2 by AIC, Model 3 by AICC, Model 4 by BIC, Model 5 by C(p), Model 6 by SBC, Model
7 by PRESS, Model 8 by ASE Val; **** p < 0.0001; *** p = 0.0045.

For cases of interaction between variable xi and any substituent effect, R1 or R2, in the
found models, this interpretation (for both models with unstandardized and standardized
estimates) becomes slightly more complicated. In such cases, coefficients bj (βj) found
in the model for the interaction term of the numerical variable xi with the discrete effect
should be added to bi (or βi, respectively) to estimate the change in the MIC variable when
the predictor variable xi is changed by one (or 1 SD, respectively).
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Furthermore, the importance of the i-th effect is measured by the absolute value of the
standardized coefficient: |βi|. Additionally, the sign of βi further indicates the direction of
MIC changes when the explaining variable is changed. An independent numerical variable
with a larger absolute value of standardized coefficient will have a greater impact on the
predicted variable MIC. Therefore, standardized coefficients, βi, are valuable for comparing
the impact of the explaining numerical variable xi (effect) on MIC.

Only significant models, with p-values of the F-statistic below the 0.05 level, were
regarded in the analysis of selected effects results for the prediction of antibacterial activity,
and models with the optimal value of adjusted R2 (Adj R2) and seven other fit information
criteria were chosen for further consideration (Figures 2–13, Tables 2–7).
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2.1. Models for Staphylococcus aureus

According to Tables S1–S3, considering determination coefficients R2 with Adj R2 val-
ues and other fit criteria, three selection models (LASSO, LAR, and Stepwise) for modelling
the inhibition of S. aureus are worth considering. Therefore, these models are discussed in
detail in the following three subsections: Sections 2.1.1–2.1.3.
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2.1.1. Models for S. aureus Selected by Adaptive Least Absolute Shrinkage and Selection
Operator LASSO

According to Table S1, the best results for S. aureus (n = 83) for LASSO selection
were obtained using several criteria such as Adj R2, AIC, and C(p), creating equivalent
models. Specifically, 51.6% of the variance in antimicrobial activity can be explained by the
same 11 variables selected for models M1, M2, and M5 (by Adj R2, AIC, and C(p) criteria,
respectively), while 45.4% of the variance is explained by 7 variables creating models M3
and M6 (based on the AICC and SBC criteria, respectively). Additionally, 49.8% of MIC
variation is explained by 12 variables, selected according to the ASE Validation criterion,
creating model M7 (Table S1).

The best models are selected for visualizing the selection steps, demonstrating how
the standardized parameters change during the process. The sequential selection steps with
final models are presented in Figure 2 and other analogous figures. Each line characterizes
one explanatory variable and its significance in the model at each step. In the plots, we
can observe at which step each variable is entered into the model or removed from the
model and to what extent they have an impact on the predicted variable during the creation
of model steps. Standardized coefficients show the comparable importance of variables,
and the chosen step number defining the final model is denoted by a vertical line. At the
end of the selection process, we can compare the magnitude and sign of standardized
coefficients for variables chosen for the final model (Table 2). In Figure 2 (or in other
analogous figures) the horizontal axis is described by the numbers of consecutive steps, the
positive or negative sign (+ or −), indicating the addition or removal of variables, and the
variable name (description of names are given in the Section 4).

The right side of Figure 2 represents the final stage of the variable selection. The
effects in the 15th step can be listed from the largest standardized coefficients to the
smallest. The effect names are visible from the top (where the highest positive coef-
ficients and the most important variables are achieved) gradually down to the lowest
values (negative but still important). These variables and their coefficients in the model
are as follows: meltingTemp*R2_substituent_4-nitrophenyl (0.862991), PASS_anti-inflam
(0.325141), TPSA (0.17846), meltingTemp*R2_substituent_4-methylphenyl (0.094897), melt-
ingTe*meltingTem (0.090542), perc_N (0.04068), meltingTemp*R1_substituent_2-pyridyl
(−0.064224), meltingTemp*R2_substituent_2-pyridyl (−0.073312), MW (−0.174756), PASS
_antitumor (−0.391309), and R2_substituent_4-nitrophenyl (−0.648931). These values can
also be read from Table 2 (column 5).

Figure 3 and other analogous figures serve as counterparts to Figure 2 and its anal-
ogous figures. They depict the values of all examined fit measures (Adj R2, AIC, AICC,
BIC, C(p), SBC, ASE Val, and PRESS) corresponding to the consecutive steps of the model
building presented in Figure 2 (and its analogues) with the selected criterion statistic (or
criteria if few models are the same during consecutive steps). The maximum Adj R2 and
the minimum AIC and C(p) occur at step 15, where 11 variables are chosen in the model.
The same models created by the optimization of different fit criteria can be identified
from Table 2 (or an analogous table) by the same finally chosen variables and their final
coefficients (standardized or unstandardized). Equivalent models are also confirmed in
Tables S1–S3 (by the same final fit measures in corresponding columns).

The values of unstandardized coefficients presented in Table 2 give the possibility
to predict MICs for given values of variables. The interpretation of the unstandardized
coefficients is as follows: it represents the change in MIC if other numerical variables are
set unchanged (e.g., at their mean values).

According to the left part of Table 2 (for unstandardized coefficients), an example of
the model equation (M1 = M2 = M5) for MIC can be written as follows:
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M = 873.169475 − 2.046303 · MW + 617.458702 · PASS_anti-inflam − 1243.082270 · PASS_antitumor +
4.769786 · perc_N + 2.715861 · TPSA − 658.793078 · R2_substituent_4-nitrophenyl − 0.339383 · melting-
Temp*R2_substuent_2-pyridyl + 0.401398 · meltingTemp*R2_substituent_4-methylphenyl + 5.050186 ·

meltingTemp*R2_substituent_4-nitrophenyl − 0.234074 · meltingTemp*R1_substituent_2-pyridyl +
0.001853 · meltingTe*meltingTem.

Similarly, the equation for M with standardized coefficients (without intercept) from
Table 2 may be written.

Interaction terms between meltingTemp and R1 or R2 are included in the model
(interaction is marked by *). The existing interaction with R1 (or R2) means that the
impact of melting temperature on MIC depends on the category of R1 (or R2) substituent.
Simultaneously, the same interaction coefficient means that the impact of the R1 (or R2)
substituent on MIC depends on the value of the melting temperature.

Assuming other variables remain unchanged and considering R1_substituent as
2-pyridyl, taking into account the interaction of melting temperature with R1 and R2
substituent, an increase in melting temperature by one unit of standard deviation (SD)
results in the following:

1. decreases MIC by −(−0.234074 + 0.001853−0.339383) = 0.571604 for R2_substituent_2-
pyridyl;

2. increases MIC by −0.234074 + 0.001853 + 0.401398 = 0.169177 for R2_substituent_4-
methylphenyl;

3. increases MIC by −0.234074 + 0.001853 + 5.050186 = 4.817965 for R2_substituent_4-
nitrophenyl.

4. decreases MIC by −(−0.234074−0.339383) = 0.573457 for R2_substituent_phenyl.

For other R1 substituents (4-pyridyl or phenyl), an increase in melting temperature by
one unit of standard deviation (SD) results in the following:

decreases MIC by −(0.001853−0.339383) = −0.33753 for R2_substituent_2-pyridyl;
increases MIC by 0.001853 + 0.401398 = 0.403251 for R2_substituent_4-methylphenyl;
increases MIC by 0.001853 + 5.050186 = 5.052039 for R2_substituent_4-nitrophenyl;
decreases MIC by 0.001853 for R2_substituent_phenyl.
According to Figure 2 and the right part of Table 2 (standardized coefficients), the variables

with the greatest impact on MIC are as follows: meltingTemp*R2_substituent_4-nitrophenyl,
PASS_anti-inflam (with positive signs β = 0.862991 and 0.325141), R2_substituent_4-nitrophenyl,
and PASS_antitumor (with negative signs β = −0.648931 and −0.391309). A lower MIC
value indicates better experimental antibacterial activity. Therefore, for instance, an increase
in PASS_antitumor has a considerable impact on improving the growth inhibition of S. aureus,
assuming that the other ten variables remain unchanged.

The “story” of creating the final model is visible in Figure 2. For example, the report in
Figure 2 indicates that TPSA is included in step 7 (with a small negative standardized coef-
ficient) and removed in step 10, only to be added again in step 13. Consequently, in the final
model, TPSA is present with a considerably positive coefficient (0.178460—see Table 2). No-
tably the very important R2_substituent_4-nitrophenyl (β = −0.648931) is added only in the
almost final step (14). The interaction effect of meltingTemp*R2_substituent_4-nitrophenyl
remains in the adaptive LASSO model until step 4 (β = 0.862991). This high coefficient
indicates considerable interaction between melting temperature and the R2 substituent.

The highest mean selection percentages (87% and 82.1%) by seven criteria from
1000 bootstrap samples from the dataset involve PASS_antitumor and the interaction
of melting point with R2_substituent (4-nitrophenyl) (Table 2).

2.1.2. Models for S. aureus Selected Using the Least-Angles Regression Method

According to the determination coefficients presented in Table S2, the LAR model
selection was also chosen for further analysis with different fit criteria. The LAR model
of variable selection explains 49.78% of MIC variation using 11 variables according to the
Adj R2 criterion, forming the M1 mode. A lower percentage (46.8%) of MIC variation is
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explained using the M2–M4 models (based on AIC, AICC, and BIC criteria, respectively)
with the same eight variables selected (Table S2).

The creation of a model based on the Adj R2 criterion is presented in Figure 4. Optimal
Adj R2 is obtained after 11 selection steps, where one variable is added at each step.

Figure 5 shows the standardized coefficients of all the effects selected at some step
of the LAR method, plotted as a function of the step number. According to standardized
coefficients (also see the right part of Table 3), the effects with the highest impact on the
models for MIC are meltingTemp, meltingTemp*R2_substituent_4-nitrophenyl, PASS_anti-
inflam, PASS_antieczematic (with positive coefficients β = 0.435941, 0.243939, 0.265515,
and 0.127085, respectively), PASS_antitumor, and meltingTe*meltingTem (with negative
coefficients β = −0.431145 and −0.394171, respectively).

In the LAR model, both the interaction between melting temperature and the R1
substituent (step 9) and the interaction between melting temperature and the R2 substituent
(step 4) were selected. Interaction effects indicate that the R2 substituent or R1 substituent
variable influences the relationship between melting temperature and the MIC variable.
The highest mean selection percentages (86.01% and 65.09%) from eight criteria from
1000 bootstrap samples from the dataset are for MW and meltingTemp (Table 3).

2.1.3. Models for S. aureus Selected Using Stepwise Procedure

According to Table S3, the best model with the stepwise procedure is achieved using
the Adj R2 and five other fit criteria resulting in equivalent models. The stepwise selection
method yields explanatory models for 44.15% of MIC variation, based on only four variables
according to criteria, creating M1–M5 and M7 models (i.e., for Adj R2, AIC, AICC, BIC,
C(p), and PRESS, respectively). Model M6, based on the SBC criterion with three variables
selected, explains 42.56% of the variability, while model M8 (ASE Val criterion) explains
43.21% with only two variables selected, namely PASS_antitumor and PASS_anti-inflam
(Table S3).

We focus on the equivalent models after only six steps of stepwise selection
(Figures 6 and 7) according to Adj R2, AIC, AICC, BIC, C(p), and PRESS criteria for
S. aureus (Adj R2 = 0.4129). No interaction term is selected (Table 4, Figures 6 and 7), so
the interpretation of the model is straightforward. Thus, according to unstandardized
coefficients (left side of Table 4), MIC (M) can be estimated as the following function of
four variables:

M = 2429.212180 + 76.605993 · miLOGP + 732.638700 · PASS_anti-inflam +

−1628.150512 · PASS_antitumor − 29.306596 · perc_C.

The model for MIC can be interpreted as follows: assuming the three other variables
remain unchanged, an increase of one unit in PASS_anti-inflam causes an increase of
732.638700 in MIC. Similarly, assuming the other variables remain unchanged, an increase
of one unit in miLOGP leads to an increase of 76.605993 in MIC.

However, the coefficients are negative for PASS_antitumor and perc_C. Therefore,
assuming another three of four variables remain unchanged, an increase of one unit
in PASS_antitumor results in a decrease of 1633.785168 in MIC, or, assuming the other
variables remain unchanged, an increase of one unit in perc_C leads to a decrease of
29.306596 in MIC.

It should be noted that miLOGP is chosen in the stepwise model, which is the theoreti-
cal counterpart of the experimental lipophilicity (RmoExper) that is not selected.

The highest mean selection percentage (29.9%), determined by eight criteria from
1000 bootstrap samples from the dataset, corresponds to PASS_anti-inflam (Table 4).

Summarizing the results from Section 2.1, the variables that exert the greatest impact
on compound activity in inhibiting the S. aureus bacterial strain are commonly selected,
namely PASS_antitumor and PASS_anti-inflam. Additionally, for models with more than
four variables, the interaction of melting point with the R2 substituent (4-nitrophenyl) is
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important (Tables 2–4). The variables most frequently selected by different GLM selection
models show similarities across the LASSO, LAR, and stepwise selection criteria (Tables 2–4,
Figures 2, 4 and 6).

2.2. Models for Nocardia corallina

According to Tables S4–S6, the best models for N. corallina, achieving the optimally
adjusted determination coefficients (Adj R2) and other fit criteria, as AIC, AICC, C(p), and
SBC were obtained after stepwise selection, are presented in Table 5 and Figures 8 and 9.
The remaining models (LASSO and LAR) are provided in Tables S16 and S17.

Figure 8 presents the changes in standardized parameters during the selection pro-
cess. The best model for N. corallina with eight variables (12 effects together with in-
tercept) was obtained after 10 steps of stepwise selection based on the Adj R2 criterion
(Figures 8 and 9). The variable perc_N was included in the 6th step but removed in the 9th
step. Interaction effects indicate that the R2 substituent or R1 substituent variable influ-
ences the relationship between melting temperature and MIC variable. The most important
variables, according to standardized coefficients, are squared melting temperature and the
interaction between melting temperature and the R2 substituent (Figure 8 and Table 5).
Variables such as MW (with a negative coefficient) and miLOGP (with a positive coefficient)
have slightly smaller importance. Other variables in the model, such as PASS_anti-inflam,
PASS_antieczematic, and PASS_antitumor, have smaller values measured by standardized
coefficients (see Table 5).

The highest mean selection percentages (61.8% and 42.5%) by eight criteria from
1000 bootstrap samples from the dataset have PASS_antieczematic and MW (Table 5).

2.3. Models for Micrococcus luteus

Based on Tables S7–S9, and the optimal values of Adj R2, AIC, BIC, C(p), and PRESS
criteria, stepwise models were selected for further detailed examination. The specifics of
parameter estimation for the chosen stepwise selection are presented in Figures 10 and 11
and Table 6, while the parameters of the remaining models (obtained by LASSO and LAR
selection) are provided in the Supplementary Materials (Tables S18 and S19).

The best models for M. luteus were obtained for stepwise selection according to Adj
R2, AIC, BIC, C(p), and PRESS criteria. This set of models, including M1–M2, M4–M5,
and M7, uses the same subset of five variables, explaining 41.49% of MIC variability (Adj
R2 = 0.3564). No interaction term is selected, simplifying the interpretation of the MIC
model. According to the equation provided, assuming other variables remain unchanged,
an increase of one unit in any variable xi causes a change in MIC equal to bi. For example,
an increase of one unit in MW results in a decrease in MIC values by 3.248648, while a
one-unit increase in RmoExper leads to an increase in MIC by 251.327244.

Selected effects with larger absolute values of standardized coefficients will have
a greater influence on the dependent variable. Thus, according to the standardized
coefficients in Table 6, RmoExper (with a positive coefficient), together with MW and
PASS_antieczematic (with negative coefficients), have the most significant impact on the
model. The highest mean selection percentage (88.91%) by eight criteria from 1000 bootstrap
samples from the dataset have RmoExper (Table 6).

2.4. Models for Enterococcus faecalis

Based on Tables S13–S15 and optimal values of Adj R2, AIC, AICC, BIC, C(p), and
PRESS, again, stepwise selection is chosen. For E. faecalis, the best model was achieved after
nine steps of selection, according to the mentioned criteria. Seven variables explain 56.79%
of MIC variability (Adj R2 = 48.34%). The following variables are selected: RmoExper, MW,
meltingTe*R1_substit_2-pyridyl, PASS_antituberculosi, PASS_anti-inflam, PASS_antibact,
and PASS_anti*PASS_antib.

According to the standardized coefficients, the most important is the variable PASS_antibact,
both in first and second power (Table 7, Figures 12 and 13). Also, MW and PASS_anti-inflam
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(with negative coefficients of −0.472224 and −0.329342) and RmoExper (with a positive coef-
ficient of 0.535104) are important. The interaction of melting temperature and R1 substituent
with all positive coefficients should also be noted.

The highest mean selection percentages (94.21% and 80.76%) in eight criteria from
1000 bootstrap samples from the dataset are from RmoExper and MW (Table 7).

2.5. Models for Mycobacterium smegmatis

For M. smegmatis, the fit criteria obtained for selected models are not satisfying (Ta-
bles S13–S15 for M. smegmatis). For example, in the best LASSO model, a rather large
number of effects (12) explained only 26.46% of MIC variability (model M1, with a small
value of Adj R2 = 0.1538, Table S13; parameter estimates in Table S22). The nine-effect LAR
models M2–M5 explains 23.07% of M. smegmatis inhibition variability (Adj R2 = 0.0989,
Tables S14 and S24). The selection of the remaining models using LASSO and LAR, based
on the remaining criteria together with all models for stepwise selection, are not useful at
all (Tables S13–S15).

Mycobacteria are evolutionarily classified as Gram-positive bacteria, but the architec-
ture of their cell wall is more complex. The outer membrane contains a variety of lipids
necessary for the survival and virulence of pathogenic species. The permeability barrier
of the outer membrane is a major determinant of drug resistance for many antibiotics,
especially in slow-growing mycobacteria.

It has been shown that, in Mycobacterium smegmatis, porins play an important role in
the transport of small and hydrophilic β-lactam antibiotics through the outer membrane.
Hydrophobic antibiotics like moxifloxacin, in contrast to norfloxacin, were more effective in
inhibiting the growth of Mycobacterium smegmatis, probably due to better diffusion through
the lipid membrane. Structural models showed that drug molecules that were too large
(e.g., erythromycin, kanamycin, and vancomycin) did not pass through porin channels
in this bacterial strain [34]. The distinctive biochemical characterization of Mycobacterium
smegmatis between five examined bacterial strains might be reflected in different model
results, including different numbers of selected variables and worse final fit measures for
M. smegmatis.

3. Discussion

In papers using machine learning for drug discovery [5,17], previous authors only
have divided classifications into groups—e.g., whether the drug works or not—while we
modeled concrete MIC values with the selection of important variables and indications of
the direction of the effect. Moreover, we modeled new chemical compounds synthesized in
our laboratory, in contrast to chemical compounds from the big chemical database analyzed
in [5]. Both chemical structure and experimental results were included in the selection
procedures, additionally considering the interaction between structure and experimental
melting point.

The models for the tested bacterial strains differed from each other; however, we can
point to some variables that are important for models selected for the bacteria S. aureus,
E. faecalis, M. luteus and N. corallina. The overlapping of selected variables for each of the
five bacterial strains and the LASSO or LAR or stepwise selection procedure is presented in
Table 2, Table 7 and Tables S16–S24, with estimated parameters according to models based
on Adj R2, AIC, AICC, BIC, C(p), SBC, average squared error on validation set (ASE Val),
and PRESS criteria.

The appearance of variables (main effects) for selected models in S. aureus (SA),
N. corallina (NC), M. luteus (ML), E. faecalis (EF), and M. smegmatis (MS) is given in Supple-
mentary Table S25 (summarizing findings from Table 2, Table 7 and Tables S16–S24). The
sum of the model numbers with positive and negative signs occurring at least once in each
of the 15 tables (for five bacterial strains and three selection procedures: LASSO, LAR, and
stepwise) is presented for each main effect in the last column. According to this column, the
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most often selected variables are molecular weight, PASS_antieczematic, PASS_anti-inflam,
squared melting temperature, PASS_antitumor, and RmoExper.

After removing the weakest models of M. smegmatis from this summary and analyzing
12 tables (Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Tables S16–S21), PASS_anti-
inflam, molecular weight, PASS_antieczematic, squared melting point, RmoExper, and
PASS_antitumor are still the most oft-present main effects, which confirms the importance
of these variables (Table S26).

Models for some bacteria selected the interaction terms. Interaction effects indicate
that the categorical R1 substituent (R2 substituent) variable influences the relationship
between melting temperature and MIC variable. For example, when selected for S. aureus
LASSO models (M1–M2, M5), interactions between melting temperature with R1 and
R2 substituents have an impact on MIC. For the LAR model (M1), only the interaction
between melting temperature and R2 substituent is chosen. Similarly for E. faecalis, in
selected stepwise models (M1–M5, M7), the interaction between melting temperature and
R2 substituent is included. However, for N. corallina in selected stepwise models (M1–M3,
M5–M6), the interaction between the R1 substituent and melting temperature influences
the MIC.

For the best models presented in the main part of the article (Tables 2–7), Venn dia-
grams are elaborated (Figures 14–16). For S. aureus, the common variables occurring in all
LAR, LASSO, and stepwise models are PASS_anti-inflam and PASS_antitumor (Figure 14).
The set of two common variables is marked as “2” in the middle of Figure 14. For S. aureus,
the number of common variables for LASSO with 11 selected variables (SA_LAS_M1_p11;
yellow circle in Figure 14) and LAR models with 11 variables (SA_LAR_M1_2_5_p11; blue
circle in Figure 14) is equal to the sum of intersections counts 2 + 4 = 6. According to
Tables 2 and 3, these variables are MW, PASS_anti-inflam, PASS_antitumor, perc_N, inter-
action of melting point with R2_substituent (4-nitrophenyl), and melting point squared.
From the above variables, the signs, which indicate the direction of impact on MIC, are
concordant for MW, PASS_antitumor (negative sign), PASS_anti-inflam, perc_N, and in-
teraction of melting point with R2_substituent 4-nitrophenyl (positive sign). Adding a
smaller stepwise selection model for S. aureus with only four variables, common variables
occurring for the models LAR (M1, M2, M5; with 11 variables), LASSO (M1 with 11 vari-
ables), and stepwise (M5–M7 with 4 variables) are PASS_anti-inflam (positive sign) and
PASS_antitumor (negative sign) (Figure 14, Tables 2–4).
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Figure 16. Venn diagram for models with common intersect MW in S. aureus (SA), M. lu-
teus (ML), N. corallina (NC), and E. faecalis (EF), based on at least 7 variables. Models:
SA_LAR_M1_2_5_p11, SA_LAS_M1_p11, ML_ST_M1_2_4_5_7_p7, NC_ST_M1_2_3_5_6_p11, and
EF_ST_M1_2_3_4_5_7_p10. LASSO (LAS), LAR, and stepwise (ST). M are models by fit criteria,
p = #predictors selected.

After adding to LASSO (LAS), LAR, and stepwise (ST) for S. aureus (SA) the best
models for N. corallina (NC) and E. faecalis (EF), we obtained the next Venn diagram
(Figure 15). For wider set of models across four bacteria strains (including added models
Stepwise (M1–M3) with 11 effects for N. corallina and Stepwise (M1–M5, M7) with 10 effects
for E. faecalis (EF), one common variable is observed—PASS_anti-inflam (Tables 2–5 and 7).
This one-variable intersection of selected sets of variables is marked as “1” in the middle of
Figure 15.
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MW (always with a negative sign) is the common variable chosen in models with at
least seven effects selected, i.e., across four bacteria strains: S. aureus (SA), N. corallina (NC),
E. faecalis (EF), and M. luteus (ML), as presented in Figure 16 (see Tables 2, 3 and 5–7).

The presented tables (Tables 2–7) indicate that SBC selects no more variables than AIC,
and, most often, fewer. Similarly, the BIC criterion selects no more variables than AIC,
and often fewer. This can be explained by the formulas in Section 4.4, which demonstrate
that the BIC is more parsimonious, i.e., it penalizes models for free parameters in a more
restricted way [23].

The average squared error validation (Val ASE) method makes it possible to assess
the validity of effects (parameters) obtained on a random subset (70 percent of all tested
chemicals) on the remaining 30 percent of the data, which replaces testing on a new
independent sample. This validation (Val ASE) was performed and the results are presented
as model 7 in Tables 2 and 3 (or model 8, in the case of the stepwise method in Tables 4–7).
Moreover, the values of the adjusted coefficient of determination for the validation sample
are usually similar to models based on all compounds.

Additionally, to maximize the use of the dataset, a 1000-fold bootstrap sampling of
compounds was used to assess the frequency of variable selections in the models. These
choice frequencies largely confirm the validity of the parameters. The high rate of selection
of a variable into the model estimated using the bootstrap method is often confirmed by the
high absolute value of the standardized coefficient (e.g., meltingTemp*R2_substituent_4-
nitrophenyl in Table 2, RmoExper in Table 6, RmoExper and MW in Table 7).

In the interpretation of the impact of selected variables on MIC, assuming the other
variables are not changed, negative values of coefficients indicate a decrease in MIC, while
positive values indicate an increase (see Equations (1) and (2)). The impact of individual
variables on the antibacterial activity of compounds depends on bacterial strains. Variables
are considered important when they achieve the highest positive or smallest negative
coefficients. Assuming that the remaining variables are constant, the following influence of
variables on the antibacterial activity of compounds can be observed in followed models:

For LASSO models M1–M6 of S. aureus (Table 2, Figure 2), the results are as follows:

1. PASS_antitumor: an increase in this variable lowers the MIC value.
2. PASS_anti-inflam: as this variable increases, the MIC value increases.
3. MW: as the molar weight increases, the MIC value decreases.
4. melting Temp*R2_Substituent: assuming a constant melting point, the influence of

different R2 substituents can be arranged in the order of having a favorable effect on
the MIC value as follows: 2-pyridyl > 4-methylphenyl > 4-nitrophenyl.

5. MeltingTemp: an increase in this parameter increases the MIC value for all kinds of
R1 and R2 substituents.

For LAR models M1–M5 and M7 of S. aureus (Table 3, Figure 4), the results are as follows:

1. PASS_antitumor: an increase in this variable lowers the MIC value.
2. R2_substituent 4-nitrophenyl: assuming a constant melting temperature, the presence

of 4-nitrophenyl substituent in R2 increases the MIC value.
3. MeltingTemp: after summing the effect of meltingTemp, meltingTemp squared, and

interaction with R2 substituent, an increase in meltingTemp causes an increase in the
MIC value, which is bigger for 4-nitrophenyl than for the remaining for the remaining
kinds of R2 substituents.

4. PASS_anti-inflam: as this variable increases, the MIC value increases.
5. PASS_antieczematic: as this variable increases, the MIC value increases.
6. MW: as the molar weight increases, the MIC value decreases.

For stepwise models M1–5 and M7 for S. aureus (Table 4, Figure 6), the results are
as follows:

1. PASS_antitumor: as this variable increases, the MIC value decreases.
2. PASS_anti-inflam: as this variable increases, the MIC value increases.
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3. perc_C: an increase in the percentage of carbon in a compound molecule causes a
decrease in the MIC value.

4. miLOGP: lowering the lipophilicity value results in lower MIC values.

The importance of PASS_antitumor and PASS_anti-inflam with the described direction
of impact on MIC in the M1–M5 and M7 models are confirmed in the validation ASE model,
with a very close value of Adj R2 (41.15).

For the stepwise models M1–M3 and M5–M6 for N. corallina (Table 5, Figure 8), the
results are as follows:

1. MW: as the molar weight increases, the MIC value decreases.
2. MeltingTemp*R2_substitituent: assuming the same melting point, the influence of

different R2 substituents can be arranged in the order of having a beneficial effect on
the MIC value as follows: 4-methylphenyl > 4-nitrophenyl > 2-pyridyl > phenyl.

3. The miLOGP variable has a greater impact on the MIC value than the experimental
RmoExper; as the values of the two variables describing lipophilicity increase, the
MIC value increases.

4. PASS_anti-inflam, PASS_antitumor, and PASS_antieczematic: as the value of each of
these variables increases, the MIC value decreases.

For the stepwise models M1–M2, M4, and M7 for M. luteus (Table 6, Figure 10), the
results are as follows:

1. RmoExper: as the lipophilicity increases, the MIC value increases.
2. RmoExper: as the molar weight increases, the MIC value decreases.
3. PASS_antieczematic: increasing the value of this variable causes a decrease in the

MIC value.
4. PASS_antituberculosi: lowering the value of this variable lowers the MIC value.
5. MeltingTemp: as this variable increases, the MIC value decreases.

For the stepwise models M1–M5 and M7 of E. faecalis (Table 7, Figure 12), the results
are as follows:

1. MW: as the molar weight increases, the MIC value decreases.
2. RmoExper: the lower the RmoExper value, the lower the MIC value.
3. Based on the interaction of the melting point and R1 substituent, and considering

that the melting point does not change, the effect of R1 on the increase in MIC can be
presented in descending order as 4-pyridyl > phenyl > 2-pyridyl. All substitutions
increase the MIC, but the first one, 4-pyridyl, increases it the least and is the most
favorable for this model. The weakest antibacterial activity is expected for the R1
substitution with 2-pyridyl.

4. PASS_anti-inflam: as this variable increases, the MIC value decreases.
5. PASS_antituberculosi: as this variable increases, the MIC value increases.
6. PASS_antibact: assuming other variables are not changed, the change in PASS_antibact

by one SD increase the MIC value in 0.268199 (2.242303 − 1.974104), a lower value of
this variable is more favorable.

Using the data collected in Table S26, the selected variables set as common for the
modeling of the four bacterial strains S. aureus, M. luteus, N. corallina, and E. faecalis are
as follows:

1. MW: as this variable increases, the MIC value decreases.
2. PASS_anti-inflam: as this variable increases, the MIC value decreases (except for

S. aureus).
3. PASS_antieczematic: as this variable increases, the MIC value decreases (except for

S. aureus).
4. MeltingTemp squared: in general, an increase in this variable causes a decrease in the

MIC value (except for E. faecalis).
5. RmoExper: as lipophilicity decreases, the MIC value decreases.
6. PASS_antitumor: as this variable increases, the MIC value decreases.
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In the majority of models, a beneficial effect of the increase in molar mass on the
antibacterial activity was observed. However, it can be expected that this relationship will
persist only up to a certain point, similar to previous studies on the relationship between
the mass of chitosan derivatives and activity against S. aureus [35]. The compounds used
for modeling had molar masses ranging from 291 to 411 g/mol.

The high frequency of selecting the PASS_anti-inflam and PASS_antieczem variables
(Table S26) may seem surprising. However, the recently described potential use of anti-
inflammatory drugs as antibacterial agents to combat biofilm formed by pathogenic bacte-
ria [36] indicates the possibility of existing dependences between anti-inflammatory and
antibacterial activity of the compounds. In turn, the selected PASS_antitumor variable may
indicate the relationship between the cytotoxicity of compounds and antimicrobial activity.
This may also confirm the possible potential of known anti-inflammatory and anti-cancer
drugs, which may have antibacterial activity and are currently undergoing repositioning
tests [37]. Interestingly, the PASS_antibact variable was selected less frequently, mainly in
models involving E. faecalis.

The most frequently mentioned variables included the melting point in the second
power (Table S26). The importance of the melting point in the analyzed models is also
evidenced by its frequent presence in the interaction with R1 or R2 substituents. The
influence of this variable on biological activity has not been widely studied so far, although
several works on it have been published. The dependence of decomposition on the melting
point of approved and withdrawn drugs was examined [38], as was the relationship
between drug absorption and melting point [39]. The quantitative structure–property
relationship, concerning the melting point of drug compounds, is another area of current
research [40].

Lipophilicity plays a role not only in penetrating biological membranes but also in
the metabolism, distribution, excretion, and toxicity of drugs [41]. It is worth noting that
the experimental lipophilicity values (RmoExper) better explain the antibacterial activity
than the calculated lipophilicity (miLOGP) values (only two selections in Table S26). This
agrees with the suggestions of authors investigating this lipophilicity phenomenon using
computational and chromatography methods [32,42].

Among other analyzed variables, the percentage composition of the tested compounds
seems to play a secondary role, as the variables’ percentages of carbon and nitrogen in the
composition of compounds were selected mainly in the models for S. aureus. Variables
related to the number of hydrogen bond donors were selected more often than the number
of hydrogen bond acceptors (Table S26), but their impact on MIC values, similarly to the
topological polar surface area (TPSA) value, seems to be less important.

The variables R1 and R2 substituents, important from the point of view of the structure–
activity relationship, occur as single main effects rather rarely, because interactions between
substituents R1 or R2 and melting points are often present. For example, the stepwise
model of E. faecalis predicts the highest antibacterial activity for the compounds possessing
the R1 substituent 4-pyridyl and the lowest in the case of the 2-pyridyl substituent at the
R1 position. Moreover, based on the stepwise model of N. corallina, the R2 substituents can
be ranked from the most favorable in terms of antibacterial activity to the least favorable
as follows: 4-methylphenyl > 4-nitrophenyl > 2-pyridyl > phenyl. However, LASSO and
LAR models of S. aureus suggest that the R2 substituent 4-nitrophenyl is the least favorable
for activity against this bacterial strain. These differences, however, may be caused by
differences in individual bacterial strains.

More detailed studies of the influence of the above-mentioned variables, carried out
on models built on a larger number of compounds with greater structural diversity, seem
advisable to clarify the precise impact of these variables.

Generalized linear models for predicting the activity of chemical compounds from
three groups (linear, 1,2,4-triazole derivatives, and cyclic imides), based on selected theo-
retical variables, lipophilicity, and the type of R1 and R2 substituents, with the interaction
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with the melting point, have beneficial predictive properties for the creation of compounds
as potential drugs.

Despite obtaining significant results, it should be remembered that our work has
certain limitations. Our models only concern antibacterial activity against five strains of
Gram-positive bacteria. Only amidrazone derivatives from three groups (Figure 1b–d) were
included in the analyzed data. Additionally, only R1 and R2 substituents with three and
four categories, respectively, were included in the set of potential variables, additionally
with the analysis of substituents’ interactions with the melting point. We intend to include
other compounds to elaborate more general models. A higher number of agents will
increase the size of the dataset, which may also let us analyze R3 and R4 substituents with
a larger number of categories. We also plan to expand the analysis to a broader range of
bacterial strains (including Gram-negative strains).

The classic approach to the design of antibacterial substances mainly considered the
influence of substituents such as R1 and R2. Our approach to the design of antibacterial
drugs extends the analysis to include the impact of other factors that may also affect the
MIC value. Our models are multidimensional and also consider interactions between
melting point and the R1 and R2 substituents.

For designing compounds with a similar chemical structure (i.e., amidrazone deriva-
tives) for particular types of Gram-positive bacteria, we suggest using the variables that we
obtained in our selection for single models and validated based on the ASE, or the variables
that were most frequently selected based on the analysis of 1000 random samples using the
bootstrap method.

4. Materials and Methods
4.1. Bacterial Strains

The antibacterial activity of compounds was tested against Gram-positive bacteria
derived from the American Type Culture Collection (ATCC), including Staphylococcus aureus
ATCC 25923 and Enterococcus faecalis ATCC 29,212, and from the Department of Genetic
and Microbiology’s collection of Maria Curie Sklodowska University, including Micrococcus
luteus, Nocardia corallina (currently Gordonia rubripertincta), and Mycobacterium smegmatis.

4.2. Determination of Minimum Inhibitory Concentration (MIC) In Vitro

The test was performed using the microdilution method in sterile 96-well microplates,
following the procedure described by the Clinical and Laboratory Standards Institute [43].
All tested compounds were dissolved in dimethyl sulfoxide (DMSO) to obtain a concen-
tration of 10.24 mg/mL and then were ten-fold diluted in Mueller–Hinton (MH) broth,
followed by serial two-fold dilution in MH, resulting in a concentration range from
512 to 0.5 µg/mL. Each well was then inoculated with a bacterial suspension (0.5 Mc-
Farland standard). The plates were incubated at 37 ◦C for 18 h. Bacterial growth was
confirmed spectrophotometrically using a microplate reader ASYS UVM 340 (Biogenet,
Józefów, Poland). The MIC value was considered to be the lowest dilution of the compound
that inhibited bacterial growth.

4.3. Predicted and Potential Predictive Variables in the Model

Models were evaluated for the antibacterial activity of the following five Gram-positive
bacteria: S. aureus (n = 83), M. smegmatis (n = 85), N. corallina (n = 50), E. faecalis (n = 56),
and M. luteus (n = 56). Experimentally identified minimal inhibitory concentrations (MICs)
were the explained variables in the generalized linear models (GLMs) [25].

Eighty-five examined chemical compounds were obtained in the reaction of N3-
substituted amidrazones with cyclic anhydrides, following methods described previ-
ously [12–14]. Generally, they belong to three groups depending on chemical structure
(linear, 1,2,4-triazole derivatives, and cyclic imides, as shown in Figure 1). Individual
compounds differ in the substituents R1 and R2, which are the only qualitative variables in
the models. The structures of the studied compounds are presented in Figures S1–S3.
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Among the 85 compounds with experimentally measured biological activities, we
analyzed physicochemical properties such as molecular weight (MW), the per cent com-
position of oxygen, nitrogen, and carbon (calculated using the free ChemSketch software
version 2017.1.2 Advanced Chemistry Development, Toronto, Ontario, Canada) [33]. More-
over, computational lipophilicity (miLOGP), the number of hydrogen NH and OH donors
(Donors_H), the number of nitrogen and oxygen atoms (Acceptors_H), and the topolog-
ical polar surface area (TPSA), values of the studied compounds were obtained using
Molinspiration cheminformatics software [28].

Also, three categorial R1 substituents (2-pyridyl, 4-pyridyl, and phenyl) and four
categorial R2 substitutions (2-pyridyl, 4-methylphenyl, 4-nitrophenyl, and phenyl) were
included into set of proposed theoretical variables describing the compound. Potential
biological actions (e.g., antibacterial, antituberculotic, anti-inflammatory, antitumor, and
antieczematic) of the tested compounds were theoretically calculated using the PASS
program (prediction for activity spectra for substances) [29].

Additionally, two experimental variables, such as experimental lipophilicity (RM0,
determined by thin layer chromatography using reversed-phased plates (nano-silica gel
RP-18W, Fluca Analytical, Neu-Ulm, Germany) and 40–60% water–methanol mixtures) ac-
cording to the method described previously [32] and a medium melting point (determined
by MEL-Temp apparatus, Electrothermal, Stone, UK) were included into consideration.
Interactions between melting temperature and R1, and also between melting temperature
and R2 substituents, were also considered. Adding an interaction term to a MIC model
becomes necessary when the statistical association between MIC and melting temperature
depends on the value/level of the R1 or R2 substituent. Additionally, PASS antibacterial
activity squared was considered. We anticipated that, among the five results from the PASS
program, the PASS_antibact variable might be most closely related to MIC. To avoid dupli-
cating variables, we decided to investigate this variable’s potential non-linear relationship
by including its square in the set of potential variables. Abbreviations with descriptions of
the potential explaining variables are given in Table 1.

Statistical generalized linear models (GLMs) estimate the influence of predictors
on the outcome MIC. Most predictors are continuous, with two categorical variables:
R1 and R2 substituents (Table 1). However, we also consider the modification of the impact
of melting temperature on MIC by R1 substituent and the modification of the effect of
melting temperature on MIC by R2 substituent. R1 and R2 may be regarded as moderating
variables. If this effect modification exists, it is a statistical interaction. For example, we
may model the impact of melting temperature on MIC that is modified by three different
R1 substituents (1 = 2-pyridyl; 2 = 4-pyridyl; 3 = phenyl) or by R2 substituent (1 = 2-pyridyl;
2 = 4-methylphenyl; 3 = 4-nitrophenyl phenyl). Interaction variables are generated by
multiplying melting temperature by the level of R1 (or R2), and this resulting product
variable is then entered into the model as an additional potential predictor, along with the
melting temperature and R1 (R2).

4.4. Variables Selection for Generalized Linear Models

For multidimensional problems, dimension reduction to represent the problem with-
out losing significant amounts of information is crucial. The selection of variables (main
effects or interaction effects) was performed using three types of generalized linear model
(GLM) selection models: adaptive LASSO, least-angle regression (LAR), and stepwise
selection. The maximal number of variables built into the model was bounded by a value
depending on the number of training examples for MIC: for n > 80 it was set to 13 (for
S. aureus n = 83, M. smegmatis n = 85), and for others, it was set to 10 (N. corallina n = 50,
M. luteus n = 56, and E. faecalis n = 56).

LASSO selection (least absolute shrinkage and selection operator for generalized
linear models) [25] is a regularization technique to reduce the number of predictors in a
generalized linear model. LASSO is used to identify important predictors and to choose
among redundant ones. The LASSO method is a penalized method that considers all
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candidate variables and reduces the coefficients of non-important variables to zero. As the
penalty term increases, the LASSO technique sets more coefficients to zero, resulting in a
smaller model with fewer predictors. By making shrinkage estimates, LASSO potentially
could result in lower predictive errors than ordinary least squares. Adaptive LASSO is a
method for regularization and variable selection in regression analysis that was introduced
by Zou [44]. Zou demonstrated that the adaptive LASSO has theoretical advantages over
the standard LASSO. It is beneficial when the explaining variables are correlated and there
is a need to select a small subset of important predictors for the model. By introducing
weights (a prior “intelligence” about variables), adaptive LASSO is likely to penalize non-
zero coefficients less than the zero ones. In GLMs, variable selection using LASSO is often
applied [45].

Least-angle regression (LAR) was introduced by Efron et al. [46]. The LAR model-
selection method is based on traditional forward selection, where, given a collection of
possible explanatory variables, the one having the largest absolute correlation with the
explained variable is selected.

Stepwise (forward–backwards) model selection is a classical model selection and
dimensionality reduction technique. The same entry and removal significance levels for
the forward selection and backward elimination were used to evaluate the contributions of
variables as they are added to or removed from a model. The entry significance level (SLE)
was set to 0.15 and the stay significance level (SLS) was also set to 0.15.

Variables selection within the framework of general linear models was performed
using the procedure of variables selection in GLM models (GLMSELECT) procedure in the
SAS package [31,47]. A variety of fit statistics were specified as criteria for selection. Seven
or eight criteria, such as Adj R2 (resulting model denoted as M1), AIC (M2), AICC (M3),
BIC (M4), C(p) (M5), SBC (M6), PRESS (M7—for stepwise selection only), and ASE (M7 or
M8 for stepwise selection), were applied. The process of adding or removing variables was
stopped according to the optimal values of performance statistics, where minimal values
are considered optimal for all performance statistics except adjusted R2 (Table 8).

Table 8. Fit criteria applied and denotation of final models after achieving optimal fit value or after a
pre-assumed maximal number of variables.

ID Name Meaning LASSO LAR Stepwise

1 Adj R2 R2 statistic adjusted for degrees of freedom M1 M1 M1
2 AIC Akaike’s information criterion M2 M2 M2
3 AICC Corrected Akaike’s information criterion M3 M3 M3
4 BIC Sawa Bayesian information criterion M4 M4 M4
5 CP Mallows’ C(p) statistic M5 M5 M5
6 SBC Schwarz Bayesian information criterion M6 M6 M6
7 PRESS Predicted residual sum of squares M7
8 VALIDATION ASE Average square error for the validation data (30%) M7 M7 M8

R2 determines the proportion of variance in the dependent variable that can be ex-
plained by the independent variable; hence, it is called the determination coefficient. It
serves as a measure of goodness of fit for the model. The adjusted determination coefficient
takes into account the number of predictors and is calculated as follows:

Adj R2 = 1 − (n − 1)(1 − R2)/(n − p), (3)

where n is the number of observations used to fit the model, p is the number of parameters
(effects, including the intercept) in the model, and n is the number of observations.

The AIC and SBC are both methods of assessing model fit penalized for the number of
estimated parameters. Akaike’s information criterion is defined as follows:

AIC = nxln(SSE/n) + 2p, (4)
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where SSE is the sum of squared errors (residual sum of squares).
The corrected AIC is given by the following equation:

AICC = n log(SSE/n) + (n + p)/(1 − (p + 2)/n), (5)

Schwarz’s Bayesian criterion (BIC) is calculated as follows:

SBC = n log(SSE/n) + p log(n) (6)

Sawa’s Bayesian Information Criterion (BIC) additionally takes into account the pure
error variance σ2 fitting the full model, as follows:

BIC = n log(SSE/n) + 2(p + 2)q − 2(q2), (7)

where q = n(s2)/SSE and s2 is the estimate of pure error variance σ2 from fitting the
full model.

Mallows’ statistic is defined as follows:

C(p)= SSE/s2 + 2p − n. (8)

The smallest values of AIC, AICC, SBC, C(p), and BIC are preferred.
To compare the results of creating single models with resampling of data models,

(where model selection is repeated on subsets of the input data and parameters are aver-
aged), the method of model averaging (MODELAVERAGE) statement in GLMSELECT
procedure from the SAS package [31,47] was applied. Resampling-based methods, in which
samples are obtained by drawing with replacements, called bootstrap, were used. Bootstrap
in the context of variable selection was proposed by Breiman [48]. A thousand replications
were used in our bootstrap samples.

5. Conclusions

Using GLMs, statistically significant models were obtained for the Gram-positive
bacterial strains. The best results based on the optimum adjusted determination coefficient
and other fit criteria, e.g., Akaike’s information criterion, were obtained for S. aureus,
indicating an opportunity to support the design of antibacterial drugs using this method
and selected predictors. Variables with the greatest impact on compound activity in
inhibiting S. aureus growth included PASS_antitumor, PASS_anti-inflam, and the interaction
of the melting point with the R2 substituent (4-nitrophenyl). The weakest models with an
adjusted determination coefficient below 20% were obtained for the M. smegmatis strain,
which may be due to the different properties of the mycobacterial cells.

For all bacterial strains, the most often selected main effects in models were molecular
weight, PASS_antieczematic, PASS_anti-inflam, PASS_antitumor, experimental RmoExper
lipophilicity, and squared melting temperature. For several models, the influence of
R1 and R2 substituents on the antibacterial activity against a given bacterial strain was
determined. For example, the stepwise model predicted the highest antibacterial activity
for the compounds possessing the R1 substituent 4-pyridyl and the lowest in the case of
the 2-pyridyl substituent at the R1 position against E. faecalis. Another stepwise model
for N. corallina suggested the beneficial influence of substituents on the MIC value in the
following order: 4-methylphenyl > 4-nitrophenyl > 2-pyridyl > phenyl. The selection of
the interaction of melting point with substituents R1 and R2 indicates that the relationship
with MIC depends on the substituent type. The models found can constitute the basis for
building further strategies that may be useful in designing new antibacterial drugs.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29102369/s1, Figure S1: the structures of studied
compounds 1–24. Figure S2: the structures of studied compounds 25–54; Figure S3: the structures
of studied compounds 55–85. Table S1: S. aureus. LASSO models were selected according to the
criteria. Fit statistics with F-values from ANOVA (n = 83). Table S2: S. aureus. LAR models were
selected according to the criteria. Fit statistics with F-values from ANOVA (n = 83). Table S3: S. aureus.
Stepwise models were selected according to the criteria. Fit statistics with F-values from ANOVA
(n = 83). Table S4: N. corallina. LASSO models were selected according to criteria. Fit statistics with
F-values from ANOVA (n = 50). Table S5: N. corallina. LAR models were selected according to the
criteria. Fit statistics with F-values from ANOVA (n = 50). Table S6: N. corallina. Stepwise models
were selected, according to criteria. Fit statistics with F-values from ANOVA (n = 50). Table S7: M.
luteus. LASSO models were selected according to criteria. Fit statistics with F-values from ANOVA
(n = 56). Table S8: M. luteus. LAR models were selected according to criteria. Fit statistics with
F-values from ANOVA (n = 56). Table S9: M. luteus. Stepwise models were selected according to
criteria. Fit statistics with F-values from ANOVA (n = 56). Table S10: E. faecalis. LASSO models were
selected according to criteria. Fit statistics with F-values from ANOVA (n = 56). Table S11: E. faecalis.
LAR models were selected according to criteria. Fit statistics with F-values from ANOVA (n = 56).
Table S12: E. faecalis. Stepwise models were selected according to criteria. Fit statistics with F-values
from ANOVA (n = 56). Table S13: M. smegmatis. LASSO models were selected according to criteria.
Fit statistics with F-values from ANOVA (n = 85). Table S14: M. smegmatis. LAR models were selected
according to criteria. Fit statistics with F-values from ANOVA (n = 85). Table S15: M. smegmatis.
Stepwise models were selected according to criteria. Fit statistics with F-values from ANOVA (n = 85).
Table S16: N. corallina. Parameter estimates for LASSO models were optimized by seven fit criteria.
Table S17: N. corallina. Parameter estimates for LAR models were optimized by seven fit criteria.
Table S18: M. luteus. Parameter estimates for LASSO models were optimized by seven fit criteria.
Table S19: M. luteus. Parameter estimates for LAR models were optimized by seven fit criteria.
Table S20: E. faecalis. Parameter estimates for LASSO models were optimized by seven fit criteria.
Table S21: E. faecalis. Parameter estimates for LAR models were optimized by seven fit criteria.
Table S22: M. smegmatis. Parameter estimates for LASSO models were optimized by seven fit criteria.
Table S23: M. smegmatis. Parameter estimates for Stepwise models were optimized by eight fit criteria.
Table S25: Presence of main effects with positive and negative signs in Table 1, Table 2, Table 3, Table 4,
Table 5, Table 6 and Tables S16–S24 for all considered bacterial strains S. aureus (SA), M. luteus (ML),
N. corallina (NC), E. faecalis (EF), and M. smegmatis (MS). Table S26: Presence of main effects with
positive and negative signs in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6 and Tables S16–S21 for
four bacterial strains S. aureus (SA), M. luteus (ML), N. corallina (NC), and E. faecalis (EF).
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