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Abstract: Alkaptonuria (AKU) is a rare genetic autosomal recessive disorder characterized by elevated
serum levels of homogentisic acid (HGA). In this disease, tyrosine metabolism is interrupted because
of the alterations in homogentisate dioxygenase (HGD) gene. The patient suffers from ochronosis,
fractures, and tendon ruptures. To date, no medicine has been approved for the treatment of AKU.
However, physiotherapy and strong painkillers are administered to help mitigate the condition.
Recently, nitisinone, an FDA-approved drug for type 1 tyrosinemia, has been given to AKU patients
in some countries and has shown encouraging results in reducing the disease progression. However,
this drug is not the targeted treatment for AKU, and causes keratopathy. Therefore, the foremost
aim of this study is the identification of potent and druggable inhibitors of AKU with no or minimal
side effects by targeting 4-hydroxyphenylpyruvate dioxygenase. To achieve our goal, we have
performed computational modelling using BioSolveIT suit. The library of ligands for molecular
docking was acquired by fragment replacement of reference molecules by ReCore. Subsequently,
the hits were screened on the basis of estimated affinities, and their pharmacokinetic properties
were evaluated using SwissADME. Afterward, the interactions between target and ligands were
investigated using Discovery Studio. Ultimately, compounds c and f were identified as potent
inhibitors of 4-hydroxyphenylpyruvate dioxygenase.

Keywords: alkaptonuria; nitisinone; homogentisate dioxygenase; 4-hydroxyphenylpyruvate
dioxygenase; ReCore

1. Introduction

Alkaptonuria (AKU) is a rare monogenic hereditary multisystemic disease inherited in
an autosomal-recessive pattern [1]. The disease is known since 1500 BC as several reports
have suggested AKU symptoms in Egyptian mummies of that time [2]. It is ultra-rare as its
incidence is 1:250,000 to 1,000,000 with most reported cases in India, Slovakia, and Jordan
due to consanguineous marriages [3]. It was first described by Dr. Archibald Garrod who
described it as genetic disease and coined the concept of “inborn errors of metabolism” [4].
Furthermore, Boedeker suggested the name of AKU which was derived from the term
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Alkapton. The term Alkapton is of Greek origin that is kápton which means “to gulp
down” [5]. It is characterized by high levels of serum and urine homogentisic acid (HGA)
due to mutations in the nucleotide sequence of homogentisate 1,2-dioxygenase (HGD) [1].
These alterations in the nucleotide sequence interfere with functioning of HGD [6]. HGD
metabolizes HGA, an intermediate product of phenylalanine/tyrosine pathway which is
converted to fumarate and acetoacetate in normal individuals but not in AKU as shown in
Figure 1 [7,8].
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Figure 1. Metabolic error in Alkaptonuria (AKU). In AKU, the gene encoding homogentisate dioxy-
genase is mutated thus converting homogentisic acid to benzoquinones and producing bluish-black
pigment in connective tissues, also known as ochronotic pigment.

HGA being a reducing agent is oxidized by a slow spontaneous irreversible process
imparting black color to the urine and was first explained as “as black as ink” by Scribo-
nius in 1584 [9,10]. In addition to the blackening of urine, the eyes and ears also develop
pigmentation, but it takes two to three decades to be visible externally [10]. The pigment is
actually a bluish-black melanin-like pigment formed by the oxidation of HGA in connec-
tive tissues by a process known as ochronosis [3]. This melanin-like pigment is actually
benzoquinone acetic acid [11]. Moreover, the patients also suffer from knee and backbone
pain that originates gradually in two to three decades [12]. Additional manifestations of
AKU include arthritis, aortic stenosis, joint damage, musculoskeletal tears, renal stones,
and calcification of the vascular system [8,13–15]. The destruction of joints in AKU is
attributed to the alterations in extracellular matrix, deterioration of collagen fibers and
loss of proteoglycans [2,16]. Consequently, the cartilage becomes stiff and unable to bear
the mechanical stress. This whole process begins in calcified tissues and continues to the
hyaline cartilage inducing remodeling and destruction of subchondral plate [17]. It is not
understood how HGA interacts with collagen matrix at the molecular level. A microscopic
analysis of pigmented cartilage revealed a close relationship between early pigmentation
and collagen fiber periodicity [10]. Although collagen fibers abide by the pigmentation,
but biomechanical and metabolic alterations, such as those that take place in cartilage as a
result of ageing naturally, make tissues vulnerable to ochronosis [10]. After the depletion of
protective components such as proteoglycans and glycosaminoglycans, HGA easily binds
with collagen [18].

In case of bone remodeling, two factors namely RANKL/osteoprotegerin (OPG) ratio
and the Wnt/β-catenin signaling pathway are vital. RANKL/osteoprotegerin (OPG) ratio
has significant role in the formation of osteoclast; on the other hand, Wnt/β-catenin signal-
ing pathway controls the division and differentiation of osteoblasts [19]. In AKU, elevated
levels of HGA inhibits Wnt signaling pathway by induced deterioration of osteoblast
functionality [20].
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Cardiac symptoms linked to alkaptonuria are minimal. The most common is aortic
ochronosis that causes aortic stenosis and requires surgical treatment. The pulmonary
and tricuspid valves are the subsequent rarely afflicted, followed by the mitral valve [21].
Certain patients have indeed reported involvement of the aortic, sternal, and coronary
arteries. Despite the fact that alkaptonuric patients’ aortic walls have pigmentation, there is
evidence of reduced aortic distensibility [21]. Although it is rare, but some AKU patients
can also manifest neurological symptoms such as Parkinsonism. Basically, HGA fuse with
the melanin to form a complex in substantia nigra which interferes with the formation
of dopamine-melanin complex [22]. Patients may also suffer from depression due to
physical impairment from pigment buildup in the skin, darkened urine, acute arthralgia
and rigidity, and recurrent surgeries [22]. The musculoskeletal abnormalities in AKU are
often deferred till the fourth decade of life and frequently precedes with the onset of spinal
arthropathy [23].

Recently, AKU has been categorized as secondary amyloidosis because of the de-
position of serum amyloid A (SAA) fibers. The SAA is a biomarker of inflammation as
produced at 100–1000 times in higher amounts than normal plasma levels (4–6 mg/L)
during chronic inflammation [24]. SAA fibers are mainly produced by the under expression
of cathepsin D in the chondrocytes in AKU patients which has role in regulating the levels
of secondary amyloid fibrils [25]. In addition to high levels of SAA fibers, HGA can also
disrupt the Hedgehog signaling in chondrocytes by shortening the cilia and upregulating
the expression of Gli-1 protein [26].

The disease can be diagnosed by measuring the excretory level of HGA in urine
which is estimated to be 8 g/day [27]. However, the normal urine levels of HGA in
healthy individuals are <1.1 µmol/L as compared to AKU patients in which millimolar
levels of HGA exists [7,16]. This HGA secreted in the urine is not only obtained from
the glomerular filtration but a major percentage of HGA urine is obtained from the renal
tubular secretion [28]. In addition to HGA in urine, the bacterial load of urine of infected
male patients is also 2–3 times greater than female AKU patients [29]. Moreover, it can be
confirmed by the genetic analysis for mutations in HGD gene. Three mutations namely
M368V, V300G and P230S are most common in the HGD gene in AKU patients [6]. The
ocular symptoms are also beneficial in the diagnosis of AKU as 83% of the AKU patient’s
manifest symmetric scleral pigmentation [30]. This pigmentation is due to the deposition of
pigment specifically in the sclera (Osler’s sign) having impairment in ocular tendons [30,31].

AKU can also be misdiagnosed due to its rarity and asymptomatic presentation for
several years. The impairment and ochronosis of joints can be confused with the rheumatoid
arthritis, hyperparathyroidism and ankylosing spondylitis [32], whereas ocular symptoms
can be mistakenly diagnosed as ocular melanosarcoma [33].

To date, alkaptonuria is without a specific cure; however, it is being managed via
physiotherapy, painkillers, and surgery for replacing joints [34]. Additionally, several
studies have reported the use of nitisinone, which is a US Food and Drug Administration
(FDA)-approved drug for tyrosinemia type 1, to ameliorate AKU by arresting ochrono-
sis [35]. However, the FDA has not approved its use for alkaptonuria treatment because
the use of nitisinone has caused acquired tyrosinosis, elevated liver transaminases, and
corneal crystals [1,27,36]. Therefore, alkaptonuria specific drug is required with minimal
side effects to treat the patients. Therefore, in the current study, computational approaches
were used to identify potent and druggable inhibitors of alkaptonuria through targeting
4-hydroxyphenyl pyruvate dioxygenase. This enzyme is an alpha-keto acid dependent
oxygenases and catalyzes the oxidative decarboxylation of 4-hydroxyphenyl pyruvate
(HPP) to form homogentisic acid (HGA) [37]. The acquired results showed promising
compounds that could further be validated through experimental work and serve as a
potential treatment for the very rare inherited disorder, alkaptonuria.
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2. Results and Discussion
2.1. Target Identification

According to the literature and KEGG pathway, homogentisate 1,2-dioxygenase (EC
number: 1.13.11.5) was mutated, resulting in the enhanced level of homogentisic acid, as
shown in Figure 2. 4-Hydroxyphenylpyruvate dioxygenase was the suitable target for
treating AKU due to its role in the synthesis of homogentisic acid. The targeted protein
was downloaded from the PDB database (PDB id: 3ISQ). This protein is made up of just
one chain A having 393 amino acids, and so far no mutations have been reported in this
protein. In addition, its resolution was 1.75 Å [38].
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Figure 2. Tyrosine metabolism pathway by KEGG. The highlighted enzyme commission number (EC
number) is representing the mutated enzyme in alkaptonuria.

2.2. Binding Site Prediction

The protein was loaded in SeeSAR protein mode, followed by the selection of a co-
crystalline ligand with the most binding affinity than the other four natural ligands in
order to automatically select the binding site for docking. However, the binding site just
consisted of a limited number of amino acid residues that were expanded by shifting the
protein in the binding site mode. The binding site mode enables the visualization of all the
unoccupied binding pockets in the target protein as represented in Figure 3. It consists of
10 binding pockets with different acceptors, donors, hydrophobicity, DoGSiteScore, surface
area, and volume, as shown in Table 1. The one in yellow was selected because it has
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the highest DoGSiteScore that accurately predicts the druggable pocket in a protein [39].
Moreover, DoGSiteScore was preferred for the selection of binding site because it has
been shown to outperform other existing methods for druggable pocket prediction. The
DoGSiteScore is predicted by utilizing a machine learning algorithm that considers various
physical and chemical parameters, such as solvent accessibility, flexibility, and amino acid
composition to predict the potential binding sites for small molecules in a protein [39].
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Figure 3. A visualization of all the unoccupied binding sites in 4-hydroxyphenylpyruvate dioxy-
genase. It consists of a total of 10 binding pockets represented by different colors, but the one
represented in yellow is selected for having the highest DoGSiteScore. The color of each unoccupied
site is numbered and described in Table 1.

Table 1. Unoccupied binding pockets predicted via binding mode in SeeSAR.

Pocket ID
Number

of
Residues

DoGSiteScore Number
of Donors

Number of
Acceptors Hydrophobicity

Solvent
Accessible

Surface (Å2)

Total Volume of
the Pocket (Å3)

1 23 0.42 11 14 0.71 283.32 538.27
2 24 0.39 11 8 0.76 267.12 247.75
3 17 0.34 4 12 0.77 194.40 164.16
4 25 0.31 18 14 0.67 392.04 477.36
5 16 0.31 5 9 0.76 158.76 170.86
6 18 0.28 11 9 0.73 200.16 237.60
7 9 0.16 3 6 0.74 86.04 112.10
8 27 0.16 17 19 0.67 293.76 266.33
9 12 0.12 6 8 0.69 129.60 192.89
10 17 0.11 6 9 0.67 171.36 239.11

The different colors in the pocket ID are depicting the unoccupied binding sites that can be easily visualized in the
Figure 3.

2.3. Ligand Evaluation

As reported in the literature, nitisinone is being used in some countries to treat AKU,
but it is not a specific treatment to this disease. Therefore, nitisinone was docked with
the 4-hydroxyphenylpyruvate dioxygenase in the docking mode of SeeSAR. The target-
nitisinone complex was transported to the binding site mode where surrounding residues
were added to the selected pocket to enhance the interaction sites. Therefore, total active
site residues were increased from 23 to 29 as elucidated in Figure 4.
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Figure 4. Three-dimensional (3D) structure of 4-hydroxyphenylpyruvate dioxygenase obtained from
PDB. The figure highlights the active pocket residues (pale teal) in stick conformation, while other
protein residues are represented in cartoon conformation (dark teal). Active site constitutes a total
of 29 residues, including His20, Ser21, Thr23, Phe24, Trp25, Arg48, Ser54, Val57, Ser59, Val70, Ser72,
Glu81, Met82, Lys94, Asp95, Ala97, Met118, Arg119, Trp122, Glu124, Phe133, Val135, Thr143, Thr145,
Val147, Phe156, Leu157, Pro158, and Tyr160.

Furthermore, the HYDE scoring of each atom in the nitisinone was determined in
order to estimate the contribution of the sole atom in the overall millimolar estimated
affinity of nitisinone. It can be seen in Figure 5 that oxygen atoms at position number 4, 6,
and 8 have HYDE energy of −4.8, −1.0, and −0.7 kJ/mol, respectively. Similarly, the HYDE
of carbon atoms at position 11, 12, and 14 are −0.9, −3.1, and −0.7 kJ/mol, respectively.
The lower the HYDE scoring, the higher will be the importance of that particular atom in
the overall structure [40].
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2.4. ReCore and Molecular Docking

The nitisinone molecule was shifted to Inspirator mode, which modifies the com-
pounds using ReCore. Here, the groups of atoms, having unfavorable HYDE energy were
replaced with appropriate fragments that were generated from the fragment library by
ReCore. This process resulted in 54 new compounds that were moved to docking mode
functionality in SeeSAR, where 540 poses were generated (10 for each compound), as
represented in Figure 6.
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Figure 6. Molecular docking results. The image visualizes all the 540 poses generated from
the docking of 54 compounds that were generated by Inspirator mode of SeeSAR based on the
nitisinone nucleus.

2.5. Selection of Best Hits

Selection of hits and their optimization is a crucial step in the drug discovery process
as it determines the success of the subsequent stages of drug development [41]. The use
of bioinformatics tools, such as SeeSAR BioSolveIT, has greatly enhanced the hit selection
process, enabling researchers to effectively identify the most promising compounds for further
testing. Therefore, all the 540 poses were exported from docking mode to analyzer mode
where their estimated affinities, torsions, clashes, and optibrium properties were calculated. A
total of 10 compounds were obtained after screening that have the highest binding affinities,
least torsions, no clashes, and low molecular weight, as shown in Table 2. They were named
in alphabetical order from a to j. Among them, compound h is nitisinone. The docked
complexes of compounds c and f with their best hits are shown in Figure 7, while the best hits
for compounds a, b, d, e, and g–h are given in Supplementary Materials Figures S1–S8. The
binding affinities of all 10 compounds (a–j) are shown in Figure 8.

Table 2. Structures of hits a–j.

Compounds Structures Compounds Structures

a
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2.6. ADME Analysis

The ADME analysis was performed by SwissADME. According to ADME properties,
the selected hits have molecular weight less than 500 g/mol, hydrogen bond acceptors
were less than 10, molar refractivity was between 57.75 and 76.07, and topological polar
surface area (TPSA) ranged from 75.25 to 112.58 Å. Moreover, the consensus log P values
were less than 1.99, whereas log S predicted that all the hits were soluble as elucidated
in Table 3. Owing to pharmacokinetic properties, all the hits have high gastrointestinal
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absorption and were unable to cross the blood–brain barrier (BBB) depicting the safety
of central nervous system, as shown in Figure 9 via the boiled egg. This study aims to
synthesize drugs that will work outside the central nervous system (CNS) so drugs that
will not cross the blood–brain barrier are preferred. The inhibition of cytochrome P450
(CYP) varies, while all obeyed Lipinski, Ghose, Veber, Egan, and Muegge drug-likeness
rules with a 0.55 bioavailability score. Furthermore, no PAINS alerts have been observed
and synthetic accessibility was from 2.06 to 3.76. All compounds showed lead likeness
properties [42]. Compound g, h, and j were excluded because they have shown to inhibit the
CYP, thus they can contribute to the toxicity when administered to the patient subsequent to
further analysis. Compound g inhibits CYP1A2 and CYP2C19, while compound h inhibits
CYP2C19. In addition, CYP1A2 is inhibited by compound j.
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Table 3. ADME analysis of the screened hits after molecular docking via SeeSAR.

Compounds a b c d e f g h i j

Formula C12H12F3N2O3+ C12H10F3NO5 C15H13F3N2O4 C11H8F3NO5 C12H10F3N2O5+ C11H18N2O3S2 C10H9F3N2O3 C14H10F3NO5 C13H12F3NO6 C10H9F3N2O3

Molecular
weight 289.23 g/mol 305.21

g/mol
342.27
g/mol

291.18
g/mol

319.21
g/mol

290.40
g/mol

262.19
g/mol

329.23
g/mol

335.23
g/mol

262.19
g/mol

Heavy
atoms 20 21 24 20 22 18 18 23 23 18

Aromatic
heavy
atoms

6 6 6 6 6 5 6 6 6 6

Fraction
Csp3 0.42 0.42 0.40 0.36 0.42 0.64 0.40 0.36 0.46 0.30

Rotatable
bonds 4 4 5 5 4 5 5 4 4 5

H-bond
acceptors 6 8 8 8 8 5 7 8 9 6

H-bond
donors 1 1 1 1 1 2 0 0 2 1

Molar re-
fractivity 70.23 64.79 76.07 59.99 73.05 74.48 59.58 72.78 70.76 57.75

TPSA (Å2) 79.50 92.35 93.20 95.65 103.20 106.26 75.25 97.03 112.58 88.91



Molecules 2023, 28, 2623 11 of 17

Table 3. Cont.

Compounds a b c d e f g h i j

Consensus
Log Po/w

1.13 1.20 1.76 1.14 −0.17 1.54 2.56 1.99 0.99 1.62

Class Soluble Soluble Soluble Soluble Soluble Soluble Soluble Soluble Soluble Soluble

GI
absorption High High High High High High High High High High

BBB
permeant No No No No No No No No No No

P-gp
substrate No No No No Yes No No No No No

CYP1A2
inhibitor No No No No No No Yes No No Yes

CYP2C19
inhibitor No No No No No No Yes Yes No No

CYP2C9
inhibitor No No No No No No No No No No

CYP2D6
inhibitor No No No No No No No No No No

CYP3A4
inhibitor No No No No No No No No No No

Log Kp
(skin per-
metion)

−6.90 cm/s −7.27
cm/s

−7.73
cm/s

−7.20
cm/s −7.35 cm/s −7.06

cm/s
−6.07
cm/s

−6.67
cm/s

−7.22
cm/s

−6.66
cm/s

Lipinski Yes; 0
violation

Yes; 0
violation

Yes; 0
violation

Yes; 0
violation

Yes; 0
violation

Yes; 0
violation

Yes; 0
violation

Yes; 0
violation

Yes; 0
violation

Yes; 0
violation

Ghose Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Veber Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Egan Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Muegge Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Bioavailability
score 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55

PAINS 0 alert 0 alert 0 alert 0 alert 0 alert 0 alert 0 alert 0 alert 0 alert 0 alert

Lead-
likeness Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Synthetic
accessibility 3.07 3.47 2.63 3.27 3.23 3.52 2.76 2.46 3.76 2.06

2.7. Protein-Ligand Interactions

Protein-ligand interactions perform a crucial role in many biological processes, in-
cluding cell signaling, drug design, and protein–protein interactions. The identification
and understanding of these interactions are essential for the development of new drugs
and therapeutic strategies [43,44]. The docked complexes of hits were analyzed for inter-
actions by using Discovery Studio. The data revealed that the compound c interacts with
the active site of target protein by hydrogen bonding, halogen interaction, and pi-cation
interaction. Three conventional hydrogen bonds are formed between the O9, and Trp25;
O16, and Arg48; and O19, and Arg119 of the receptor. Similarly, the halogen interaction is
formed between Glu81 of binding site and F4 of the ligand, whereas nitrogen containing
heterocyclic aromatic ring of the ligand forms pi-anion bond with the Arg119 of the protein.

Other than compound c, compound f also showed conventional hydrogen bonding
with Arg48 and Arg119. These conventional hydrogen bonds are formed by the interaction
of N4 and O9 with the amino groups (NH2) of Arg48 and Arg119, respectively. In addition,
the pi-donor hydrogen bond is present between OG1 of Thr145 and the five cornered ring
of the ligand. Contrarily, the ligand also form hydrophobic interaction with the ligand in
the form of alkyl bond. This alkyl bond is formed between the Val57 of receptor and C11
of the ligand as shown in Figure 10. Compounds a, b, d, e, g, h, I, and j were excluded
because of the unfavorable interactions, such as positive-positive interactions due to the
presence of positively charged nitrogen in their structures.
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Figure 10. Visualization of ligand-protein interactions. Compounds c and f have demonstrated
favorable interactions with the active site residues of the target protein. The dotted lines represent
the interactions between residues and ligand. Arg48 and Arg119 in the active pocket of the receptor
have common interactions with both the ligands.

2.8. Validation of Ligand Specificity

In order to validate the specificity of compounds c and f, reverse docking was per-
formed. For this purpose, both compounds were docked against the druggable sites of
macromolecular targets predicted by SwissTargetPrediction. Compound c does not show
any appreciable affinity with all the predicted targets, which include cathepsin K, CYP17A1,
phosphodiesterase 10A, JAK3, and ERK2, as shown in Figure 11. Likewise, compound
f also exhibits least affinities with the macromolecular ligands predicted by SwissTarget-
Prediction, such as hepatocyte growth factor receptor, caspase 3, JAK 3, endothelin ETB
receptor, and arachidonate 5-lipoxygenase as elucidated in Figure 12.
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from molecular docking. The compound f torsion quality upon docking with respective macro-
molecule is depicted by colored circles, where green indicates no torsion, orange indicates bad torsion,
and red represents worse torsion.

3. Methodology
3.1. Target Identification

The target for drug designing was selected from the literature via PubMed; moreover,
the mutated protein in AKU was determined via the literature and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway. KEGG is a database for metabolic pathways that
consists of reference pathway databases to provide insight into the relative size and degree
of overlap of these pathways [45]. A three-dimensional structure (3D) of the target was
downloaded from Protein Data Bank (PDB) database-a sole repository of experimentally
resolved 3D structures of large molecules across the world [46]. This selection of the protein
was made by considering the resolution of protein (less than 2.5 Å), structure completion
(greater than 90%), and availability of the ligand.

3.2. Binding Site Prediction

After loading the protein and selecting the co-crystalline ligand in the protein mode of
SeeSAR12.1.0, the complex was moved to the binding site mode. Here, all the unoccupied
spaces and residues at the active site were evaluated. Subsequent to the selection of
an appropriate binding pocket, the number of residues at the selected active site were
increased. The purpose was to enhance the number of interactive sites for ligands [47].

3.3. Ligand Evaluation

The structure of nitisinone (ligand) was downloaded from PubChem and evaluated in
the analyzer mode of SeeSAR12.1.0 after performing its standard docking. The contribution
of each atom in the overall binding affinity between ligand and target protein was investi-
gated by HYdrogen bond and DEhydration energy (HYDE) scoring. The HYDE score is
based on two parameters, namely, the hydrogen bond energy and the hydrophobic effect.
In addition to score prediction, HYDE can also be visualized by a very intuitive coloring
scheme that conveniently segregates the favorable and unfavorable contributions of atoms
in the target-ligand complex [40,48].

3.4. ReCore and Molecular Docking

The unfavorable atoms were replaced with various fragments preserving conforma-
tional information and generating new compounds using ReCore [49]. ReCore is used for
designing drugs based on fragments utilizing 3D fragment library known as “index” and is
developed by BioSolveIT. It utilizes a vector-based scheme to generate 3D scaffolds altering
the core elements of molecules within seconds [50,51]. Afterwards, these compounds were
docked with the target protein using FlexX docking functionality in SeeSAR. This molecular
docking depends on incremental construction algorithm, in which ligands are cleaved into
fragments and each fragment is placed at multiple sites in the binding pocket [52].

3.5. Selection of Best Hits

Subsequent to docking, at least 10 poses were generated for each compound and
their estimated affinities, torsions, clashes, and optibrium properties were analyzed in the
Analyzer mode of SeeSAR. The estimated affinity ranges from millimolar to picomolar,
whereas torsions and clashes can be visualized in the form of specific colors. The green color
indicates the best results whereas orange and red colors represent the need to re-consider
the bond angles and bond lengths between atoms [53]. Therefore, compounds with the best
results were screened representing the best hits.
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3.6. ADME Analysis

Absorption, distribution, metabolism, and excretion (ADME) properties of the hits
were examined via SwissADME, an online tool that requires SMILES of compounds as
input, and interprets results in the form of graphs, tables, and even in spreadsheet form.
The interpretations include structure and bioavailability radar, physiochemical properties,
lipophilicity, solubility, pharmacokinetics, drug-likeness, and medicinal chemistry of each
input [54]. In addition, protein binding, CYP450 inhibition, and blood–brain barrier perme-
ability are also predicted. This information can be used to assess the likelihood of a drug
candidate being successful in clinical trials, and its potential for efficacy and safety [55].

3.7. Protein-Ligand Interactions

Further analysis and examination of docked complexes were carried out through Dis-
covery Studio 2021 molecular visualization software, which represents the 2D interactions
between ligand atoms and specific amino acids in the active site [56]. These interactions
include hydrogen bonds, hydrophobic interactions, van der Waal forces, and electrostatic
interactions represented by specifically colored dotted lines [57]. An overview of the
methods used in this study is shown in Figure 13.
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4. Conclusions

Alkaptonuria, a congenital disorder of tyrosine metabolism, leads to a build-up of a
substance called homogentisic acid (HGA) in the body, which can lead to a range of health
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issues. The disease is caused by mutations in the HGD gene and is passed down from parent
to child in an autosomal recessive pattern. Symptoms usually begin to appear in adulthood,
and can include joint pain and stiffness, arthritis, and heart valve damage. There is currently
no cure for alkaptonuria, but treatments are available to manage its symptoms and prevent
complications. Therefore, novel compounds based on the structure of nitisinone were
produced by fragment replacement feature of ReCore. Upon docking of these compounds,
the hits were screened and analyzed by SwissADME for potent inhibitors. Compound h
is nitisinone, which not only inhibits CYP, but also exhibits unfavorable positive-positive
interactions with the protein binding site. Compounds c and f showed optimum druggable
properties against 4-hydroxyphenylpyruvate dioxygenase. These potent compounds do not
inhibit cytochromes and have high gastrointestinal absorption. Moreover, these compounds
can be synthesized and could exhibit lead-likeness with no PAINS alerts. The selected
potent inhibitors showed better estimated affinities than nitisinone. The acquired in silico
results showed promising compounds that could further be validated through experimental
work and serve as a potential treatment for the very rare inherited disorder, alkaptonuria.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28062623/s1, Figures S1–S8. The docked complexes of
compounds a, b, d, e, and g–h with their best hits.
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