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Abstract: It is necessary to develop novel and efficient alternatives to fluorocarbon surfactant and pre-
pare fluorine-free environmentally-friendly fire extinguishing agent. The carboxyl modified polyether
polysiloxane surfactant (CMPS) with high surface activity was synthesized via the esterification reac-
tion using hydroxyl-containing polyether modified polysiloxane (HPMS) and maleic anhydride (MA)
as raw materials. The process conditions of the esterification reaction were optimized by orthogonal
tests, and the optimum process parameters were determined as follows: reaction temperature of
85 ◦C, reaction time of 4.5 h, isopropyl alcohol content of 20% and the molar ratio of HPMS/MA
of 1/1. The chemical structure, surface activity, aggregation behavior, foam properties, wetting
properties and electron distribution were systematically investigated. It was found that the carboxyl
group was successfully grafted into silicone molecule, and the conjugated system was formed, which
changed the interaction force between the molecules and would affect the surface activity of the
aqueous solution. The CMPS exhibited excellent surface activity and could effectively reduce the
water’s surface tension to 18.46 mN/m. The CMPS formed spherical aggregates in aqueous solution,
and the contact angle value of CMPS is 15.56◦, illustrating that CMPS had excellent hydrophilicity
and wetting performance. The CMPS can enhance the foam property and has good stability. The
electron distribution results indicate that the introduced carboxyl groups are more inclined towards
the negative charge band, which would be conducive to weak the interaction between molecules and
improve the surface activity of the solution. Consequently, new foam fire extinguishing agents were
prepared by using CMPS as a key component and they exhibited excellent fire-fighting performance.
The prepared CMPS would be the optimal alternative to fluorocarbon surfactant and could be applied
in foam extinguishing agents.

Keywords: silicone surfactant; carboxyl modification; surface activity; structural performance;
fluorine-free foam fire extinguishing agents

1. Introduction

The foam extinguishing agent is an important material for fire fighting [1–3]. Foam ex-
tinguishing agents can form a condensed foam floating layer on the surface of a flammable
liquid and then successfully extinguish fire through its covering, cooling, isolation and
suffocation effects. Fluorocarbon surfactants especially polyfluoroalkyl substances (PFAS),
are the main surface-active materials in fire extinguishing agent [4–6]. However, recent
studies have found that PFAS are difficult for the natural environment to decompose and
are harmful to human bodies [7–10]. The study of PFAS decomposition is to reduce en-
vironmental hazards from the perspective of post-pollution treatment, while the search
for PFAS substitutes is to reduce environmental hazards from the source; both of these
are important, but the latter can permanently solve the environmental hazards. Therefore,
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it is necessary to develop novel alternatives to PFAS and efficient fluorine-free foam fire
extinguishing agents [11–15].

Silicone surfactants were supposed to be the optimal alternatives to fluorocarbon
surfactant because of their excellent surface activity, wettability, spreading properties, and
biocompatibility [16–24]. Polyether modified silicone surfactant (PMS) is formed by the
connection of the silicone chain segment and the polyether chain segment via chemical
bond [25–32]. PMS is widely used in foam stabilizers, cosmetic materials, textile finishing
agent and so on. However, it has low solubility and poor foaming ability, and is easy to
break milk used in the foam extinguishing agent system. It is of great significance to carry
out the study on the synthesis and properties of the novel silicone surfactants [33–42]. The
chemical modification of silicones is an active research area, which could impart specific
properties and trigger new applications by attaching several organic functional groups to
the silicon atom [43–48]. Thus, many studies have been devoted to the modification of
silicone surfactants, including amino modification, amino acid modification, carboxyl mod-
ification and so on [49–51]. Among various modification paths, the carboxyl modification
has the most advantages in improving the surface properties of the silicone solution [52–54].
Until now, carboxyl modified polyether polysiloxane surfactants have been mostly side
chain modification, and there are few reports on end group modification [55].

In the present paper, the carboxyl modified polyether polysiloxane surfactant (CMPS)
were successfully prepared via esterification reaction using hydroxyl-containing polyether
modified polysiloxane (HPMS) and maleic anhydride (MA) as raw materials. The process
conditions were optimized by orthogonal test and the optimum process parameters were
determined. In addtion, the chemical structure, surface activity, aggregation behavior, foam
property and electron distribution were systematically investigated. New fluorine-free
biodegradable foam fire extinguishing agents using CMPS as the key component were
prepared and its fire extinguishing performance was measured.

2. Results and Discussions
2.1. Determination of the Optimum Experimental Condition

The optimum experimental condition for the synthesis of CMPS was determined by
L16(43) orthogonal test. Table 1 shows the orthogonal array experimental design and surface
tension of the different CMPS aqueous solutions with different experimental conditions.
Table 2 illustrates the analysis result from the perspective of surface tension, in which
temperature, reaction time, solvent content and feeding ratio of the reactants are denoted
as A, B, C and D.

Table 1. Orthogonal array experimental design and the measured surface tension.

Experiment
Number Temperature (◦C) Reaction Time (h) IPA Content

(wt%) n(HPMS):n(MA) Surface Tension
(mN/m)

1 95 4.5 20% 1:2 19.92
2 75 2.5 40% 1:1 19.24
3 85 1.5 40% 1:3 19.40
4 85 3.5 0% 2:1 19.28
5 65 1.5 10% 1:3 20.08
6 95 2.5 0% 2:1 20.54
7 75 4.5 0% 1:2 20.74
8 75 1.5 20% 2:1 19.78
9 65 4.5 40% 2:1 19.87

10 95 3.5 40% 1:3 21.10
11 75 3.5 10% 1:3 20.63
12 65 2.5 0% 1:2 19.30
13 95 1.5 10% 1:1 20.44
14 65 3.5 20% 1:1 19.43
15 85 2.5 20% 1:2 19.24
16 85 4.5 10% 1:1 19.35
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Table 2. Analysis result of experiment designed with orthogonal array table.

Levels A B C D

Surface tension
(mN/m)

K1 19.67 19.93 19.97 19.87
K2 20.10 19.61 20.13 19.62
K3 19.34 20.11 19.62 19.83
K4 20.50 19.97 19.90 20.30
R 1.16 0.50 0.51 0.69

Primary and
secondary analysis A > D > C > B

Best combination A3B2C3D2

As summarized in Table 2, it can be seen that the influence on surface tension decreases
in the order of the reaction time > feeding ratio > solvent content > reaction time. Therefore,
the optimum reaction condition schedule was determined as follows: reaction temperature
of 85 ◦C, reaction time of 4.5 h, isopropyl alcohol (IPA) content of 20%, and the molar ratio
of HPMS/MA of 1/1. Then the CMPS were synthesized under the optimal experimental
conditions and structural characterization and surface properties were also performed.

2.2. FT-IR Spectra

FT-IR spectra is an effective method with which to investigate the microstructure of
samples. In FT-IR spectra, molecules with different functional group structures absorb in-
frared light at specific wavelengths, so the changes in the structures of molecular functional
groups can cause changes in the location and intensity of the characteristic peaks. The
FT-IR spectra of CMPS and HPMS are illustrated in Figure 1. As shown in Figure 1, CMPS
and HPMS have similar peak positions and shapes. The absorption band at 3452 cm−1

is due to the stretching vibration of the -OH groups and the characteristic peak at 2955,
2872 and 1455 cm−1 are consistent with the stretching vibration of the -CH2, -CH3 groups.
The absorption band at 1349, 1257 and 1077 cm−1 were ascribed to the stretching vibration
of the -C-C-O- groups, -Si-C- groups and -C-O-C- groups, respectively. In addition, the
difference between the CMPS and HPMS is that CMPS has sharper peaks at 1778, 1848 and
3100 cm−1. These three characteristic peaks are attributed to the -C=O- stretching vibration
and the -C=C- stretching vibration, respectively. In conclusion, the FT-IR spectra indicated
that the carboxyl group was successfully grafted onto the silicone molecule.
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structure of CMPS is in agreement with the theoretical design, further proving that the 
carboxyl modified polyether polysiloxane surfactant has been successfully synthesized. 
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Figure 2. 1H-NMR spectra of CMPS (a) and HPMS (b) samples. 

2.4. UV-Vis Absorption Spectra 
UV-Vis absorption spectra can accurately determine the molecular structure of or-

ganic compounds. The UV-Vis absorption spectra of the CMPS and HPMS samples are 
shown in Figure 3. As shown in Figure 3, it can be seen that CMPS exhibits stronger op-
tical absorption in ultraviolet and visible regions as compared to that of HPMS. It is 
worthy of note that the CMPS has an obvious red-shift of the absorption edges. The en-
hancement of optical absorption intensity and red-shift for CMPS imply that the conju-
gated system is formed. The formed conjugated system may change the interaction force 
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2.3. H-NMR Spectra

The structure of two silicone surfactants was analyzed by 1H-NMR (400 MHz, CDCl3)
and the results are shown in Figure 2. From Figure 2, there are three distinct peaks (at
6.40 ppm, 6.35 ppm, and 3.22 ppm) between two silicone surfactants. In detail, the peaks
of the CMPS at 6.35 and 6.40 ppm are assigned to the proton of the -CH=CH- group. In
addition, the peak at 3.22 ppm corresponds to the proton of the hydroxyl group (-OH)
close to the methylene in the HPMS molecule. The above results suggest that the structure
of CMPS is in agreement with the theoretical design, further proving that the carboxyl
modified polyether polysiloxane surfactant has been successfully synthesized.
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2.4. UV-Vis Absorption Spectra

UV-Vis absorption spectra can accurately determine the molecular structure of organic
compounds. The UV-Vis absorption spectra of the CMPS and HPMS samples are shown
in Figure 3. As shown in Figure 3, it can be seen that CMPS exhibits stronger optical
absorption in ultraviolet and visible regions as compared to that of HPMS. It is worthy of
note that the CMPS has an obvious red-shift of the absorption edges. The enhancement
of optical absorption intensity and red-shift for CMPS imply that the conjugated system
is formed. The formed conjugated system may change the interaction force between the
molecules and would affect surface activity of the silicone surfactant aqueous solution.

2.5. Surface Activity

The surface activities in aqueous solution of CMPS and HPMS were evaluated by
surface tension measurement. Figure 4 shows the relationship between the surface tension
and mass fraction of two silicone surfactants. As illustrated in Figure 4, the surface tension
of the two silicone surfactants solutions decreases with the increase in the concentration
and then reaches a plateau. This is mainly because when the concentration of the surfactant
aqueous solution is low, the surfactant molecules are dispersed and some molecules are
oriented on the surface of the aqueous solution. At the moment, the oleophilic group
faces outward and the hydrophilic group faces inward, resulting in a surface adsorption
phenomenon, which can significantly reduce the surface tension of the aqueous solution.
When the mass concentration of the surfactant further increases, the surface adsorption
reaches saturation, resulting in the surfactant molecules being unable to continue to enrich
on the surface. Meanwhile the hydrophobic chain oleophilic group will self-polymerize
in the solution and begin to form micelles. When the surfactant concentration is further
increased, the surfactant molecules will form more micelles inside the solution but will not
cause the surface tension of the solution to decrease. At this time, the solution concentration
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is the critical micelle concentration (CMC). The CMC of the silicone surfactant is obtained
by extending the straight lines on both sides of the turning point of the curve. The CMC
of the HPMS and CMPS are 0.05 wt% and 0.03 wt%, respectively, and the corresponding
surface tension is 21.50 and 18.46 mN/m, respectively. These results indicate that the
CMPS exhibits superior surface activity. The surface tension of CMPS is very close to
that of commercial fluorocarbon surfactants such as Capstone FS-50 (the surface tension is
16.99 mN/m at CMC of 0.0126%) [56].
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The higher surface activity of CMPS may derive from the formed conjugated groups
and the change of the surface excess concentration. The formed conjugated groups could
cause the electrons to delocalize and decrease the energy of the system. Several surfactant
molecules could self-assemble into a structure with a relatively low interaction force at the
surface layer of the aqueous solution via electronic interaction of the formed conjugate
system. That is to say, the interaction forces between the molecules were weakened, which
would increase the number of aggregated molecules at the interface of the aqueous solution,
and then improve the surface activity. In fact, the surface excess concentration (Γmax) and
the area occupied by a single silicone surfactant molecule at the air/solution interface
(Amin) can be estimated by the Gibbs adsorption isotherm [57]. The detailed calculation
process and results are listed in Figure S1 and Table S2. It is demonstrated that CMPS
has a higher value of Γmax (4.53 µmol/m2) and lower values of Amin (36.67 Å2) compared
with that of HPMS, which indicated a denser arrangement of surfactant molecules at the
air/solution interface.

2.6. TEM Results

In order to evaluate the aggregation states and morphologies of CMPS and HPMS in
the aqueous solution, TEM characterizations were conducted and the results are shown
in Figure 5. As illustrated in Figure 5, two silicone surfactants were self-assembled into
spherical aggregates in aqueous solution. In addition, the size of spherical aggregates for
CMPS ranged from 150 to 180 nm, and that for HPMS ranged from 20 to 80 nm. It can be
clearly stated that different hydrophilic structures of silicone surfactants have a significant
effect on their aggregates morphology. The formation of spherical aggregates was similar
to the observation by Huang and Chen et al., which may be due to the hydrogen bonding
or van der Waals interactions among the hydrophilic surfaces [57–60].
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2.7. Wetting Properties

The contact angle is the angle between the gas-liquid interface and the solid-liquid
interface, as shown in Figure 6a. The contact angle of the CMPS on the glass surface
was measured and the results are illustrated in Figure 6. As shown in Figure 6b,c, the
contact angle of the silicone surfactant was reduced from 30.23◦ for HPMS to 15.56◦ for
CMPS, indicating that CMPS has excellent wetting ability and superior hydrophilicity. The
superior wetting ability and hydrophilicity are attributed to the low surface tension, the
weak interaction force, the weak aggregation force and the low surface energy.
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2.8. Foam Property

The foam properties of CMPS and HPMS are measured by the double-syringe tech-
nique and the Ross-Miles method. Figure 7a illustrates the initial state and the foam after
several pushes by the double-syringe technique. It can be seen that foam ability of the
CMPS is higher compared with HPMS, mainly due to its lower surface tension. In addi-
tion, the CMPS aqueous solution is transparent and the HPMS aqueous solution is cloudy,
which also indicates CMPS has superior hydrophilicity. Figures 7b and S2 show the foam
ability (h0, h5) and foam stability (R5) of CMPS and HPMS as a function of concentration.
The foaming ability of CMPS and HPMS increase with the increase in the concentration,
and then reaches a plateau. The foaming ability and foam stability of the CMPS aqueous
solution reached the maximum value of 320 mL and 64.5% at the mass concentration of
0.05%, which is superior to that of HPMS. The above results indicate that CMPS effectively
enhances the foam property and has good stability, which would be helpful for foam
extinguishing agent with excellent foaming properties.

Molecules 2022, 27, x FOR PEER REVIEW 7 of 14 
 

 

angle of the silicone surfactant was reduced from 30.23° for HPMS to 15.56° for CMPS, 
indicating that CMPS has excellent wetting ability and superior hydrophilicity. The su-
perior wetting ability and hydrophilicity are attributed to the low surface tension, the 
weak interaction force, the weak aggregation force and the low surface energy. 

 
Figure 6. (a) Diagram of the contact angle of a droplet (γs−g, γl−s, and γl−g represented the interface 
tension of solid-gas, liquid-solid, and liquid-gas, respectively, and θ represents the contact angle); 
(b) The contact angle of the CMPS; (c) The contact angle of the HPMS; (d–f) The contact angle of 
the CMPS at different times. 

2.8. Foam Property 
The foam properties of CMPS and HPMS are measured by the double-syringe tech-

nique and the Ross-Miles method. Figure 7a illustrates the initial state and the foam after 
several pushes by the double-syringe technique. It can be seen that foam ability of the 
CMPS is higher compared with HPMS, mainly due to its lower surface tension. In addi-
tion, the CMPS aqueous solution is transparent and the HPMS aqueous solution is 
cloudy, which also indicates CMPS has superior hydrophilicity. Figures 7b and S2 show 
the foam ability (h0, h5) and foam stability (R5) of CMPS and HPMS as a function of 
concentration. The foaming ability of CMPS and HPMS increase with the increase in the 
concentration, and then reaches a plateau. The foaming ability and foam stability of the 
CMPS aqueous solution reached the maximum value of 320 mL and 64.5% at the mass 
concentration of 0.05%, which is superior to that of HPMS. The above results indicate 
that CMPS effectively enhances the foam property and has good stability, which would 
be helpful for foam extinguishing agent with excellent foaming properties. 

 

Figure 7. Foam property of CMPS (I) and HPMS (II) measured by the double-syringe technique (a) 
and the foam property of CMPS measured by Ross-Miles method (b). 

2.9. Electron Distribution Study 
Based on the above experimental results, the electron distribution of CMPS and 

HPMS were analyzed by Chem3D software using coulomb integral, exchange integral 

Figure 7. Foam property of CMPS (I) and HPMS (II) measured by the double-syringe technique
(a) and the foam property of CMPS measured by Ross-Miles method (b).

2.9. Electron Distribution Study

Based on the above experimental results, the electron distribution of CMPS and HPMS
were analyzed by Chem3D software using coulomb integral, exchange integral and overlap
integral in combined with the Hueckel molecular orbit theory. The calculations results are
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shown in Figure 8 [61]. The red area represents the relatively positive area, and the blue
area represents the relatively negative area. As illustrated in Figure 8a,b, the CMPS has
more blue area on the end group position, indicating the structure is more inclined towards
the negative charge band in comparison with HPMS. The above results are ascribed to the
presence of a carboxyl group at the end of the hydrophilic chain, which has high electron
adsorption capacity.
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In addition, the energy levels of the frontier molecular orbitals of CMPS and HPMS
were studied as shown in Figure 8c,d. HOMO is the highest occupied molecular orbital, and
LUMO is the lowest unoccupied molecular orbital. As illustrated in Figure 8c, the LUMO
and HOMO levels of CMPS are −6.902 eV and −11.824 eV, respectively, and the energy
level difference is 4.992 eV. The LUMO and HOMO levels of HPMS are 20.407 eV and
−11.774 eV, respectively, and the energy level difference is 32.181 eV. From the perspective
of electron distribution location, the HOMO orbitals of the two silicone surfactants are
similar and are displayed in the hydrophobic siloxane chain segment. However, there are
obvious difference in the point of the LUMO orbital. The LUMO distribution of HPMS is
in the middle of the molecule, while the LUMO of CMPS is close to the carboxyl group,
i.e., the conjugated group structure. It turns out that the more negative the LUMO orbital
is, the easier it is for the LUMO orbital to accept electrons. The results are consistent with
the above calculated electronic density distribution. The difference in electron distribution
and system energy corresponds to the UV-Vis absorption spectra, which may affect surface
activity of silicone surfactant aqueous solution.

2.10. Fire Extinguishing Performance and Biodegradability of Foam Fire Extinguishing Agent

New foam fire extinguishing agents were prepared by using CMPS and HPMS as key
components, which were denoted as foam-CMPS and foam-HPMS, respectively. The fire
extinguishing effectiveness and fire retardancy of the environmentally-friendly fire extin-
guishing agent were measured according to the Chinese standard GB15308-2006 “Foam
Fire Extinguishing Agent”, which is exactly the same as the standards BS EN 1568-3-2008.
The scene picture of foam-CMPS and foam-HPMS were illustrated in Figures 9 and S3,
respectively. As shown in Figure 9, the flame height decreased obviously and the fire
was gradually controlled after the foam extinguishing agent was injected into the fire tray
for 20 s. Then the foam began to cover the oil surface and the flame height decreased
obviously with increasing foams. With the foam further applied, the thickness of the foam
layer on the fuel surface increases and the flame is gradually controlled and eventually
extinguished. The fire extinguishing time of the foam-CMPS is 55 s. However, foam-HPMS
failed to put out the fire after the foam applied for 180 s (Figure S3). The fire extinguishing
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performance indicate that foam-CMPS exhibits better fire-fighting property than the foam-
HPMS. And the fire retardancy study of foam-CMPS was measured and the scene pictures
were shown in Figure S4. The 25% burn-back time of the foam-CMPS is 15.6 min, which
demonstrates the foam extinguishing agent has excellent fire resistance. The excellent fire
extinguishing performance can be attributed to the key component CMPS, which has high
surface activity, good foam property, superior foam stability and superior hydrophilicity.
The biodegradability of foam fire extinguishing agent was measured according to the Chi-
nese standard GB21801-2008 “Chemicals-Ready biodegradability-Manometric respirometry
test”. According to the standard requirements, the value of biochemical oxygen demand
(BOD) and chemical oxygen demand (COD) were measured. And the ratio of BOD and
COD was calculated, which could represent the biodegradability. After testing, we found
that the biodegradability of foam was as high as 86.0%, which was better than that of
fluorine-containing foam extinguishing agents [62–64]. The good biodegradability of the
foam extinguishing agent is mainly attributed to the large proportion of biodegradable
components in the formulation and without polyfluoroalkyl substances.
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3. Materials and Methods
3.1. Materials

Hydroxyl-containing polyether modified polysiloxane (The detailed molecular struc-
ture is presented in Figure 10, where the “x” is about 8 and the average molecular weight is
663 g/mol) was purchased from Zhejiang Runhe Organic Silicon New Material Co., Ltd.
(Huzhou, China). Maleic anhydride (MA) was purchased from Energy Chemical (Shanghai,
China). Isopropyl alcohol (IPA) was obtained from Shanghai Macklin Biochemical Co., Ltd.
(Shanghai, China). Deionized water was made in the laboratory.
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The raw material for the preparation of the foam fire extinguishing agents are as
follows: ethylene glycol, diethylene glycol butyl ether, urea, citric acid, sodium benzoate,
fatty alcohol polyoxyethylene ether, sodium dodecyl sulfate and xanthan gum. They
were purchased from Sinophurt Chemical Reagent Co., LTD (Shanghai, China). Alkyl
glycosides and coactam betaine were purchased from Qingdao Huayuan Polymer Co., LTD
(Qingdao, China).

3.2. Sample Synthesis

The CMPS was synthesized in a three-necked flask under a nitrogen atmosphere. The
reaction equation and preparation process are illustrated in Figure 10. The typical synthesis
processes were as follows: A certain quality of HPMS, maleic anhydride and isopropyl
alcohol were mixed and stirred for 15 min at 25 ◦C. Then the mixture was transferred into a
three-necked flask under the condition of magnetic stirring. The reaction temperature was
adjusted in the range of 60–90 ◦C and the mixture was stirred for 2–6 h. Then the solvent
was removed by vacuum distillation in a rotary evaporator. Finally, CMPS samples were
obtained. Table 3 shows four important variables for the synthesis of CMPS, including
temperature, reaction time, solvent content and feeding ratio of reactants. Determination
of the optimal reaction conditions for CMPS was performed with a L16(43) orthogonal
test. After conducting the designed experiment, the surface activity of the corresponding
reaction products was measured.

Table 3. Orthogonal experimental conditions of carboxyl-modified silicone surfactants.

Levels (%) Temperature (◦C) Reaction Time (h) Solvent Content (wt%) Feeding Ratio (a:b)

1 65 1.5 0 2:1
2 75 2.5 10 1:1
3 85 3.5 20 1:2
4 95 4.5 40 1:3

New foam fire extinguishing agents using CMPS and HPMS as key components were
prepared and denoted as foam-CMPS and foam-HPMS, respectively. The preparation



Molecules 2023, 28, 3546 11 of 14

process of foam fire extinguishing agents is as follows and the composition of the foam
formulations are listed in Table S1. 3 g of urea, 10 g of sodium dodecyl sulfate, 2 g of alkyl
glycosides, 4 g of ethylene glycol and 1 g of CMPS (or HPMS) surfactant were added into
79.8 g of deionized water. The above solution was stirred at room temperature for 20 min.
Afterwards, 0.05 g of xanthan gum were added to the solution, and the mixture was further
stirred for another 10 min. Then 0.1 g of citric acid was added in order to adjust the pH
of the above mixture to 7.0~8.5. Finally, 0.05 g of sodium benzoate was added and the
fluorine-free foam extinguishing agent were collected after stirring for 5 min.

3.3. Characterization

The 1H NMR spectra were obtained using a Bruker 400 MHz spectrometer in chlo-
roform (CDCl3). FT-IR spectra were recorded by using a Bruker FT-IR spectrometer. The
samples were dispersed in anhydrous KBr pellets before testing. UV-Vis absorption spec-
tra were recorded by using a UV-2600i spectrophotometer with deionized water as the
comparison sample. Surface tension measurements were carried out at 298.15 K using a
model BZY-1 tensiometer. A Dataphysics DCAT21 (Germany) was used to investigate the
wetting ability and hydrophilicity of the surfactants. The glass slides were immersed in
hydrochloric acid for 24 h, washed with deionized water, and dried at room temperature.
The contact angle (θ) was investigated by spreading a 5 µL drop of surfactant solution on
the substrate. The θ values were recorded after the drop had been sitting on the substrate
for 30–50 s. The morphologies of surfactant aggregations were examined with JEM-2100
TEM (JEOL, Japan) at 200 kV. The mass concentration of CMPS and HPMS solutions is
2 wt%. The samples were prepared by dropping the solution on a carbon-coated grid.
Phosphotungstic acid solution (2 wt%) was used as stain solvent. The foam ability and
foam stability of the surfactants were evaluated with a Ross-Miles instrument. Foam
ability is a parameter characterized by the initial foam height (h0) and foam stability is
calculated by the ratio of the five-minute foam height (h5) to the initial foam height (h0).
In addtion, the foam ability is also measured by the double-syringe technique, which
consists of two connected syringes. The volume of the syringe is 60 mL and the diameter
of the tube is 3 mm. The initial volume of liquid is 15 mL and the concentration of 0.1%.
The foam is generated by pushing both liquid and gas repeatedly through the connecting
tube. The solution is passed through the tube 30 times and then the homogeneous foam
is formed. The electron distribution and energy levels of frontier molecular orbital were
analyzed by Chem3D software. The fire extinguishing effectiveness and fire retardancy of
environmentally-friendly fire extinguishing agent were measured according to the Chinese
standard GB15308-2006 “Foam Fire Extinguishing Agent”. In addition, the biodegradability
of the foam fire extinguishing agent was measured according to the Chinese standard
GB21801-2008 “Chemicals-Ready biodegradability-Manometric respirometry test”.

4. Conclusions

The carboxyl modified polyether polysiloxane surfactant (CMPS) was successfully syn-
thesized via esterification reaction using hydroxyl-containing polyether modified polysilox-
ane (HPMS) and maleic anhydride (MA) as raw materials. The optimum process parameters
were determined as follows: reaction temperature of 85 ◦C, reaction time of 4.5 h, isopropyl
alcohol content of 20% and the molar ratio of HPMS/MA of 1/1. The end group carboxyl
modification effectively improves the surface activity, solubility and foaming ability. The
enhanced surface activity and superior hydrophilicity may originate from the maximum
excess surface concentration, conjugated system, the extended carbon chain structure, the
weakened interaction between molecules and the introduced hydrophilic group onto the
molecules. The foam fire extinguishing agent using CMPS as key component exhibits excel-
lent fire extinguishing performance and good biodegradability. The prepared CMPS would
be the optimal alternatives to fluorocarbon surfactants, and we propose that it should be
used in efficient environmentally friendly foam fire extinguishing agents on the large scale.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28083546/s1. The detailed description of raw material,
preparation process of foam fire extinguishing agents and Figure S1: Surface tension of CMPS (a) and
HPMS (b) aqueous solutions as a function of the mass concentration at 25 ◦C. Figure S2: The foam
property of HPMS measured by Ross-Miles method. Figure S3: The interaction between flame and
foams during fire extinguishing test of the foam-HPMS sample. Figure S4: The interaction between
flame and foams during burn-back test of the foam-CMPS sample. Table S1: Composition of the
studied foam formulations. Table S2: The surface activity and adsorption parameters of CMPS and
HPMS solutions.
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