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Abstract: The discovery that cyclic (ArO)2PF can support Rh-catalysts for hydroformylation with sig-
nificant advantages in tuning regioselectivity transformed the study of metal complexes of monofluo-
rophos ligands from one of primarily academic interest to one with potentially important applications
in catalysis. In this review, the syntheses of monofluorophosphites, (RO)2PF, and monofluorophos-
phines, R2PF, are discussed and the factors that control the kinetic stability of these ligands to
hydrolysis and disproportionation are set out. A survey of the coordination chemistry of these two
classes of monofluorophos ligands with d-block metals is presented, emphasising the bonding of the
fluorophos to d-block metals, predominantly in low oxidation states. The application of monoflu-
orophos ligands in homogeneous catalysis (especially hydroformylation and hydrocyanation) is
discussed, and it is argued that there is great potential for monofluorophos complexes in future
catalytic applications.
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1. Introduction

Phosphorus ligands containing P–C, P–N, and P–O bonds are ubiquitous in homo-
geneous catalysis. By contrast, fluorophos ligands (those containing a P–F bond) have
attracted relatively little attention in catalysis, despite the extensive fluorophos coordination
chemistry of late transition metals that has been developed and the industrial interest in
the application of monofluorophosphite L1 (Figure 1) in Rh-catalysed hydroformylation
dating back to 1998 [1]. In other contexts, L1 (commercial name: Ethanox 398) has been
employed as an antioxidant [2] and as a flame retardant [3].

The extreme electronegativity of fluorine means that it can withdraw electron density
from any atom it is bonded to, contributing to its reputation as the Tyrannosaurus Rex of
chemistry [4]. It should be noted that the electron-withdrawing power of F is a σ-inductive
effect and, in some cases, this is offset by an electron-donating π-resonance effect (see
later) [5]. This property, combined with the diminutive size of P–F (only P–H is smaller),
makes the steric and electronic properties of an F substituent of particular academic interest.
The high electronegativity of F would be expected to enhance the π-acceptor capacity of
ligands containing P–F bonds compared to analogous ligands containing P–O bonds. Since
one of the reasons cited for the success of phosphites such as L2–4 (Figure 1) as ligands
in Rh-catalysed hydroformylation is their strong π-acceptor capacity, it is understandable
why monofluorophosphite L1 performs well in hydroformylation [6–11].

The simplest fluorophos ligand, PF3, has a special place in coordination and organometal-
lic chemistry as a ligand that has π-acceptor properties on par with, or surpassing, those
of CO [12]. The volatility of some PF3 complexes has made them attractive for applica-
tions in chemical vapour deposition [13–15] and recently, a PF3 complex, identified as
[Co2(µ-CO)2(CO)2(PF3)4], was reported to be a catalyst precursor for 1-hexene hydroformy-
lation [16]. However, progress in the application of PF3 as an ancillary ligand is hampered
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by it being an odourless gas with toxicity similar to phosgene [17], and it is not amenable
to chemical modification.
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Figure 1. Ethanox-398 (L1) and some other landmark phosphite ligands L2–L4 for
Rh-catalysed hydroformylation.

There are no such disadvantages for the collage of P–F ligands, depicted in Figure 2,
which have C-, O-, or N-substituents. These substituted fluorophos ligands have the
advantages of being systematically modifiable via R substituents and they are generally
straightforward to synthesise.
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Figure 2. A selection of P–F containing monophos ligands (R = alkyl or aryl group) including P-
heterocycles showing the diversity of ligands that are potentially available. The structures in the red
box are the subject of this review.

The focus of this review is acyclic and cyclic monofluorophos ligands of the type
(RO)2P–F and R2P–F, since these are amongst the simplest achiral PIII compounds that con-
tain a P–F bond. Both of these classes of P-ligand have attracted considerable academic and
industrial interest since the 1960s, including in the area of homogeneous catalysis. To the
best of our knowledge, there has not previously been a review of monofluorophos ligands,
although difluorophos ligands have been reviewed [18]. The topics covered in this re-
view include (1) the synthetic routes to monofluorophosphites and monofluorophosphines;
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(2) the factors controlling the stability of monofluorophos ligands that limit their appli-
cations; (3) the transition metal coordination chemistry of monofluorophos ligands that
may be pertinent to an understanding of their role in homogeneous catalysis; (4) the ho-
mogeneous catalysis that has been reported with metal–monofluorophos complexes. This
review is not comprehensive and there is a bias to more recent developments that build
upon the early foundational work reported by the groups of Schmutzler and Nixon. The
main conclusion that is drawn from this review is that the tunability of the steric and
electronic effects in monofluorophosphites and monofluorophosphines augurs well for
future applications of these and related classes of P–F ligands in homogeneous catalysis.

2. Monofluorophosphites
2.1. Synthesis and Hydrolytic Stability of Monofluorophosphites

Cyclic and acyclic monofluorophosphites are most readily prepared from the corre-
sponding chlorophosphite, PCl(OR)2, and a source of fluoride, such as CsF or SbF3. The
precursor chlorophosphites are prepared from PCl3 and the appropriate phenol/alcohol,
or a siloxy derivative (as exemplified in Scheme 1) [19]. Monofluorophosphites have also
been made from PCl2F, but this precursor is not readily accessible [20,21].
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Scheme 1. Typical examples of the synthesis of acyclic and cyclic monofluorophosphites.

At first sight, the prospects for using any halophos ligand of the type Z2P–Hal
(Z = alkyl, aryl, OR, OAr, NR2; Hal = F, Cl, Br, I) in catalysis may appear bleak because
of the reactivity of P-Hal bonds. For example, chlorophos compounds (Z2P–Cl) are nor-
mally viewed as useful intermediates rather than ligands because they react readily with
a wide range of C-, O-, or N-nucleophiles [22]; this reactivity makes chlorophos ligands
incompatible with many reactive functional groups. Moreover, chlorophos compounds
commonly fume in air because of their high susceptibility to hydrolysis, during which HCl
is produced (Equation (1), X = Cl).
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The favourable thermodynamics of P–Cl hydrolysis are largely driven by the P=O
bond formation in the P-containing product (Equation (1), X = Cl). However, the ther-
modynamics of P–OAr hydrolysis (Equation (1), X = OAr) are at least as favourable as
those of P-Cl hydrolysis and yet ligands containing P-OAr groups are widely used in
coordination chemistry and catalysis. It can therefore be surmised that the high reactivity
of chlorophosphites is primarily due to their high kinetic lability. Indeed, chlorophosphites
that are remarkably stable to moisture have also been developed and some have been
applied in catalysis [23,24].



Molecules 2024, 29, 2368 4 of 27

It has been shown that phosphite P–O bonds can be stabilised to hydrolysis by integrat-
ing them into cyclic structures and/or incorporating bulky hydrophobic groups into the
ligand framework, as in aryl phosphite ligands L2–4 (Figure 1). Indeed, diphosphite L3 and
its derivatives have been successfully applied in large scale industrial hydroformylation
processes [7]. It is of no surprise, therefore, that the Eastman monofluorophos ligand L1
is a phosphadioxacycle which contains bulky t-butyl substituents that shroud the P–F
moiety [1].

While L1 is reportedly stable to hydrolysis [25], the hydrolytic stability of the related
cyclic monofluorophosphites L5–8 (Figure 3) in aqueous methanol depends on ring size:
the half-lives increase in the order L5 < L7 ~ L8 < L6 [19].
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2.2. Coordination Chemistry of Monofluorophosphites

Metal complexes of monofluorophosphites have been produced by the two routes
shown in Scheme 2: (a) by substitution of a labile, neutral ligand (A) by a monofluo-
rophosphite; (b) by methanolysis of a coordinated PF3 or by addition of an equivalent of
HF to a coordinated P(OR)3.
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2.2.1. Group 6 Metal Complexes of Monofluorophosphites

The range of Group 6 metal(0) complexes of monofluorophosphites that have been
prepared is summarised in Scheme 3 [20,26,27]. UV photolysis of each of the metal
hexacarbonyls in the presence of (MeO)2PF (L9) gave the homoleptic complexes 1–3 [27].
[Cr(CO)6] reacts with L5 to give the trisubstituted 4 while the molybdenum analogue 5
is formed when L5 reacts with [(cycloheptatriene)Mo(CO)3] [26].

The cis-disubstituted Mo complexes 6–9 were prepared by substitution of the nor-
bornadiene ligand in [Mo(nbd)(CO)4] with the cyclic monofluorophosphites L5–L8 and
the products were fully characterised, including by X-ray crystallography. The IR data
for 6–9 are consistent with the π-acceptor capacities of L5–L8 lying between those of
PF3 and P(OPh)3. The νCO values for the highest frequency band increases in the order
P(OPh)3 < L8 ~ L7 < L6 < L5 < PF3, which is consistent with the π-acceptor capacity of
the cyclic phosphites increasing as the ring size decreases [19].
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2.2.2. Group 8 Metal Complexes of Monofluorophosphites

The synthesis of the iron(0)–monofluorophosphite complexes 10–12 is summarised in
Scheme 4. Complex 10 is formed by addition of ligand L7 to [Fe2(CO)9] (Scheme 4, route
(a)) [20]. Complex 11 is produced by two routes: (1) addition of ligand L10 to [Fe2(CO)9]
(Scheme 4, route (a)); (2) treatment of the Fe–PFCl2 precursor complex 13 with the sodium
alkoxide nucleophile shown in Scheme 4 route (b) [28].

Complex 12 has been identified by IR spectroscopy as a product of the methanolysis
of the PF3 complex 14 in a detailed study of the alcoholysis of [Fe(PF3)x(CO)5-x] (x = 1–4)
species [29].
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The equilibrium proportions of equatorial (e) and apical (a) isomers of [Fe(CO)4L]
can be determined by IR spectroscopy; sterically demanding and good π-acceptor ligands
prefer to bind at the equatorial sites [29]. As shown in Scheme 4 (d), for complex 14, the
predominant isomer has the PF3 equatorial, although the e:a ratio is close to the statistical
60:40 ratio, reflecting the similarity of PF3 and CO as ligands. For complex 12, only the
apical isomer was detected, consistent with L9 being small and a poorer π-acceptor than
PF3. For complex 11, a higher proportion of equatorial isomer was present than even in
the PF3 complex 14, as expected for the bulky L10. The νCO values for the complexes 14
and 11 are very similar, showing that PF3 and L10 have similar π-acceptor properties. This
demonstrates that the steric and electronic effects of monofluorophosphite ligands can be
controlled via the phosphorus alkoxy substituents.
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The ruthenium(II) phosphite complexes trans-[(dppe)2Ru(H){P(OR)3}]+ react with
HBF4 to give the homologous series of monofluorophosphite complexes 15–17 (Scheme 5);
the HBF4 is providing the source of HF in these reactions. The coordinated monofluo-
rophosphite ligands L9, L11, and L12 are readily displaced by a H2 to give the η2-H2
complex 18 (Scheme 5) [30].
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2.2.3. Group 9 Metal Complexes of Monofluorophosphites

The tetrahedral cobalt complexes 19 and 20 containing the coordinated L9 have been
separated by preparative GLC from the mixtures obtained by methanolysis of the corre-
sponding PF3 complexes (Scheme 6) [31]. The IR spectra of the complexes showed that the
νCO and νNO stretching bands are both shifted to significantly lower wavenumber in the
monofluorophosphite complexes 19 and 20 with respect to their PF3 precursors, consistent
with L9 being a poorer π-acceptor ligand than PF3.
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The rhodium(I) chemistry with the cyclic monofluorophosphites L5–L8 is summarised
in Scheme 7 [19]. Treatment of [Rh2Cl2(CO)4] with L5–L8 gave the three products 21–23 in
the proportions shown in Scheme 7. These products were characterised by multinuclear
NMR spectroscopy and comparison of the spectra with the products exclusively formed
from [Rh2Cl2(diene)2] (diene = 1,5-hexadiene or 1,5-cyclooctadiene) and [Rh(cod)2][BF4].
There is a consistent trend of increasing proportion of binuclear complex 21 formed with
decreasing ring size; indeed, with L5, binuclear 21d is exclusively formed. It is significant
that PF3 is the only other monophos ligand that selectively forms the binuclear product
21e [32,33]. The interpretation of these observations is that L5 and PF3 are sufficiently good
π-acceptors to displace the CO from the Rh.

The trend of increasing PF3-like behaviour with decreasing size of phosphacycle in
relation to the reactions of L8–L5 with [Rh2Cl2(CO)4] parallels the trend observed in the
spectroscopic properties of cis-[Mo(CO)4(L)2] (see above) [19].

2.2.4. Group 10 Metal Complexes of Monofluorophosphites

The homoleptic nickel(0) and platinum(0) complexes 24–27 containing monofluo-
rophosphites L5 or L13 were prepared (Scheme 8) [34,35] and their 31P and 19F NMR spectra
were analysed extensively because they are rare examples of [AX]4 spin systems [35,36]. It
was noted that the 2JP,P values for the Ni(0) complexes 24 and 25 (ca. 20 Hz) are significantly
smaller than for the analogous Pt(0) complexes 26 and 27 (ca. 100 Hz), although no rationale
was given for this large difference [35]. The nickel(0) complexes 24 and 25 were originally
prepared from [Ni(CO)4] [26,34] but it was shown that complexes 24–27 can be conveniently
prepared from the corresponding [M(cod)2] (Scheme 8) [35].

The trans-palladium(II) and cis-platinum(II) complexes 28 and 29, containing the cyclic
monofluorophosphite L5, were prepared by cleavage of the corresponding binuclear com-
plex (Scheme 9) [37]. The phosphacycle L14, which can be viewed as a saturated analogue
of L5, forms the cis-platinum(II) complex 30; comparison of the 31P NMR parameters for
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29 and 30 shows that they are similar, e.g., JPt,P = 5600 and 5490 Hz, respectively. The
platinum(0) complex 31 contains monofluorophosphite L15, a saturated analogue of L6
(Scheme 9) [37].
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Scheme 8. Nickel(0) and platinum(0) chemistry of monofluorophosphites.

The tetrahedral platinum(0) complexes 32a–d are readily formed by the addition of
4 equiv. of L5–L8 to [Pt(nbe)3] (nbe = norbornene). Complex 32b crystallised from solution
even when a sub-stoichiometric amount of L6 was added (Scheme 10). However, the
addition of 2 equiv. of L5, L7 or L8 to [Pt(nbe)3] in THF gave mixtures of [Pt(L)4] (32a,c,d)
[Pt(L)2(nbe)] (33a,c,d), and [Pt(L)(nbe)2] (34a,c,d), identified from their characteristic 31P
and 195Pt NMR signals (Scheme 10) [19]. The ratios of complexes observed at equilibrium
(Scheme 10) were rationalised to be the result of the competing steric and electronic factors
for the nbe and monofluorophosphite ligands; for example, while [Pt(L)4] is more sterically
crowded than [Pt(L)2(nbe)], the greater π-acceptor properties of monofluorophosphites
makes them better than norbornene at stabilising Pt(0) [19].

2.3. Catalysis with Complexes of Monofluorophosphites
2.3.1. Hydroformylation Catalysis with Rhodium Complexes of Monofluorophosphites

The most notable example of the application of monofluorophos ligands in homoge-
neous catalysis is the use of cyclic monofluorophosphites such as L1 in the Rh-catalysed
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hydroformylation reactions, reported by Eastman and shown in Scheme 11 [1,25]. Initially,
the application of monofluorophosphite ligands in catalysis was approached with scep-
ticism, as it was suspected that monofluorophosphites may be thermally unstable, and
be prone to hydrolysis, especially at elevated temperatures, generating hydrogen fluoride
(HF), which is a known catalyst poison [25,38,39]. However, it was demonstrated that
L1 is stable to degradation at temperatures up to 350 ◦C and stable to hydrolysis even
in refluxing aqueous isopropanol, with no free fluoride ions detected [40]. While acidic
conditions promote the degradation of monofluorophosphites, it has been shown that
the catalyst system can be stabilised by the addition of an epoxide or a complex such as
[Co(acac)3] [41,42].
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The striking stability of L1 is attributed to the 8-membered phosphacycle which
entropically stabilises the ligand to P–O cleavage and to the tBu substituents which sterically
shield the P atom and provide a hydrophobic environment in the vicinity of the P–F bond.
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Scheme 11. Rh-monofluorophosphite catalysed hydroformylation of alkenes (reactions (i–iii)) and
formaldehyde (reaction (iv)).

Ligand L1 exists as two geometric isomers, labelled cis-L1 and trans-L1 in Figure 4,
associated with the relative stereochemistry of the F substituent on P and the Me substituent
on the CH of the ligand backbone. The isomers of L1 have been separated, and it was
shown by 31P NMR spectroscopy that, when [Rh(CO)2(acac)] was treated with 2 equiv. of
cis-L1, a mono-ligated RhL1 species was produced whereas with 2 equiv. of trans-L1 a bis-
ligated RhL2 species was the product. Furthermore, trans-L1 readily displaced cis-L1 from
its Rh(acac) complex, showing that trans-L1 has a greater affinity for the Rh(I) centre than
cis-L1 [43,44]. These differences in coordination chemistry are likely due to the 8-membered
heterocycle having to adopt a more strained ring conformation in cis-L1 than in trans-L1
in order to accommodate the bulky metal moiety being bound at a pseudo-equatorial site.
The observed coordination chemistry differences of the isomers of L1 may be the source
of the differences in hydroformylation activity and selectivity that are observed with the
various mixtures of isomers of L1 [43,44].

The alkene substrates employed in Rh/L1 catalysed hydroformylations include termi-
nal alkenes (1-propene and 1-octene), and internal alkenes (isomeric nonenes) [1,38]. As a
consequence of their unsymmetrical nature, alkenes other than ethene give linear (l) and
branched (b) aldehydes. For propene, two isomeric aldehydes (one linear and one branched)
are formed (reaction i in Scheme 11), while for longer chain alkenes, alkene isomerisation
is a competing reaction which can lead to several branched aldehyde products, e.g., for
1-hexene, there are two branched isomers (see reaction ii where R = nPr in Scheme 11).
The l:b ratio of products is affected by a wide array of factors, including temperature,
syngas pressure, ligand–metal (L:Rh) ratio, and the nature of the ligands [7–9,25,45]. With
monofluorophosphite ligands, it has been shown that the impact of the L:Rh ratio on the
alkene hydroformylation activity is strongly dependent on the structure of the ligand.
Increasing the L:Rh ratio (L = P-donor ligand) normally decreases catalytic activity, and
this is indeed observed with monofluorophosphite L1. However, with the bulkier cyclic
monofluorophosphite L16, increasing the L:Rh ratio increased catalytic activity. The cyclic
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structure of L16 appears to be critical for this unusual concentration effect on rate, since
the conventional decrease in activity with increase in L:Rh is observed with L17, an acyclic
analogue of L16 [46].
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A thorough study of the alkene hydroformylation catalytic properties of Rh com-
plexes of monofluorophosphite L18 has been reported, which includes in-flow and batch
hydroformylation of propene, 1-octene, and 2-octene [47]. High activities, with TOF up to
75,000 mol(RCHO) mol(Rh)−1 h−1, have been observed and outstanding control of the alde-
hyde l:b ratio can be achieved by modulating the temperature, PCO, PH2, time of reaction,
the pre-activation of the catalyst, and Rh:L18 ratio; for example, for 1-octene, the l:b ratio
can be ‘tuned’ from 0.27 to 15 (corresponding to selectivity ranging from 78% branched to
94% linear). The higher the concentration of L18, the more the linear aldehyde is favoured,
and this has been rationalised by postulating two mechanisms are operating in parallel:
one based on RhL2(CO) species, favouring linear aldehyde formation, and the other based
on the less bulky RhL(CO)2 moiety, favouring branched aldehyde formation [47].

The hydroformylation of ethylene to produce propionaldehyde (Scheme 11, reaction iii)
is a potentially useful transformation but acetylene, typically present in ethylene feedstocks
in small quantities, acts as a reversible poison towards Rh-based catalysts [25]. The activity
of ethylene hydroformylation using a Rh–PPh3 catalyst suffered greatly when subjected
to ethylene containing 1000 ppm of acetylene. By contrast, the Rh–L1 catalyst system was
shown to be remarkably acetylene-tolerant under the same conditions; the activity of the
Rh–L1 catalyst eventually deteriorated upon increasing the concentration of acetylene to
10,000 ppm [48].

The hydroformylation of formaldehyde (in the form of paraformaldehyde) is poten-
tially a valuable route to produce glycolaldehyde (Scheme 11, reaction iv) which can then
be hydrogenated to ethylene glycol. It has been shown that a Rh–L1 catalyst is more active
and selective than a Rh-PPh3 catalyst under the same conditions [49].
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2.3.2. Other Catalytic Reactions with Monofluorophosphite Ligands

The bulky, optically active monofluorophosphite BIFOP-F (L19), derived from fenchol,
has been employed in the intramolecular Pd-catalysed cross-coupling reaction shown in
Scheme 12 [50]. A library of 12 related fenchol-derived BIFOP-X ligands were screened for
catalysis and complex 35, derived from L19, was the most enantioselective (64% ee) and
gave good yields (88%).

An attempt to use the same ligand L19 in a Cu-catalysed 1,4-addition of R2Zn or
RMgBr (R = Me, Et) to enones was unsuccessful; it was suggested that L19 was unstable
under the reaction conditions used [51].
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3. Monofluorophosphines
3.1. Synthesis and Stability of Monofluorophosphines

Two general routes to R2PF where R = alkyl or aryl are shown in Scheme 13. The
R2PCl route has the advantage of the ready availability of chlorophosphines from PCl3 but
the Cl2PF route can provide access to R2PF for which the corresponding R2PCl is unknown,
as demonstrated for (PhC≡C)2PF [52].
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Simple R2PF (which are PIII species) are generally unstable with respect to the dispro-
portionation to the PV in R2PF3 and PII in R2P–PR2, as shown in Scheme 14 [53,54]. The
pathway shown in Scheme 14, involving the intermediates A and B, has been proposed for
the disproportionation; examples of PIII–PV species A have been isolated and characterised
spectroscopically [55,56]. This chemistry would militate against the application of monoflu-
orophosphines as ligands in homogeneous catalysis unless, under the catalytic reaction
conditions, the equilibrium in Scheme 14 lies in favour of the R2PF, or the equilibrium is
rapidly reversible, such that it can be entrained via metal complexation.
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The following generalisations on the stability of R2PF to disproportionation (Scheme 14)
have been established from extensive studies:

(1) Many common R2PF (e.g., R = Ph, Me, nBu) readily disproportionate [54,57,58];
(2) Bulky substituents and electron-withdrawing substituents stabilise R2PF with respect

to disproportionation [59,60];
(3) Cyclic monofluorophosphines with constrained C–P–C bonds are more stable with

respect to disproportionation than acyclic analogues [61].

The stabilising effects of the P-substituents noted in generalisation (2) accounts for
the dominance of tBu2PF (L20) and (CF3)2PF (L21) in the early literature concerning the
coordination chemistry of monofluorophosphines (Figure 5). A simple rationale for the
R2PF-stabilising effect of bulky and electron-withdrawing substituents is that these sub-
stituents raise the energy of the disproportionation diphosphane product, R2P–PR2 because
(a) bulky R groups maximise 1,2-steric repulsions in the relatively crowded diphosphane—
tBu2P–PtBu2 has been calculated to have a weak P-P bond [62]; (b) electron-withdrawing
groups destabilise the P–P bond due to electrostatic repulsion between the resulting δ+
charges on each of the P atoms—it has been reported that (CF3)2P–P(CF3)2 has an elon-
gated P-P bond [63]. A mechanism for disproportionation involving sterically crowded
intermediates A and B, which would also be disfavoured by electron-withdrawing sub-
stituents [54–56], has been proposed (Scheme 14).
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The monofluorophosphines CgPF (L22), containing a phospha-adamantane cage, and
the PhobPF species L23 and L24, containing a phospha-bicycle (Figure 5), are remarkably
stable to disproportionation [61]. The CgP and PhobP moieties are rigid and bulky, and so
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the stability of L22–L24 may be, at least in part, explained using similar steric congestion
arguments to those used above for the stability of L20 [64–67]. In addition, it has been
argued that the constrained C–P–C angles in L22–L24 also contribute to their observed
stability to disproportionation (generalisation (3) above) using the following reasoning [61].
The two geometric isomers of R2PF3 have diapical–equatorial (aae) or apical–diequatorial
(aee) F groups, with the high apicophilicity of F leading to the aae isomer being preferred
for R2PF3 [68]. Therefore, the favoured isomer has the two R substituents occupying
two equatorial sites with a 120◦ angle between them, as depicted in Scheme 14. X-ray
crystallography has shown that the C–P–C angles are close to 90◦ in multiple compounds
containing either the CgP or PhobP moieties [64–67]. Consequently, the observed stability
to disproportionation of L22–L24 can be partly attributed to the high degree of C–P–C ring
strain in R2PF3 that would be incurred by the 2 C substituents occupying equatorial sites;
if, instead, the eea isomer were adopted, there would be an unfavourable cost in the P–F
bond energies associated with two of the F substituents occupying equatorial sites [68].

3.2. Coordination Chemistry of Monofluorophosphines

In general, monofluorophosphine (R2PF) complexes are made just like many other
P-ligand complexes: by the substitution of a labile ligand on a precursor complex. In
metal complexes of monofluorophosphines, the coordinated R2PF is not susceptible to
disproportionation. Consequently, ligated Ph2PF (which is unstable as the free ligand) has
been generated within a Cr, Mo, or W coordination sphere by fluoride substitution of a
labile X group on a precursor R2PX complex [69–71].

3.2.1. Group 6 Metal Complexes of Monofluorophosphines

The Group 6 complexes 36–44 of monofluorophosphines L20 and L21 are shown in
Scheme 15 [72–74]. The [ML(CO)5] complexes 36–40 were made by photolysis of a mixture
of [M(CO)6] and ligand in THF (for L20) or CH2Cl2 (for L21) [72,73]. The cis-disubstituted
complexes 41 and 42 were formed by stirring [Mo(norbornadiene)(CO)4] with the ligand
at ambient temperatures for several hours [72,74]. The [MoL3(CO)3] complexes 43 and 44
were both prepared from [Mo(cycloheptatriene)(CO)3], but the products were assigned
different geometries (fac in 43 and mer in 44, respectively) based on the unambiguous IR
and 19F NMR spectra for the C2v and C3v isomers. Extensive NMR (31P and 19F) and IR
spectroscopic studies have been carried out on all complexes 36–44. It was shown that
the trend in the position of the highest energy νCO band in the IR spectra of 36 and its
analogues are consistent with the expected π-acidities being in the order: tBu3P (2067 cm−1)
< tBu2PF (2076 cm−1) < tBuPF2 (2088 cm−1) < PF3 (2104 cm−1) [74].

A notable conclusion drawn on the basis of the IR spectra of cis-[MoL2(CO)4] and
mer-[MoL3(CO)3] is that (CF3)2PF and CF3PF2 are stronger π-acceptors than PF3, notwith-
standing the greater electronegativity of F than that of CF3 (χ of 4.0 and 3.3, respectively,
on the Pauling Scale). It has been suggested [74] that an explanation for this apparent
anomaly lies in the π component present in the P–F bond that involves a HOMO (lone pair)
orbital on F and the LUMO (σ *) on P which has π symmetry. This is the same orbital on P
that is involved in the π backbonding from the metal. Thus, in a M–P–F fragment, the M
competes with F for the π acceptor orbital on P (Figure 6(i)); this competition is not present
in a M–P–CF3 fragment which would explain the greater π acceptor capacity of (CF3)2PF
than PF3 [74]. This explanation in terms of π interactions between the LUMO (σ *) on P
and a HOMO with π symmetry on a P-substituent is reminiscent of the arguments used by
Woollins et al. to explain why PtBu(pyrrolyl)2 is a stronger σ donor than P(pyrrolyl)3 (see
Figure 6(ii)) [75].
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3.2.2. Group 7 Metal Complexes of Monofluorophosphines

The only reported Group 7 metal complexes containing a monofluorophosphine ligand
are the isomeric hydridomanganese(I) complexes 45 and 46, formed as a 3:1 mixture by the
reaction of [HMn(CO)5] with L21 (Scheme 16) [76].The 2J(HP) values for 46 (72 Hz) and
47 (4 Hz) are consistent with the assignment of their respective trans and cis geometries.
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3.2.3. Group 8 Metal Complexes of Monofluorophosphines

The tetracarbonyliron complex 47 can be generated in situ by photolysis of a mixture
of L21 and [Fe(CO)5] and the IR spectrum suggests that 47 is predominantly the equatorial
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isomer (Scheme 17). This is consistent with L21 being bulkier than PF3 and of comparable
π acceptor capacity to it [29].
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Scheme 17. Monofluorophosphine complexes of iron(0).

The anthracene-derived monofluorophosphine L25 and the naphthalene-derived
monofluorophosphine L26 were prepared from Cl2PF (Scheme 13) [52]. Ligand L25 was
purified by distillation and showed no tendency to undergo disproportionation presumably
because it is stabilised by its bulky substituents. Reaction of L25 with [Fe2(CO)9] gave com-
plex 48, whose IR spectrum was consistent with C2v symmetry and was therefore assigned
to the equatorial isomer. Ligand L26 was not obtained in pure form but the impure material
was reacted with [Fe2(CO)9] to produce the iron complex 49, the IR spectrum of which was
consistent with C3v symmetry and was therefore assigned to the apical isomer [52]. The
different geometries assigned to 48 and 49 may be rationalised by L25 being larger and
more electron poor (making it a better π-acceptor) than L26.

The unusual monofluorophosphine 50 has been prepared by treatment of its anionic
precursor with N-fluoropyridinium tetrafluoroborate which acts as an electrophilic source
of F+ (see Scheme 18) [77]. The P–F bond in 50 was shown to be covalent in the solid state
by single-crystal X-ray diffraction (dP–F = 1.658(4) Å), and in solution by 31P and 19F NMR
spectroscopy, which showed that 1JPF = 918 Hz). The data for 50 are comparable to values
for conventional R2PF compounds: dP–F = 1.619(7) Å for tBu2PF [78]; 1JPF = 905 Hz for
Ph2PF [57]. In principle, 50 could act as an monofluorophos ligand, but this has not been
reported to date.
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The osmium cluster complexes 51 and 52 were readily formed by the addition of an
excess of the bulky monofluorophosphine L20 to the corresponding labile MeCN complex
precursors (Scheme 19) [79].

Molecules 2024, 29, x FOR PEER REVIEW 18 of 28 
 

 

by single-crystal X-ray diffraction (dP–F = 1.658(4) Å), and in solution by 31P and 19F NMR 
spectroscopy, which showed that 1JPF = 918 Hz). The data for 50 are comparable to values 
for conventional R2PF compounds: dP–F = 1.619(7) Å for tBu2PF [78]; 1JPF = 905 Hz for Ph2PF 
[57]. In principle, 50 could act as an monofluorophos ligand, but this has not been reported 
to date. 

 
Scheme 18. Formation of metalla-monofluorophosphine. Cp* = η5-C5Me5. 

The osmium cluster complexes 51 and 52 were readily formed by the addition of an 
excess of the bulky monofluorophosphine L20 to the corresponding labile MeCN complex 
precursors (Scheme 19) [79]. 

 
Scheme 19. Osmium cluster complexes of monofluorophosphines. 

3.2.4. Group 9 Metal Complexes of Monofluorophosphines 
The paramagnetic cobalt complexes 53a and 53b were prepared by stirring a suspen-

sion of CoX2 in CH2Cl2 with L20. The highly coloured 53a (blue) and 53b (blue-green) had 
electronic spectra, IR spectra, and magnetic moments (µ ≈ 4.5 BM) consistent with the 
tetrahedral geometry depicted in Scheme 20 [80]. 

P

Ph

Ph

Ph

Cp*Fe –

P

Ph

Ph

Ph

Cp*Fe

F

N F

THF

50

Os3(CO)11(NCMe) L
CH2Cl2 (OC)4Os

Os(CO)4

(OC)3Os

L

Os3(CO)10(NCMe)2
L

CH2Cl2 (OC)3Os
Os(CO)4

(OC)3Os

L

L

51

52

L = L20

L = L20

tBu P
F

tBu

L20

Scheme 19. Osmium cluster complexes of monofluorophosphines.

3.2.4. Group 9 Metal Complexes of Monofluorophosphines

The paramagnetic cobalt complexes 53a and 53b were prepared by stirring a suspen-
sion of CoX2 in CH2Cl2 with L20. The highly coloured 53a (blue) and 53b (blue-green)
had electronic spectra, IR spectra, and magnetic moments (µ ≈ 4.5 BM) consistent with the
tetrahedral geometry depicted in Scheme 20 [80].
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Scheme 20. Monofluorophosphine-cobalt complexes.

Reaction of 1 equiv. of L21 with [Co(CO)3(NO)] at ambient temperatures over 7 days
yielded a mixture of monosubstituted and disubstituted complexes 54 and 55, which were
separated by fractional distillation [81]. The trisubstituted complex 56 was obtained by
heating a mixture of [Co(CO)3(NO)] and an excess of L21 to 120 ◦C (Scheme 20). The



Molecules 2024, 29, 2368 18 of 27

position of the νNO band in the IR spectra of 54 (1832 cm−1), 55 (1842 cm−1), and 56
(1854 cm−1) are consistent with L21 being a better π-acceptor than CO.

Mononuclear rhodium complexes 57–61 are formed rapidly upon reaction between
[Rh2Cl2(CO)4] and the appropriate monofluorophosphine in CH2Cl2 (Scheme 21). The vCO
values given in Scheme 21 show that the cage monofluorophosphine L22 is the strongest
π-acceptor followed by the dimethoxynaphthalene ligand L26 and then the sym and asym
isomers of the bicyclic fluorophobanes L23 and L24 straddle the bulky L20 [52,61].

Molecules 2024, 29, x FOR PEER REVIEW 19 of 28 
 

 

 
Scheme 20. Monofluorophosphine-cobalt complexes. 

Reaction of 1 equiv. of L21 with [Co(CO)3(NO)] at ambient temperatures over 7 days 
yielded a mixture of monosubstituted and disubstituted complexes 54 and 55, which were 
separated by fractional distillation [81]. The trisubstituted complex 56 was obtained by 
heating a mixture of [Co(CO)3(NO)] and an excess of L21 to 120 ˚C (Scheme 20). The posi-
tion of the νNO band in the IR spectra of 54 (1832 cm−1), 55 (1842 cm−1), and 56 (1854 cm−1) 
are consistent with L21 being a better π-acceptor than CO. 

Mononuclear rhodium complexes 57–61 are formed rapidly upon reaction between 
[Rh2Cl2(CO)4] and the appropriate monofluorophosphine in CH2Cl2 (Scheme 21). The vCO 
values given in Scheme 21 show that the cage monofluorophosphine L22 is the strongest 
π-acceptor followed by the dimethoxynaphthalene ligand L26 and then the sym and asym 
isomers of the bicyclic fluorophobanes L23 and L24 straddle the bulky L20 [52,61]. 

 
Scheme 21. Monofluorophosphine–rhodium complexes. 

The fluoro analogue of Wilkinson’s Catalyst, [RhF(PPh3)3], undergoes the rearrange-
ment shown in Scheme 22 to generate complex 62, which contains a ‘trapped’ Ph2P–F li-
gated to Rh [82]. This remarkable isomerisation occurs under mild conditions and is re-
versible. Several examples are known where late transition metal fluoro complexes with 

L

Co
L

X
X

L

53a

53b

X = Cl

X = Br

CoX2 CH2Cl2

L = L20

L = L20

NO

Co
L

CO
CO

LCo(NO)(CO)3

L = L21

120 ˚C

54

NO

Co
L

CO
L

55

+

L
25 ˚C

NO

Co
L

L
L

56

tBu P
F

tBu

L20

F3C P
F

F3C

L21

L = L21

Scheme 21. Monofluorophosphine–rhodium complexes.

The fluoro analogue of Wilkinson’s Catalyst, [RhF(PPh3)3], undergoes the rearrange-
ment shown in Scheme 22 to generate complex 62, which contains a ‘trapped’ Ph2P–F
ligated to Rh [82]. This remarkable isomerisation occurs under mild conditions and is
reversible. Several examples are known where late transition metal fluoro complexes with
PR3 ancillary ligands undergo related P–C/M–F rearrangements to generate coordinated
R2P–F ligands as products or transient intermediates [82].
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3.2.5. Group 10 Metal Complexes of Monofluorophosphines

Treatment of nickel tetracarbonyl with an excess of L21 at 25 ◦C gives predominantly
monocarbonyl 63 with traces of dicarbonyl 64, which can be separated by fractional dis-
tillation. The fully substituted complex 65 is produced under more forcing conditions
(95 ◦C, 24 h), but the product is contaminated with traces of 63 (Scheme 22) [83]. The
volatile, air-stable nickel(0) complex 65 can be more readily prepared by mixing L21 with
nickelocene [84] or by reaction of L21 with metallic nickel, generated by thermolysis of
nickel oxalate at 60 ◦C (Scheme 23) [85]. The reaction between [Ni(cod)2] and the phospha-
cage flurophosphine L22 was reported to give complex 66 (Scheme 23), identified in solution
on the basis of the stoichiometry used and the characteristic AA’XX’ pattern observed in
the 31P NMR spectrum [61].
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Scheme 23. Routes to nickel(0)–monofluorophosphine complexes.

Diamagnetic nickel(II) complexes 67a–c are formed when suspensions of NiX2 in
acetone or toluene are treated with L20 (Scheme 24) [80]. The trans geometry of 57a was
established from the large 2JPP of 425 Hz and the crystal structure of 57b confirms its trans
geometry in the solid state [86].
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Scheme 24. Nickel(II)–monofluorophosphine complexes.

Chiral monofluorophosphine L27 disproportionates (Scheme 14) over a period of
16 h, but the rate of the disproportionation for dilute solutions of L27 in benzene was
slow enough to measure its optical purity [87]. Reaction of a racemic mixture of L27
with the optically pure dipalladium complex shown in Scheme 25 gave a diastereomeric
mixture of complexes 68 and 69. Pure complex 68 was obtained selectively by repeated
crystallisation from diethyl ether and the absolute configuration at P was determined by
X-ray crystallography. Enantiomerically pure S-L27 was then displaced from complex 68
by addition of a chelating diphosphine. It was shown by polarimetry that S-L27 racemised
in benzene over a period of 6 h [87].
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The platinum(0) complex 70 was prepared by heating K2[PtCl4] (or PtCl2) with a
large excess of L21 followed by prolonged shaking at ambient temperature (Scheme 26);
the PV by-product (CF3)2PFCl2 was identified, consistent with L21 acting as the reducing
agent [88]. Complex 70 was inert to the addition of MeI, HCl, C2H4, or CS2, even upon pro-
longed heating, in contrast to the triphenylphosphine analogue [Pt(PPh3)4]. This behaviour
likely reflects the greater π-acceptor properties of L21 stabilising Pt(0) and reducing its
nucleophilicity, coupled with the greater steric bulk of PPh3 promoting the formation of
reactive, coordinatively unsaturated PtL3 species [88].
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Scheme 26. Platinum(0) complexes of monofluorophosphine.

The insoluble platinum(0) complex 71 was prepared by the replacement of PMePh2
by L21 in the reaction shown in Scheme 26, a reaction presumably driven by the greater
π-acceptor properties of L21 than PMePh2 [89].

The substituted diarylfluorophosphines L28, L29, and L30 form the platinum(II)
complexes 72, 73, and 74 by the routes shown in Scheme 27. The cis geometry of 72
and 73 was confirmed by their X-ray crystal structures [52,90], and the trans-configuration
of 74 was confirmed by the large value of 2JP,P = 567 Hz [91].

3.3. Catalysis with Complexes of Monofluorophosphines
3.3.1. Hydroformylation Catalysis with Rhodium Complexes of Monofluorophosphines

The first step in the homologation of 1-heptene to 1-octene is the hydroformylation
shown in Scheme 28 [92]. Rhodium complexes of monofluorophos ligands L20, L22, L23,
and L24 all showed catalytic activity comparable to the commercialised Rh—PPh3 catalyst.
The l:b ratio of 3.9 obtained for the Rh–L22 catalyst compares favourably with the l:b ratio of
2.2 for the Rh-PPh3 catalyst under the same conditions. The 31P NMR spectrum of the exit
solutions for the Rh–L22 catalysis showed the presence of Rh–monofluorophos complexes,
indicating that the coordinated L22 had survived the reaction conditions [61].
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3.3.2. Hydrocyanation Catalysis with Nickel Complexes of Monofluorophosphines

Catalysts derived from nickel complexes of L20, L22, L23, and L24 with a Lewis
acid (ZnCl2 or Ph2BOBPh2) co-catalyst were tested for the Ni-catalysed isomerisation-
hydrocyanation of 3-pentenenitrile (3-PN) to give adiponitrile (ADN) via 4-pentenenitrile
(4-PN), as shown in Scheme 29. Nickel complexes of L24 showed essentially no activity
(only traces of ADN detected). Compared with the commercialised catalyst based on Ni–
P(OTol)3, the Ni–L20 and Ni–L23 catalysts were modestly active and selective but Ni–L22
system showed good activity and selectivity [61,93,94]. The fluorine substituent in CgP–F
(L22) was critical to the success of the hydrocyanation catalyst (Scheme 29), since attempts
to use CgP–Br or CgP–Ph as ligands gave only traces of ADN.
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4. Conclusions and Prospective Applications of Monofluorophos Ligands in
Coordination Chemistry and Catalysis

The combination of the extreme electronegativity and smallness of F has made ligands
containing a P–F bond of academic interest for many years. The strength of the P–F bond
at 490 kJ mol−1 dwarfs other P–X single bonds (cf. P–C, 264 kJ mol−1; P–O, 335 kJ mol−1)
and is the source of the thermodynamically stability of P–F compounds. PF3 is often
characterised as the ultimate π-acceptor, outstripping even CO in its capacity to stabilise
electron-rich, low oxidation state metal complexes. What has attracted particular attention
to substituted monofluorophos ligands is their capacity to be ‘tunable’ analogues of PF3
and indeed to make ligands such as (CF3)2PF which are more powerful π-acceptors.

The focus of this review has been on the coordination chemistry of monofluorophos-
phites, (RO)2PF, and monofluorophosphines, R2PF, and the successful applications of
monofluorophos–metal complexes in homogeneous catalysis. At the outset, the prospects
for applications of monofluorophos ligands in homogeneous catalysis appeared to be in-
auspicious because of two fundamental instabilities: (1) notwithstanding the great P–F
bond strength, monofluorophos compounds are generally susceptible to hydrolysis, a
reaction driven by the formation of the even stronger bonds, H–F (565 kJ mol−1) and P=O
(544 kJ mol−1); (2) the propensity of F to stabilise high oxidation states explains the obser-
vation that many PIII–F compounds readily decompose by disproportionation into PV–F
compounds and PII species containing P–P bonds.

The 1998 report by Puckette and coworkers at Eastmann of the application of the
cyclic monofluorophosphite L1 in Rh-catalysed hydroformylation under commercially
viable conditions and the impressive advantages of this catalyst (including its tunable
regioselectivity) emphatically established that monofluorophos ligands have great potential
as ligands for catalysis. It was shown that L1 has structural features that make it resistant to
both hydrolysis and disproportionation. These features were borrowed from diphosphites
such as L3 which are: the PO2 heterocycle and the bulky hydrophobic t-butyl groups that
protect the P–F group and kinetically stabilise the monofluorophosphite.

Early studies (in the 1970s and 1980s) demonstrated that monofluorophosphines
L21 and L22 were stable to disproportionation and this was rationalised in terms of the
great steric bulk and strong electron-withdrawing properties of the substituents. It was
later shown that constraining the C–P–C angle in bicyclic or tricyclic monofluorophos
ligands such as L22 also led to greater stability with respect to disproportionation. Ligands
such as L22 have been shown to be effective not only in hydroformylation but also in
hydrocyanation under commercially viable conditions.

In view of the observed powerful stabilising effects of P-substituents on monoflu-
orophos ligands, and the demonstrated capacity of monofluorophos ligands to support
homogeneous catalysis, it is surprising to us that, to date, the area of monofluorophos
chemistry remains so underdeveloped and it is our contention that there are a plethora of
opportunities in the areas of ligand design, fundamental coordination chemistry studies,
and catalyst discovery based on ligands containing a P–F bond.

It is clear from this review that, firstly, a P–F group confers unusual donor properties
on the PIII ligand, but there are striking ‘holes’ in our knowledge due to the paucity
of information on monofluorophos coordination chemistry of many d-block metals; for
instance, to the best of our knowledge, there are no examples of monofluorophos complexes
of Re or Au. Secondly, the few catalytic studies on monofluorophos–metal complexes that
have been reported have led to impressive discoveries. Some suggestions for potentially
fruitful lines of enquiry that build on the results presented in this review are outlined below.

The monofluorophosphites, denoted {O,O}PF, and monofluorophosphines, denoted
{C,C}PF, that are the subject of this review represent only a minor portion of the monofluo-
rophos landscape that is available (Figure 2). There are many related {N,N}PF as well as
mixed {C,O}PF, {C,N}PF, and {N,O}PF ligands waiting to be developed. Indeed, a series of
acyclic and cyclic {N,O}PF ligands, (see Figure 7) of general structure L31 (R = alkyl) [95]
and L32 (R = aryl or alkyl) [96], have been reported. Ligand L32 generates Rh catalysts
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for alkene hydroformylation with l:b ratios ranging from 0.41 to 12.8 depending on ligand
concentration and the nature of R [96].
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Figure 7. Monofluorophos ligands worthy of future study for catalysis.

Chelating bis(monofluorophos) ligands would be an exciting avenue to explore and an
example of a bis{N,N}PF ligand was recently described: the “Pacman” fluorophos ligand
L33 (see Figure 7) [97].

Hydroformylation and hydrocyanation catalysis have been successfully demonstrated
with monofluorophos ligands. These observations are consistent with the monofluorophos
ligands behaving like other P-donors that are relatively electron-poor, such as phosphites.
Monofluorophos–metal catalysts should be capable of catalysing other reactions that are
catalysed by metal-phosphites and related ligands such as alkene isomerisation, hydro-
genation, and C-C coupling reactions.

It was discovered that the optically active monofluorophosphite L19 was an effective
ligand for the enantioselective Pd-catalysed intramolecular C–C coupling reaction. It
would certainly be of interest to develop other optically active monofluorophos ligands
(including bidentates) and investigate their efficacy in asymmetric catalysis. All of the
{X,Y}PF heterocycles shown in Figure 2 have a stereogenic P-centre, and it should be
possible to resolve these molecules and investigate the application of their complexes in
asymmetric catalysis.

The overarching conclusion is that there is great scope to design new fluorophos
ligands containing a PF group and expand the range of steric and electronic effects such
ligands can have. There are good reasons to believe that new catalysts will emerge.
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