
Citation: Kulikova, L.N.; Raesi, G.R.;

Levickaya, D.D.; Purgatorio, R.;

Spada, G.L.; Catto, M.; Altomare, C.D.;

Voskressensky, L.G. Synthesis of

Novel Benzo[b][1,6]naphthyridine

Derivatives and Investigation of

Their Potential as Scaffolds of MAO

Inhibitors. Molecules 2023, 28, 1662.

https://doi.org/10.3390/

molecules28041662

Academic Editor: Antonio Massa

Received: 27 January 2023

Revised: 4 February 2023

Accepted: 7 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Synthesis of Novel Benzo[b][1,6]naphthyridine Derivatives and
Investigation of Their Potential as Scaffolds of MAO Inhibitors
Larisa N. Kulikova 1, Ghulam Reza Raesi 1, Daria D. Levickaya 1, Rosa Purgatorio 2 , Gabriella La Spada 2,
Marco Catto 2 , Cosimo D. Altomare 2 and Leonid G. Voskressensky 1,*

1 Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University),
Miklukho-Maklaya St. 6., 117198 Moscow, Russia

2 Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4,
70125 Bari, Italy

* Correspondence: lvoskressensky@sci.pfu.edu.ru; Tel.: +7-495-955-07-29

Abstract: In this work, 2-alkyl-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridines were obtained
and their reactivity was studied. Novel derivatives of the tricyclic scaffold, including 1-phenylethynyl
(5), 1-indol-3-yl (8), and azocino[4,5-b]quinoline (10) derivatives, were synthesized and characterized
herein for the first time. Among the newly synthesized derivatives, 5c–h proved to be MAO B inhibitors
with potency in the low micromolar range. In particular, the 1-(2-(4-fluorophenyl)ethynyl) analog 5g
achieved an IC50 of 1.35 µM, a value close to that of the well-known MAO B inhibitor pargyline.
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1. Introduction

Naphthyridines (pyridopyridines) are nitrogen-containing heterocyclic analogs of
naphthalene. Naphthyridines are classified into six types, depending on the location of the
nitrogen atoms in the benzene rings [1]. Due to the wide range of biological activities shown
by its derivatives, the interest toward the 1,6-naphthyridine nucleus has increased over
recent years [2–4]. Several functionalized naphthyridines and their benzo/heteroannulated
analogs show biological activities, with prospective exploitation as antitumor agents [5,6],
mGlu5 receptor antagonists [7], tyrosine kinase SYK inhibitors [8], and antiviral agents [9].
Moreover, benzocondensed naphthyridine is the scaffold of the alkaloid aaptamine con-
tained in the Indonesian sponge Aaptos suberitoides [10,11], which is endowed with an-
tibacterial and anticarcinogenic activities [12]. Derivatives of benzo[b][1,6]naphthyridine
showed antiproliferative (A) and cytotoxic (B) activities against various types of cancer
cells [13,14], as well as PDE5 inhibitory activity (C) (Figure 1) [15].
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agents [5,6], mGlu5 receptor antagonists [7], tyrosine kinase SYK inhibitors [8], and anti-
viral agents [9]. Moreover, benzocondensed naphthyridine is the scaffold of the alkaloid 
aaptamine contained in the Indonesian sponge Aaptos suberitoides [10,11], which is en-
dowed with antibacterial and anticarcinogenic activities [12]. Derivatives of 
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Figure 1. Biologically active derivatives of benzo[b][1,6]naphthyridine.

The interest in this bioactive azaheterocyclic moiety prompted us to further explore
its reactivity by synthesizing new original derivatives that could possibly be targeted to
the treatment of neurological disorders such as Parkinson’s (PD) and Alzheimer’s (AD)
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diseases [16,17]. Herein, 2-alkyl-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridines (3)
were prepared and used as starting materials to synthesize novel derivatives, e.g., bearing
X-substituted phenylethynyl or indolyl groups at C(1). A 6→8 ring expansion reaction was
also applied to compounds 3 to obtain azocino[4,5-b]quinoline derivatives.

The biological study combining cheminformatics and biochemical testing focused on
AD-related targets. In our ongoing search for biological activities from unconventional
chemical scaffolds [18,19], we considered the newly synthesized 1,6-benzonaphthyridine
derivatives as worthy of biological investigation. It must be highlighted than piperidine-
fused naphthyridine derivatives were previously described by others as dual inhibitors
of monoamine oxidase subtypes A and B (MAOs A and B) and of acetyl- and butyryl-
cholinesterase (AChE, BChE) [20]. This feature is also suggested by the shape similarity
of this tricyclic scaffold with that of β-carboline, found in the alkaloid harmine and other
compounds displaying inhibitory activity toward MAO subtypes [21]. In this study, relying
on chemoinformatic predictions, we prioritized the evaluation of inhibitory activity against
MAOs A and B.

2. Results and Discussion
2.1. Chemistry

The synthesis of benzonaphthyridines is mainly based on ring-closing methods, which
are used in the synthesis of quinolines. The use of Frindler [22], Pfitzinger [23] and Niemen-
towski [24] reactions, as well as synthesis based on 2-ethynylquinolyl-3-carbaldehydes [25]
and aminopyridines [26], makes it possible to obtain derivatives containing functional
groups in various positions of the tricyclic system.

Previously, we described conversion of tetrahydrobenzo[b][1,6]naphthyridines, which
were obtained by the Pfitzinger reaction, to various derivatives under the action of ac-
tivated alkynes. The structure of the products directly depended on the nature of the
substituent in position 10 and Stevens rearrangement products, ylides, 2-vinylquinolines,
and benzopyridonaphthyridines can be formed [27–29]. However, the mentioned works
were mainly focused on substances with acceptor substituents at position 10 because of
their easy synthesis by the Pfitzinger reaction. Thus, it was of interest to perform experi-
ments using substances with electron-donating substituents such as chlorine. N-methyl-
and benzyl-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridines 3a–d were synthesized
by the Niementowski reaction based on condensation of anthranilic acids 1a–c with the
appropriate piperidones 2a,b when heated in a phosphorus oxychloride atmosphere. After
alkaline treatment of the reaction mass, compounds 3a–d were obtained in the form of
yellow crystals with yields of 68–92% (Scheme 1).
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The study of the reactivity of 10-chloro-tetrahydrobenzo[b][1,6]naphthyridines showed
that 2-methyl-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine 3c was completely
inactive in reactions with activated alkynes. Extended boiling and microwave activation
in various solvents did not lead to the formation of products, whereas only the initial
compound was released back from the reaction mass. However, the presence of an acceptor
substituent at C-8 in compound 3d made it possible to obtain product 4c. The reaction of
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2-benzyl-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridines 3a,b with methyl pro-
piolate proceeded at room temperature in methanol under acid catalysis conditions. The
N-vinyl derivatives 4a,b were obtained as a result of debenzylation (Scheme 2). We previ-
ously described such transformations for N-benzyl-chromenopyridines [30].
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We supposed that the functionalization of this system by introducing indole or
phenylethynyl fragments onto the tetrahydropyridine ring would significantly expand
the potential of tetrahydrobenzo[b][1,6]naphthyridines as biologically active compounds
and reveal new ways of further achieving chemical modifications. The introduction of a
substituent to the nearest position of the nitrogen atom in the tetrahydropyridine fragment
was performed by imine salt formation. Such reactions are well described for tetrahy-
droisoquinolines [31–34], but they never have been used in case of tetrahydrobenzonaph-
thyridines. 1-Phenylethynylated benzonaphthyridines 5a–h were obtained as result of
the cross-combination of compounds 3 with phenylacetylene in the presence of CuI and
diisopropyldiazodicarboxylate (DIAD) (Scheme 3 and Table 1).
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Scheme 3. Phenylethynylation of compounds 3a,c.

Table 1. 1-R1-substituted-phenylethynyl derivatives 5a–h of compounds 3a,c with related synthesis yields.

Cmpd 5 R R1 Yield, %

a Bn H 24
b Bn 3-OMe 35
c Me H 32
d Me 3-OMe 85
e Me 4-OMe 88
f Me 4-CF3 61
g Me 4-F 44
h Me 4-Cl 59

The nucleophilic addition of benzonaphthyridine tertiary nitrogen to DIAD led to the
formation of a zwitterion, which then turned into an iminium salt. The target products 5
were obtained after further alkynylation of the salt with copper acetylenide. The isolation
of the reaction products was hampered by the presence of substituted hydrazine in the
reaction mixture. This compound was obtained from DIAD and crystalized simultaneously
with the target compounds, so it was necessary to use column chromatography.
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The structure of compound 5a was determined by single crystal X-ray analysis (CCDC
2224256, Figure 2).
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The phenylethynyl derivatives of benzo[b][1,6]naphthyridines 5 turned out to be
much more reactive towards activated alkynes. The reaction with methyl propiolate in
trifluoroethanol and acetonitrile took place at room temperature after 10 min with the
formation of complex separable mixtures. After selecting the reaction conditions, we
obtained satisfactory results using subzero temperatures and isopropanol as a solvent.
As a result of the interaction of compounds 5d,g with methyl propiolate under these
conditions, two products were formed: the Stevens rearrangement products 6a,b and
2-vinylquinoline 7. The reaction of compounds 5g and 5d also yielded quinoline 7. Under
the same conditions, the interaction of compounds 5c,d,f,g with acetylacetylene led to the
formation of products 6c–f, the only products with good yields (Scheme 4 and Table 2).
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Scheme 4. The reaction of compound 5c,d,f,g with activated alkynes.

Table 2. Compounds 6a–e with related reaction yields.

Compound 6 X R1 Yield, %

a CO2Me 4-F 27
b CO2Me 3-OMe 22
c COMe H 37
d COMe 3-OMe 34
e COMe 4-CF3 42

Similarly, the Stevens rearrangement occurred in the case of 1-phenylethynyl-substituted-
β-carbolines reacted with activated alkynes [35].

The formation of products 6 and 7 started with the Michael addition of nitrogen of
the tetrahydropyridine fragment to the activated alkyne leading to the formation of the
zwitterion A. Then, either a Stevens rearrangement (route a) took place with the formation
of compound 6, or further attack on the triple bond of the phenylethynyl fragment yielded
adduct C (route b) and then proton migration and Hoffmann elimination completed this
cascade of transformations to give minor product 7 (Scheme 5).
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Besides phenylethynylation, we introduced an indole fragment at position C1 of
benzonaphthyridines 3. At the first stage, iminium salts were obtained by interaction of
benzonaphthyridines 3 with DIAD, and these salts reacted with substituted indoles at the
second stage. The reaction was carried out in absolute THF and benzonaphthyridines 8
were isolated by column chromatography. The isolation of the products was hampered
by the presence of substituted hydrazine as in the case of phenethynylation. Thus, only
compound 8a was isolated in its individual form, whereas compounds 8b-d were isolated
in mixture with hydrazine 9 (Scheme 6).
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The interaction of 1-indol-3-yl derivatives of benzo[b][1,6]naphthyridines 8 with acety-
lacetylene in isopropanol led to the expansion of the tetrahydropyridine fragment, with the
formation of azocine 10 (Scheme 7).
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Here, we describe the first example of the formation of tetrahydroazocino[4,5-b]quin-
olines; however, such transformations have been studied for other heterocyclic systems
annulated with the tetrahydropyridine fragment and the mechanism of azocine fragment
formation has been presented [36–41].

2.2. Evaluation of Monoamine Oxidase (MAO) Inhibition

Taking advantage of PLATO, a free online platform for structure-based target predic-
tion [42] that relies on a multi-fingerprint similarity search algorithm [43,44], we submitted
derivatives 3a–d, 5a–h, 8a–b, and 10a–c for bioactivity prediction. Interestingly, MAOs
were found among the targets predicted with higher probability along with binding affini-
ties for dopamine and opioid receptor subtypes only for the N(2)-methyl analogues 5c–h
bearing phenylethynyl groups at C1. In contrast, N(2)-benzyl analogs 5a–b and compounds
3, 8, and 10 were unpredicted as MAO ligands.

Compounds 5c–h were then tested on human (h) recombinant MAO A and B using
previously reported assays [16,17]. The MAO-B-selective inhibitor, pargyline, was used
as the positive control. Each compound was first tested at a concentration of 10 µM and
then lower scalar concentrations were tested when >60% inhibition was achieved at 10 µM.
The IC50 values were calculated from the best-fitting inhibition–concentration curves. The
MAO A and B inhibition data are summarized in Table 3.

Table 3. Inhibitory activities of compounds 5c–h.

Cmpds 5 MAO A
% Inhibition a

MAO B

% Inhibition a IC50 (µM) b

c 24 ± 8 28 ± 1
d 49 ± 2 7.09 ± 0.07
e 24 ± 9 42 ± 6
f 20 ± 1 14.3 ± 0.9
g 39 ± 3 1.35 ± 0.07
h 38 ± 4 8.65 ± 1.01

Pargyline 10.9 ± 0.6 2.69 ± 0.48
a Inhibition (%) at 10 µM concentration. b Half-maximal inhibitory concentration (IC50, µM). Each value represents
mean ± SD (n = 3).

All of the tested compounds showed a certain selectivity toward MAO B, with most of
them achieving IC50 values in the low micromolar range. The 4-F derivative 5g showed a
noteworthy IC50 (1.35 µM), a value that is even lower than that of the reference pargyline.
The absence of chemical groups able to create covalent bonds, such as the propargy-
lamine fragment in pargyline, suggested a tight, yet reversible, interaction at the binding
site of the enzyme for 5g. Compounds 5c–h were also assayed as inhibitors of human
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cholinesterases [45], but they proved to be inactive as AChE inhibitors and scarcely ac-
tive toward BChE at 10 µM. Meanwhile, the 4-Cl derivative 5h displayed less than 44%
antiaggregating activity against amyloidogenic Aβ(1-40) peptide at 100 µM.

3. Materials and Methods
3.1. Chemistry

Materials and general procedures. All reagents and solvents were purchased from
Merck (Darmstadt, Germany), J.T. Baker (Phillipsburg, NJ, USA), or Sigma-Aldrich Chem-
ical Co. (St. Louis, MO, USA) and, unless specified, used without further purification.
The melting points (m.p.) of all of the compounds were determined using a SMELTING
POINT 10 apparatus in open capillaries (Bibby Sterilin Ltd., Stone, UK). IR spectra were
recorded using an Infralum FT-801 FTIR spectrometer (ISP SB RAS, Novosibirsk, Russia).
The samples were analyzed as KBr disk solids and the more important frequencies are
shown in cm−1. 1H and 13C NMR spectra were recorded in chloroform-d3 (CDCl3) or
dimethylsulfoxide-d6 (DMSO-d6) solutions at 25 ◦C with a 600-MHz NMR spectrometer
(JEOL Ltd., Tokyo, Japan). Peak positions were given in parts per million (ppm), referenced
to the appropriate solvent residual peak, and signal multiplicities were collected by: s
(singlet), d (doublet), dd (doublet of doublets), ddd (doublet of doublet of doublets), t
(triplet), q (quartet), br.s (broad singlet), and m (multiplet). MALDI mass spectra were
recorded using a Bruker autoflex speed instrument operating in positive-ion reflectron
mode (Bremen, Germany). The data of compound 5a were collected at room temperature
using an STOE diffractometer Pilatus100K detector, focusing on mirror collimation Cu Kα

(1.54086 Å) radiation, in rotation method mode. STOE X-AREA software was used for
cell refinement and data reduction. Data collection and image processing were performed
with X-Area 1.67 (STOE & Cie GmbH, Darmstadt, Germany, 2013). Intensity data were
scaled with LANA (part of X-Area) in order to minimize the differences in intensities of
symmetry-equivalent reflections (multiscan method).

3.1.1. Synthesis of 2-Alkyl-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridines 3a–d

Phosphorus chloride was added dropwise in a volume of 10 mL to anthranilic
acids 1a–c (0.0146 mol), which was then added in 1 equivalent excess of (0.0146 mol)
1-alkylpiperidine-4-one 2a,b. Next, the reaction was stirred for 4 h at 100 ◦C and controlled
by TLC in an ethyl acetate—hexane (1:1) system on Silufol plates. After cooling, the result-
ing solution was neutralized with dilute NaOH solution to pH = 9–10, and the product
was extracted with CH2Cl2. The organic phase was dried over anhydrous sodium sulfate
and concentrated on a rotary evaporator. The product was obtained by crystallization from
diethyl ether.

2-benzyl-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine (3a). Light-yellow
crystals, yield 92%, m.p.= 120–121 ◦C. 1H NMR (600 MHz, CDCl3) δ (ppm): 8.16 (1H, dd,
J = 8.3, 1.4 Hz), 8.00 (1H, dd, J = 8.5, 1.1 Hz), 7.69 (1H, ddd, J = 8.3, 6.8, 1.4 Hz), 7.55 (1H, ddd,
J = 8.2, 6.9, 1.2 Hz), 7.42 (2H, d, J = 7.0 Hz), 7.37 (2H, t, J = 7.6 Hz), 7.31 (1H, t, J = 7.3 Hz),
3.93 (2H, s), 3.82 (2H, s), 3.24 (2H, t, J = 5.9 Hz), 2.90 (2H, t, J = 6.0 Hz). 13C NMR (150 MHz,
CDCl3), δ (ppm): 157.4, 147.5, 139.9, 138.1, 129.9, 129.4(2C), 129.1, 128.8(2C), 127.7, 127.1,
127.0, 125.4, 123.9, 62.8, 54.5, 49.9, 34.0. HRMS (MALDI+) m/z calcd for C19H17ClN2 in form
of [M + H]+ ion 309.1159, found: 309.1176.

2-benzyl-8-bromo-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine (3b).
Brown crystals, yield 86%. m.p. = 138–139 ◦C. 1H NMR (600 MHz, CDCl3) δ (ppm): 8.32 (1H,
d, J = 2.3 Hz), 7.85 (1H, d, J = 8.8 Hz), 7.75 (1H, dd, J = 8.9, 2.2 Hz), 7.41 (2H, d, J = 7.5 Hz), 7.37
(2H, t, J = 7.4 Hz), 7.32 (1H, d, J = 7.1 Hz), 3.92 (2H, s), 3.82 (2H, s), 3.21 (2H, t, J = 6.0 Hz), 2.90
(2H, t, J = 5.9 Hz). 13C NMR (150 MHz, CDCl3) δ (ppm): 157.8, 145.8, 138.5, 133.3, 130.6(2C),
129.2(2C), 128.6(2C), 127.6, 126.4, 126.1(2C), 121.0, 62.6, 54.3, 49.6, 33.8. HRMS (MALDI+) m/z
calcd for C19H16BrClN2 in form of [M + H]+ ion 387.0264, found: 387.0280. The observed
characterization data (1H) were consistent with those previously reported in the literature [46].
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2-methyl-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine (3c). Light-yellow
crystals, yield 68%, m.p. = 94–95 ◦C. 1H NMR (600 MHz, CDCl3) δ(ppm): 8.18 (1H, dd,
J = 8.4, 0.9 Hz), 8.00 (1H, dd, J = 8.4, 0.6 Hz), 7.70 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.56 (1H,
ddd, J = 8.2, 6.8, 1.2 Hz), 3.84 (2H, s), 3.28 (2H, t, J = 6.0 Hz), 2.87 (2H, t, J = 6.0 Hz), 2.58
(3H, s). 13C NMR (150 MHz, CDCl3) δ (ppm): 156.6, 147.2, 139.5, 129.8, 128.9, 126.8, 126.6,
125.1, 123.7, 56.0, 52.5, 46.1, 33.8. HRMS (MALDI+) m/z calcd for C13H13ClN2 in form of
[M + H]+ ion 233.0846, found: 233,0831.

2-methyl-8-nitro-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine (3d). Yel-
low crystals, yield 75%, m.p. = 172–173 ◦C. 1H NMR (600 MHz, CDCl3) δ (ppm): 9.10 (1H,
d, J = 2.5 Hz), 8.43 (1H, dd, J = 9.2, 2.5 Hz), 8.09 (1H, d, J = 9.2 Hz), 3.88 (2H, s), 3.31 (2H, t,
J = 5.9 Hz), 2.92 (2H, t, J = 6.0 Hz), 2.61 (3H, s). 13C NMR (150 MHz, CDCl3) δ (ppm): 161.2,
149.4, 146.0, 141.3, 131.1, 128.9, 124.6, 123.5, 121.3, 56.0, 52.2, 46.1, 34.2. HRMS (MALDI+)
m/z calcd for C13H12ClN3O2 in form of [M + H]+ ion 278.0696, found: 278.0704.

3.1.2. Synthesis of 2-Vinyl-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridines 4a,b
and 1-Vinyl-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridines 4c

To a solution of 0.2 g of benzonaphthyridines 3a,b in 5 mL of methanol with 0.5 mL of
formic acid was added a 1.2 equivalent of activated alkyne. The reaction was kept at room
temperature for 10 days. Compounds 4a,b spontaneously fell out of the reaction mass in
the form of crystals and were released by filtration.

To a solution of 0.2 g of benzonaphthyridines 3d in 5 mL of trifluoroethanol with
0.5 mL was added a 1.2 equivalent of activated alkyne. The reaction was kept at room
temperature for 15 days. The product was obtained by crystallization from diethyl ether.

Methyl (2E)-3-(10-chloro-3,4-dihydrobenzo[b][1,6]naphthyridin-2(1H)-yl)prop-2-en-
oate (4a). White crystals, yield 59%. m.p. = 171–172 ◦C. 1H NMR (600 MHz, CDCl3)
δ (ppm): 8.21 (1H, dd, J = 8.4, 1.4 Hz), 8.02 (1H, d, J = 8.5 Hz), 7.76 (1H, ddd, J = 8.3, 6.8,
1.4 Hz), 7.63 (1H, d, J = 6.4 Hz), 7.65–7.61 (2H, m), 4.89 (1H, d, J = 13.2 Hz), 4.57 (2H, s), 3.71
(3H, s), 3.70–3.69 (2H, m), 3.27 (2H, t, J = 6.0 Hz). 13C NMR (150 MHz, CDCl3) δ (ppm):
169.8, 155.5, 151.4, 147.4, 130.5, 129.1, 129.1, 127.6, 125.3, 123.8, 86.5, 50.9. HRMS (MALDI+)
m/z calcd for C16H15ClN2O2 in form of [M + H]+ ion 303.0900, found: 303.0911.

Methyl (2E)-3-(8-bromo-10-chloro-3,4-dihydrobenzo[b][1,6]naphthyridin-2(1H)-yl)
prop-2-enoate (4b). Yellow crystals, yield 67%. m.p. =194–195 ◦C. 1H NMR (600 MHz,
CDCl3) δ (ppm): 8.36 (1H, d, J = 2.1 Hz), 7.88 (1H, d, J = 9.0 Hz), 7.81 (1H, dd, J = 9.0,
2.1 Hz), 7.62 (1H, d, J = 13.1 Hz), 4.90 (1H, d, J = 13.1 Hz), 4.56 (2H, s), 3.71 (3H, s), 3.69 (2H,
m), 3.26 (2H, t, J = 6.0 Hz). 13C NMR (150 MHz, CDCl3) δ (ppm): 169.8, 156.1, 151.3, 146.0,
134.1, 130.9, 126.4, 126.1, 121.8, 86.8, 50.9. HRMS (MALDI+) m/z calcd for C16H14BrClN2O2
in form of [M + H]+ ion 381.0005, found: 381.0014.

(3E)-4-(10-chloro-2-methyl-8-nitro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridin-1-
yl)but-3-en-2-one (4c). White crystals, yield 62%. 1H NMR (600 MHz, CDCl3) δ (ppm):
9.13 (1H, d, J = 2.2 Hz), 8.49 (1H, dd, J = 9.2, 2.5 Hz), 8.13 (1H, d, J = 9.2 Hz), 6.82 (1H, dd,
J = 16.0, 7.0 Hz), 6.04 (1H, d, J = 15.9 Hz), 4.86 (1H, d, J = 6.9 Hz), 3.41–3.34 (1H, m), 3.27–3.22
(1H, m), 3.16 (1H, dd, J = 4.8, 2.4 Hz), 3.03–2.99 (1H, m), 2.60 (3H, s), 2.26 (3H, s). 13C NMR
(150 MHz, CDCl3) δ (ppm): 197.8, 161.2, 149.5, 146.0, 143.0, 140.9, 134.6, 131.0, 128.8, 124.7,
123.9, 121.5, 62.0, 45.6, 42.4, 31.4, 27.7. HRMS (MALDI+) m/z calcd for C17H16ClN3O3 in
form of [M + H]+ ion 346.0958, found: 346.0981.

3.1.3. Synthesis of 2-Alkyl-10-chloro-1-phenylethynyl-1,2,3,4-tetrahydrobenzo[b][1,6]
naphthyridines 5a–h

A solution of 3a,c (0.5 g) in 10 mL of THF was cooled to 0 ◦C, then a 1.5 equivalent
excess of DIAD (diisopropylazodicarboxylate) was added. The mixture was stirred at
room temperature for 1 h. After cooling it again to 0 ◦C, a 3 equivalent excess of the
appropriate phenylacetylene and CuI catalyst were added. The reaction was stirred at
room temperature and controlled by TLC in an ethyl acetate-hexane (1:5) system on Silufol
plates. The product was separated by column chromatography.
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2-benzyl-10-chloro-1-phenylethynyl-1,2,3,4-tetrahydrobenzo[b][1,6]naphthridine (5a).
Colorless crystals, yield 24%. m.p. = 139–140 ◦C. 1H NMR (600 MHz, CDCl3) δ (ppm): 8.22 (1H,
d, J = 8.3 Hz), 8.01 (1H, d, J = 8.3 Hz), 7.72 (1H, t, J = 7.6 Hz), 7.57 (1H, t, J = 7.7 Hz), 7.50–7.43
(4H, m), 7.38 (2H, t, J = 7.5 Hz), 7.34–7.28 (4H, m), 5.31 (1H, s), 4.09 (1H, d, J = 13.0 Hz), 3.91 (1H,
d, J = 13.1 Hz), 3.35–3.41 (1H, m), 3.31 (1H, td, J = 11.5, 3.6 Hz), 3.18 (1H, dd, J = 16.6, 3.6 Hz),
3.08 (1H, dd, J = 11.6, 6.7 Hz). 13C NMR (150 MHz, CDCl3) δ (ppm): 156.7, 147.6, 140.6, 138.0,
131.9(2C), 130.2, 129.2(2C), 128.8, 128.6(2C), 128.4(2C), 128.3, 127.6, 126.9, 125.3, 124.2(2C), 122.8,
87.5, 84.3, 59.4, 52.8, 44.8, 33.4. IR spectrum (KBr), υ/cm−1: 2223.1 (-C≡C-). HRMS (MALDI+)
m/z calcd for C27H21ClN2 in form of [M + H]+ ion 409.1471, found: 409.1483.

2-benzyl-10-chloro-1-[(3-methoxyphenyl)ethynyl]-1,2,3,4-tetrahydrobenzo[b][1,6]
naphthyridine (5b). Oil, yield 35%. 1H NMR (600 MHz, CDCl3) δ (ppm): 8.21 (1H, d,
J = 8.4 Hz), 8.01 (1H, d, J = 8.5 Hz), 7.71 (1H, t, J = 7.7 Hz), 7.57 (1H, t, J = 7.8 Hz), 7.47 (2H, d,
J = 7.4 Hz), 7.37 (2H, t, J = 7.5 Hz), 7.31 (1H, t, J = 7.3 Hz), 7.20 (1H, t, J = 8.0 Hz), 7.05 (1H, d,
J = 7.6 Hz), 6.96 (1H, s), 6.86 (1H, dd, J = 8.2, 2.6 Hz), 5.30 (1H, s), 4.08 (1H, d, J = 13.1 Hz), 3.90
(1H, d, J = 13.1 Hz), 3.78 (3H, s), 3.41–3.34(1H, m), 3.30 (1H, td, J = 11.6, 3.6 Hz), 3.18 (1H, dd,
J = 16.4, 3.1 Hz), 3.07 (1H, dd, J = 11.5, 6.8 Hz). 13C NMR (150 MHz, CDCl3) δ (ppm): 159.4,
156.7, 138.0, 130.3, 129.5, 129.2(2C), 128.8, 128.7(2C), 127.6, 127.5, 127.0, 125.4, 124.6(2C), 124.2,
123.8, 116.9(2C), 115.0, 87.5, 84.1, 59.4, 55.4, 52.9, 44.8, 33.3. IR spectrum (KBr), υ/cm−1: 2222.9
(-C≡C-). HRMS (MALDI+) m/z calcd for C28H23ClN2O in form of [M + H]+ ion 439.1577,
found: 439.1558.

10-chloro-2-methyl-1-phenylethynyl-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine
(5c). Oil, yield 32%. 1H NMR (600 MHz, CDCl3) δ(ppm): 8.23 (1H, d, J = 8.4 Hz), 8.01 (1H,
d, J = 8.3 Hz), 7.72 (1H, t, J = 7.6 Hz), 7.58 (1H, t, J = 7.6 Hz), 7.39 (2H, dd, J = 7.4, 2.2 Hz),
7.25 (3H, m), 5.30 (1H, s), 3.41 (1H, ddd, J = 17.4, 11.7, 7.3 Hz), 3.28 (1H, td, J = 11.8, 4.2 Hz),
3.18 (1H, dd, J = 17.3, 4.1 Hz), 2.98 (1H, dd, J = 12.0, 7.3 Hz), 2.69 (3H, s). IR spectrum (KBr),
υ/cm−1: 2225.8 (-C≡C-). HRMS (MALDI+) m/z calcd for: C21H17ClN2 in form of [M + H]+

ion 333.1159, found: 333.1142.
10-chloro-2-methyl-1-[3-(methoxyphenyl)ethynyl]-1,2,3,4-tetrahydrobenzo[b][1,6]

naphthyridine (5d). Oil, yield 85%. 1H NMR (600 MHz, CDCl3) δ (ppm): 8.23 (1H, d,
J = 8.5 Hz), 8.04 (1H, d, J = 8.4 Hz), 7.73 (1H, t, J = 7.7 Hz), 7.59 (1H, t, J = 7.7 Hz), 7.17
(1H, t, J = 8.0 Hz), 6.99 (1H, d, J = 7.7 Hz), 6.91 (1H, s), 6.84 (1H, dd, J = 8.5, 2.6 Hz), 5.35
(1H, s), 3.75 (3H, s), 3.49 (1H, ddd, J = 18.2, 11.8, 7.3 Hz), 3.34 (1H, td, J = 11.9, 4.5 Hz), 3.23
(1H, dd, J = 17.5, 4.3 Hz), 3.05 (1H, dd, J = 12.1, 7.2 Hz), 2.74 (3H, s). 13C NMR (150 MHz,
CDCl3) δ (ppm): 159.3, 155.4, 147.4, 140.9, 130.6, 129.5, 128.7, 127.2, 125.4, 124.5(2C), 124.2,
123.4, 116.8, 115.2, 88.1, 82.8, 55.4, 54.6, 46.9, 43.1, 32.6. IR spectrum (KBr), υ/cm−1: 2216.1
(-C≡C-). HRMS (MALDI+) m/z calcd for: C22H19ClN2O in form of [M + H]+ ion 363.1264,
found: 363.1281.

10-chloro-2-methyl-1-[4-(methoxyphenyl)ethynyl]-1,2,3,4-tetrahydrobenzo[b][1,6]
naphthyridine (5e). Oil, yield 88%. 1H NMR (600 MHz, CDCl3) δ(ppm): 8.23 (1H, d,
J = 8.3 Hz), 8.01 (1H, d, J = 8.4 Hz), 7.72 (1H, ddd, J = 8.3, 6.9, 1.4 Hz), 7.58 (1H, ddd,
J = 8.2, 6.8, 1.2 Hz), 7.33 (2H, d, J = 8.9 Hz), 6.79 (2H, d, J = 8.9 Hz), 5.28 (1H, s), 3.77 (3H,
s), 3.46–3.34 (1H, m), 3.28 (1H, td, J = 11.7, 4.3 Hz), 3.18 (1H, dd, J = 17.4, 3.4 Hz), 2.97 (1H,
dd, J = 11.9, 7.3 Hz), 2.68 (3H, s). 13C NMR (150 MHz, CDCl3) δ (ppm): 159.7, 156.1, 147.6,
140.4, 133.3(2C), 130.2, 128.9, 127.6, 126.9, 125.4, 124.3, 114.9, 113.9(2C), 87.5, 82.3, 55.4, 54.7,
46.9, 43.2, 33.1. IR spectrum (KBr), υ/cm−1: 2222.3 (-C≡C-). HRMS (MALDI+) m/z calcd
for: C22H19ClN2O in form of [M + H]+ ion 363.1264, found: 363.1279.

2-benzyl-10-chloro-1-{[4-(trifluoromethyl)phenyl]ethynyl}-1,2,3,4-tetrahydrobenzo-
[b][1,6]naphthyridine (5f). Oil, yield 61%. 1H NMR (600 MHz, CDCl3) δ(ppm): 8.24
(1H, d, J = 8.6 Hz), 8.05 (1H, d, J = 8.6 Hz), 7.75 (1H, t, J = 7.6 Hz), 7.60 (1H, t, J = 7.7 Hz),
7.42 (2H, J = 8.5 Hz), 7.12 (2H, d, J = 8.4 Hz), 5.34 (1H, s), 3.52–3.46 (1H, m), 3.33–3.26 (1H,
m), 3.23 (1H, dd, J = 17.4, 4.1 Hz), 3.05 (1H, dd, J = 12.2, 7.4 Hz), 2.73 (3H, s). 13C NMR
(150 MHz, CDCl3) δ (ppm): 155.5, 149.2, 133.5(2C), 130.6, 128.7, 127.32, 125.4, 124.3(2C),
121.4, 121.3, 120.9(2C), 119.6, 86.8, 84.2, 60.5, 54.6, 47.0, 43.1, 32.6. IR spectrum (KBr),
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υ/cm−1: 2221.2 (-C≡C-). HRMS (MALDI+) m/z calcd for: C22H16ClN2F3 in form
of [M + H]+ ion 401.1032, found: 401.1041.

10-chloro-1-[(4-fluorophenyl)ethynyl]-2-methyl-1,2,3,4-tetrahydrobenzo[b][1,6]-
naphthyridine (5g). Oil, yield 44%. 1H NMR (600 MHz, CDCl3) δ (ppm): 8.23 (1H, d,
J = 8.4 Hz), 8.03 (1H, d, J = 8.5 Hz), 7.73 (1H, t, J = 7.3 Hz), 7.59 (1H, t, J = 7.6 Hz), 7.40–7.35
(2H, m), 6.99–6.93 (2H, m), 5.31 (1H, s), 3.45 (1H, ddd, J = 17.4, 11.7, 7.3 Hz), 3.29 (1H, td,
J = 11.8, 4.4 Hz), 3.20 (1H, dd, J = 17.4, 4.3 Hz), 3.02 (1H, dd, J = 11.9, 7.2 Hz), 2.71 (3H, s). 13C
NMR (150 MHz, CDCl3) δ (ppm): 163.3, 161.6, 155.6, 147.3, 140.5, 133.7, 133.6, 130.2, 128.6,
126.9, 125.1, 124.0, 118.5, 115.5, 115.4, 86.6, 83.0, 54.5, 46.8, 42.9, 32.6. IR spectrum (KBr),
υ/cm−1: 2227.1 (-C≡C-). IR spectrum (KBr), υ/cm−1: 2227.1 (-C≡C-). HRMS (MALDI+)
m/z calcd for C21H16ClFN2 in form of [M + H]+ ion 351.1064, found: 351.1049.

10-chloro-1-[(4-chlorophenyl)ethynyl]-2-methyl-1,2,3,4-tetrahydrobenzo[b][1,6]-
naphthyridine (5h). Oil, yield 59%. 1H NMR (600 MHz, CDCl3) δ(ppm): 8.24 (1H, dd,
J = 8.5, 0.9 Hz), 8.11 (1H, d, J = 8.4 Hz), 7.78 (1H, ddd, J = 8.3, 6.9, 1.4 Hz), 7.63 (1H, ddd,
J = 8.3, 6.9, 1.2 Hz), 7.32 (2H, d, J = 8.7 Hz), 7.25 (2H, d, J = 6.7 Hz), 5.44 (1H, s), 3.67–3.58
(1H, m), 3.45–3.36 (1H, m), 3.32 (1H, dd, J = 17.8, 4.4 Hz), 3.17 (1H, m), 2.81 (3H, s). IR
spectrum (KBr), υ/cm−1: 2223.0 (-C≡C-). HRMS (MALDI+) m/z calcd for: C21H16Cl2N2
in form of [M + H]+ ion 367.0769, found: 367.0780.

3.1.4. Synthesis of Compounds 6a–f

The appropriate tetrahydrobenzonaphthyridines 5c,d,f,g were dissolved in isopropanol
at room temperature and cooled for 10 min in the freezer, then a 1.2 equivalent of activated
alkyne was added and the mixture was stored in the refrigerator for 1 week. The reaction
was controlled by TLC in an ethyl acetate/n-hexane 1:1 system on Silufol plates. The
product was separated by column chromatography.

Methyl (2E)-3-{10-chloro-1-[(4-fluorophenyl)ethynyl]-2-methyl-1,2,3,4-tetrahydroben-
zo[b][1,6]naphthyridin-1-yl}prop-2-enoate (6a). Oil, yield 27%. 1H NMR (600 MHz, CDCl3)
δ (ppm): 8.26 (1H, d, J = 8.6, 1.4, 0.6 Hz), 7.99 (1H, d, J = 8.5, 0.6 Hz), 7.74 (1H, t,
J = 7.6 Hz), 7.56 (1H, t, J = 7.6 Hz), 7.44 (2H, dd J = 8.8, 5.3 Hz), 7.00 (2H, t, J = 8.7 Hz), 6.83
(1H, d, J = 15.6 Hz), 6.50 (1H, d, J = 15.6 Hz), 3.76 (3H, s), 3.53–3.49 (1H, m), 3.17–3.12 (2H,
m), 3.07–3.03 (1H, m), 2.53 (3H, s). 13C NMR (150 MHz, CDCl3) δ (ppm): 166.9, 163.8, 162.1,
156.5, 147.5, 142.8, 134.1, 134.1, 131.0, 128.9, 128.7, 127.4, 126.4, 125.2, 124.7, 124.6, 118.8, 116.0,
88.3, 83.46, 63.6, 52.1, 48.0, 40.0, 35.1. IR spectrum (KBr), υ/cm−1: 2224.3 (-C≡C-); 1724
(C = O). HRMS (MALDI+) m/z calcd for: C25H20ClFN2O2 in form of [M + H]+ ion 435.1276,
found: 435.1261.

Methyl (2E)-3-{10-chloro-1-[(3-methoxyphenyl)ethynyl]-2-methyl-1,2,3,4-tetrahydro-
benzo[b][1,6]naphthyridin-1-yl}prop-2-enoate (6b). Oil, yield 22%. 1H NMR (600 MHz,
CDCl3) δ (ppm): 8.27 (1H, d, J = 8.1 Hz), 7.99 (1H, d, J = 8.3 Hz), 7.73 (1H, t, J = 7.6 Hz), 7.57
(1H, t, J = 7.7 Hz), 7.21 (1H, t, J = 8.0 Hz), 7.07 (1H, d, J = 7.6 Hz), 6.98 (1H, s), 6.88 (1H, dd,
J = 8.2, 2.7 Hz), 6.83 (1H, d, J = 15.6 Hz), 6.51 (1H, d, J = 15.6 Hz), 3.79 (3H, s), 3.75 (3H, s),
3.51 (1H, ddd, J = 17.9, 12.0, 6.1 Hz), 3.20–3.12 (2H, m), 3.05 (1H, ddd, J = 11.7, 6.1, 1.9 Hz),
2.53 (3H, s). 13C NMR (150 MHz, CDCl3) δ (ppm): 166.7, 159.4, 156.3, 147.3, 142.6, 130.7,
130.2, 129.5, 129.4, 128.6, 128.5, 127.1, 128.8, 126.2, 124.9, 124.5, 123.4, 116.9, 115.1, 89.0, 83.3,
63.4, 60.5, 55.4, 51.9, 47.8. IR spectrum (KBr), υ/cm−1: 2224.3 (-C≡C-); 1724 (C = O). HRMS
(MALDI+) m/z calcd for C26H23ClN2O3 in form of [M + H]+ ion 447.1476, found: 447.1460.

(3E)-4-[10-chloro-2-methyl-1-(phenylethynyl)-1,2,3,4-tetrahydrobenzo[b][1,6]napht-
hyridin-1-yl]but-3-en-2-one (6c). White crystals, yield 37%, m.p. = 154–155 ◦C. 1H NMR
(600 MHz, CDCl3) δ (ppm): 8.28 (1H, d, J = 8.5 Hz), 8.01 (1H, d, J = 8.5 Hz), 7.75 (1H, ddd,
J = 8.3, 6.8, 1.3 Hz), 7.58 (1H, ddd, J = 8.3, 6.8, 1.2 Hz), 7.47 (2H, dd, J = 7.4, 1.9 Hz), 7.32–7.30
(3H, m), 6.73 (1H, d, J = 16.1 Hz), 6.63 (1H, d, J = 16.1 Hz), 3.59–3.47 (1H, m), 3.24–3.11
(2H, m), 3.06 (1H, ddd, J = 13.1, 6.1, 2.5 Hz), 2.53 (3H, s), 2.31 (3H, s). 13C NMR (150 MHz,
CDCl3) δ (ppm): 198.6, 156.0, 147.1, 146.2, 142.4, 134.2(2C), 131.8(2C), 130.6, 128.6, 128.5,
128.3(2C), 127.0(2C), 126.0, 124.3, 122.2, 89.3, 82.9, 63.5, 47.7, 39.6, 34.7. IR spectrum (KBr),
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υ/cm−1: 2219.3 (-C≡C-); 1675.5 (C = O). HRMS (MALDI+) m/z calcd for: C25H21ClN2O in
form of [M + H]+ ion 401.1421, found: 401.1411.

(3E)-4-{10-chloro-1-[(3-methoxyphenyl)ethynyl]-2-methyl-1,2,3,4-tetrahydroben-
zo[b][1,6]naphthyridin-1-yl}but-3-en-2-one (6d). Oil, yield 34%. 1H NMR (600 MHz,
CDCl3) δ(ppm): 8.28 (1H, ddd, J = 8.5, 1.3, 0.6 Hz), 8.01 (1H, dd, J = 8.5, 0.6 Hz), 7.75 (1H,
ddd, J = 8.4, 6.8, 1.4 Hz), 7.58 (1H, ddd, J = 8.3, 6.8, 1.2 Hz), 7.21 (1H, ddd, J = 8.2, 7.6,
0.4 Hz), 7.07 (1H, ddd, J = 7.6, 1.4, 1.0 Hz), 6.97 (1H, dd, J = 2.7, 1.3 Hz), 6.88 (1H, ddd,
J = 8.4, 2.6, 1.0 Hz), 6.72 (1H, d, J = 16.1 Hz), 6.62 (1H, d, J = 16.1 Hz), 3.79 (3H, s), 3.53
(1H, ddd, J = 16.0, 11.6, 6.2 Hz), 3.23–3.11 (2H, m), 3.06 (1H, ddd, J = 13.4, 6.2, 2.8 Hz), 2.53
(3H, s), 2.31 (3H, s). 13C NMR (150 MHz, CDCl3) δ (ppm): 166.8, 159.5, 156.3, 147.3, 142.7,
130.8, 129.5, 128.7, 128.6, 127.1, 126.2, 125.0, 124.6, 124.5, 123.5, 122.1, 116.9, 115.2, 111.8,
89.0, 83.3, 63.4, 60.5, 55.4, 51.9, 47.8. IR spectrum (KBr), υ/cm−1: 2219.3 (-C≡C-); 1723.8
(C = O). HRMS (MALDI+) m/z calcd for: C26H23ClN2O2 in form of [M + H]+ ion 431.1526,
found: 431.1539.

(3E)-4-(10-chloro-2-methyl-1-{[4-(trifluoromethyl)phenyl]ethynyl}-1,2,3,4-tetrahydr-
obenzo[b][1,6]naphthyridin-1-yl)but-3-en-2-one (6e). Oil, yield 42%. 1H NMR (600 MHz,
CDCl3) δ (ppm): 8.28 (1H, d, J = 8.5 Hz), 8.01 (1H, d, J = 8.5 Hz), 7.76 (1H, t, J = 7.7 Hz),
7.64–7.55 (1H, m), 7.49 (2H, d, J = 8.4 Hz), 7.16 (2H, d, J = 8.8 Hz), 6.69 (1H, d, J = 16.1 Hz),
6.62 (1H, d, J = 16.1 Hz), 3.56–3.50 (1H, m), 3.17 (2H, m), 3.07 (1H, m), 2.52 (3H, s), 2.31
(3H, s). IR spectrum (KBr), υ/cm−1: 2220.9 (-C≡C-); 1721.4 (C = O). HRMS (MALDI+) m/z
calcd for: C26H20ClF3N2O in form of [M + H]+ ion 469.1295, found: 469.1301.

Methyl 5-(4-chloro-2-ethenylquinolin-3-yl)-4-(4-fluorobenzyl)-1-methyl-1H-pyrrole-
3-carboxylate (7). Oil, yield 3%. 1H NMR (600 MHz, CDCl3) δ(ppm): 8.07 (1H, d, ddd,
J = 8.5, 1.4, 0.7 Hz), 7.99 (1H, d, J = 8.5 Hz), 7.69 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.56 (1H,
ddd, J = 8.3, 6.9, 1.1 Hz), 7.25 (1H, s), 7.07–7.04 (2H, m), 6.74 (2H, t, J = 8.8 Hz), 6.68 (1H, dd,
J = 16.7, 10.6 Hz), 6.32 (1H, dd, J = 16.8, 2.0 Hz), 5.42 (1H, dd, J = 10.6, 1.9 Hz), 4.40 (2H, s),
3.60 (3H, s), 3.46 (3H, s). 13C NMR (150 MHz, CDCl3) δ (ppm): 165.0, 155.6, 133.7, 132.0,
132.0, 130.9, 130.9, 130.3(2C), 129.9, 128.2(2C), 127.7(2C), 126.9, 125.7, 124.5, 124.5, 124.5,
122.4, 114.5, 114.3, 51.0, 35.5, 26.8. HRMS (MALDI+) m/z calcd for: C25H20ClFN2O2 in
form of [M + H]+ ion 435.1276, found: 435.1268.

3.1.5. Synthesis of 2-Benzyl-10-chloro-1-(indol-3-yl)-1,2,3,4-tetrahydrobenzo[b][1,6]-
naphthyridines 8a–d

A solution of 3a (0.5 g) in 10 mL of THF was cooled to 0 ◦C, then a 1.2 equivalent
excess of DIAD (diisopropylazodicarboxylate) was added. The mixture was stirred at room
temperature for 1 h. After cooling it again to 0 ◦C, a 1.5 equivalent excess of the appropriate
indole was added. The reaction was stirred at room temperature and controlled by TLC
in an ethyl acetate/hexane (1:1) system on Silufol plates. The product was separated by
column chromatography.

2-benzyl-10-chloro-1-(5-methoxy-1H-indol-3-yl)-1,2,3,4-tetrahydrobenzo[b][1,6]na-
phthyridine (8a). Yellow foamed oil, yield 61%. 1H NMR (600 MHz, CDCl3) δ (ppm):
8.17 (1H, d, J = 7.6 Hz), 8.08 (1H, d, J = 8.4 Hz), 8.03 (1H, s), 7.74 (1H, ddd, J = 8.4, 6.9,
1.3 Hz), 7.57 (1H, ddd, J = 8.1, 6.9, 1.0 Hz), 7.44 (2H, d, J = 7.2 Hz), 7.37 (2H, t, J = 7.5 Hz),
7.33–7.29 (1H, m), 7.20 (1H, d, J = 8.7 Hz), 7.01 (1H, d, J = 2.4 Hz), 6.84 (1H, dd, J = 8.7,
2.5 Hz), 6.36 (1H, d, J = 2.5 Hz), 5.76 (1H, s), 4.00 (1H, d, J = 13.2 Hz), 3.79 (3H, s), 3.65
(1H, d, J = 13.2 Hz), 3.44–3.33 (2H, m), 3.09–3.05 (1H, m), 3.03–2.99 (1H, m). 13C NMR
(150 MHz, CDCl3) δ (ppm): 157.5, 154.2, 147.5, 141.9, 139.2, 131.4, 130.0(2C), 129.6, 129.3(2C),
128.8, 128.6(2C), 127.8, 127.4, 126.9(2C), 125.0, 124.2, 115.3, 112.9, 111.9, 101.3, 57.5, 55.9,
42.5, 29.1. HRMS (MALDI+) m/z calcd for: C28H24ClN3O in form of [M + H]+ ion 454.1686,
found: 454.1669.

2-benzyl-10-chloro-1-(1H-indol-3-yl)-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine
(8b). Compound was isolated in mixture with hydrazine 9. Yellow foamed oil, yield 48%. 1H
NMR 1H NMR (600 MHz, CDCl3) δ (ppm): 8.31 (1H, s), 8.22 (1H, s), 8.16 (1H, d, J = 8.3 Hz),
8.08 (1H, d, J = 8.4 Hz), 7.73 (1H, t, J = 7.7 Hz), 7.62 (1H, d, J = 8.0 Hz), 7.56 (1H, t, J = 7.6 Hz),
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7.41 (1H, d, J = 7.5 Hz), 7.38–7.33 (2H, m), 7.34–7.28 (3H, m), 7.19 (1H, t, J = 7.6 Hz), 7.15–7.09
(2H, m), 6.42 (1H, s), 5.84 (1H, s), 4.01 (1H, d, J = 13.3 Hz), 3.61 (1H, d, J = 13.2 Hz), 3.39 (1H,
ddd, J = 18.4, 11.8, 7.3 Hz), 3.26 (1H, td, J = 12.5, 5.0 Hz), 3.10 (1H, dd, J = 17.9, 4.8 Hz), 2.94
(1H, dd, J = 13.1, 7.3 Hz). HRMS (MALDI+) m/z calcd for: C27H22ClN3 in form of [M + H]+

ion 424.1581, found: 424.1591.
2-benzyl-10-chloro-1-(5-chloro-1H-indol-3-yl)-1,2,3,4-tetrahydrobenzo[b][1,6]naph-

thyridine (8c). Compound was isolated in mixture with hydrazine 9. Yellow foamed oil,
yield 51%. 1H NMR (600 MHz, CDCl3) δ (ppm): 8.34 (1H, s), 8.17–8.16 (2H, m), 8.08 (1H,
d, J = 8.4 Hz), 7.75 (1H, ddd, J = 8.3, 6.7, 1.4 Hz), 7.61–7.56 (2H, m), 7.54 (1H, d, J = 2.1 Hz),
7.42–7.39 (5H, m), 7.35–7.33 (2H, m), 7.24 (2H, d, J = 8.6 Hz), 7.14 (2H, dd, J = 8.6, 2.0 Hz),
6.38 (1H, d, J = 2.4 Hz), 5.73 (1H, s), 3.97 (1H, d, J = 13.1 Hz), 3.62 (1H, d, J = 13.1 Hz),
3.39 (1H, ddd, J = 18.4, 12.0, 7.2 Hz), 3.29 (1H, td, J = 12.7, 4.9 Hz), 3.06 (1H, dd, J = 17.9,
4.8 Hz), 3.01 (1H, dd, J = 13.4, 7.1 Hz). HRMS (MALDI+) m/z calcd for: C27H21Cl2N3 in form
of [M + H]+ ion 458.1191, found: 458.1183.

2-benzyl-10-chloro-1-(5-bromo-1H-indol-3-yl)-1,2,3,4-tetrahydrobenzo[b][1,6]naph-
thyridine (8d). Compound was isolated in mixture with hydrazine 9. Yellow foamed oil,
yield 69%. 1H NMR (600 MHz, CDCl3) δ (ppm): 8.18 (1H, s), 8.17 (1H, dd, J = 8.3, 1.3 Hz),
8.08 (1H, d, J = 8.5 Hz), 7.77–7.72 (2H, m), 7.69 (1H, s), 7.58 (1H, ddd, J = 8.3, 6.8, 1.2 Hz),
7.42 (3H, d, J = 4.4 Hz), 7.37–7.33 (1H, m), 7.27 (1H, d, J = 1.9 Hz), 7.19 (1H, d, J = 8.6 Hz),
6.34 (1H, s), 5.72 (1H, s), 3.96 (1H, d, J = 13.0 Hz), 3.62 (1H, d, J = 13.0 Hz), 3.39 (1H, ddd,
J = 18.1, 12.0, 7.2 Hz), 3.30 (1H, td, J = 12.7, 4.9 Hz), 3.06 (1H, dd, J = 17.9, 4.8 Hz), 3.02 (1H,
dd, J = 13.3, 7.1 Hz). HRMS (MALDI+) m/z calcd for: C27H21BrClN3 in form of [M + H]+

ion 502.0686, found: 502.0678.

3.1.6. Synthesis of 1-[2-Benzyl-6-chloro-5-(indol-3-yl)-2,5-dihydro-1H-azepino[3,4-b]-
quinolin-4-yl]ethenones 10a,b

The appropriate compounds 8a,d were dissolved in isopropanol at room temperature
and cooled for 10 min in the freezer, then a 1.2 equivalent of activated alkyne was added
and the mixture was stored in the refrigerator for 1 week. The reaction was controlled by
TLC in an ethyl acetate/hexane 1:1 system on Silufol plates. The compound spontaneously
fell out of the reaction mass in the form of crystals and was released by filtration.

1-[(4E)-3-benzyl-7-chloro-6-(5-methoxy-1H-indol-3-yl)-1,2,3,6-tetrahydroazocino[4,5-
b]quinolin-5-yl]ethanone (10a). White crystals, yield 87%, m.p. = 147–149 ◦C. 1H NMR
(600 MHz, CDCl3) δ (ppm): 8.33 (1H, s), 8.30 (1H, dd, J = 8.3, 1.3 Hz), 7.94 (1H, d, J = 8.4 Hz),
7.76 (1H, s), 7.72 (1H, ddd, J = 8.4, 6.9, 1.4 Hz), 7.61 (1H, ddd, J = 8.3, 6.9, 1.2 Hz), 7.21 (1H, s),
7.18 (1H, d, J = 8.8 Hz), 7.15–7.10 (1H, m), 7.03 (2H, t, J = 7.7 Hz), 6.74 (1H, dd, J = 8.8, 2.5 Hz),
6.71 (2H, d, J = 7.4 Hz), 6.61 (1H, s), 4.31 (1H, d, J = 15.0 Hz), 4.22 (1H, d, J = 15.0 Hz), 4.22–4.18
(1H, m), 3.47 (3H, s), 3.30 (1H, ddd, J = 16.9, 10.9, 7.4 Hz), 3.17–3.11 (2H, m), 2.42 (3H, s). 13C
NMR (150 MHz, CDCl3) δ (ppm): 195.0, 174.5, 171.2, 160.4, 156.5, 153.6, 136.0, 132.3, 132.0,
129.7, 128.7(2C), 128.6, 127.9(2C), 127.3(2C), 127.0, 126.3, 125.9, 125.1(2C), 122.4, 119.3, 112.0,
101.3, 61.8, 60.4, 55.4, 51.0, 39.8, 36.5. IR spectrum (KBr), υ/cm−1: 1695.7 (C = O). HRMS
(MALDI+) m/z calcd for: C32H28ClN3O2 in form of [M + H]+ ion 522.1948, found: 522.1956.

1-[(4E)-3-benzyl-7-chloro-6-(5-bromo-1H-indol-3-yl)-1,2,3,6-tetrahydroazocino[4,5-
b]quinolin-5-yl]ethanone (10b). White crystals, yield 82%, m.p. =136–137 ◦C. 1H NMR
(600 MHz, CDCl3) δ (ppm): 8.32 (1H, s), 8.30 (1H, d, J = 8.4 Hz), 7.94 (1H, d, J = 8.8 Hz), 7.78–7.69
(2H, m), 7.62 (1H, t, J = 7.6 Hz), 7.24 (1H, s), 7.22–7.14 (2H, m), 7.15 (1H, t, J = 7.4 Hz), 7.06
(2H, t, J = 7.6 Hz), 6.72 (2H, d, J = 7.4 Hz), 6.61 (1H, s), 4.32 (1H, d, J = 15.0 Hz), 4.24 (1H, d,
J = 15.0 Hz), 4.16–4.09 (1H, m), 3.31 (1H, ddd, J = 16.7, 10.6, 7.1 Hz), 3.17–3.11 (2H, m), 2.42 (3H,
s). 13C NMR (150 MHz, CDCl3) δ (ppm): 194.7, 159.9, 156.1, 146.4, 143.3, 135.8, 135.3, 131.7, 129.7,
128.7, 128.6(2C), 127.8(2C), 127.6, 127.2(2C), 127.0, 125.8, 125.1, 124.9, 122.6, 121.9, 119.7, 112.7,
112.6, 61.8, 50.7, 40.0, 35.9, 25.4. IR spectrum (KBr), υ/cm−1: 1700.3 (C = O). HRMS (MALDI+)
m/z calcd for: C31H25BrClN3O in form of [M + H]+ ion 570.0948, found: 570.0969.
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3.2. Biochemical Assays
MAO Inhibition

All reagents were purchased from Sigma Aldrich (Milan, Italy). The fluorometric
assay was performed as previously described [17] using human recombinant enzymes from
baculovirus-infected insect cells, following the formation of fluorescing 4-hydroxyquinoline
from the MAO substrate, kynuramine. Assays were performed in triplicate in 96-well plates
(Greiner Bio-One GmbH, Frickenhausen, Germany) using an Infinite M1000 multiplate
reader (Tecan, Cernusco sul Naviglio (MI), Italy). Results were expressed as mean ± SEM.
IC50 values were obtained by nonlinear regression using Prism software (GraphPad Prism
version 5.00 for Windows, GraphPad Software, San Diego, CA, USA).

4. Conclusions

As a major outcome of this study, novel functionalized 2-alkyl-10-chloro-1,2,3,4-
tetrahydrobenzo[b][1,6]naphthyridines 3 were synthesized for the first time, specifically
1-phenylethynyl derivatives 5 and 1-indol-3-yl derivatives 8. Moreover, the interaction of
these compounds with activated alkynes was studied, revealing that the substituent in
the first position played a key role in these reactions and either Stevens rearrangement
products or azocino[4,5-b]quinolines were formed.

The 1-phenylethynyl derivatives 5c–h were discovered as MAO inhibitors, showing
selectivity toward the human MAO B isoform and potency in the low micromolar range.
In particular, the 4-F derivative 5g achieved an IC50 of 1.35 µM in vitro, which was almost
equipotent with pargyline (IC50 2.69), a known MAO B irreversible inhibitor that was
taken as the positive control. MAO B inhibitors are typically used in the treatment of
early symptoms of PD [47], while their efficacy in decreasing oxidative stress may provide
neuroprotective effects in the treatment of AD [48]. In this context, compound 5g deserves
further optimization studies for improving its pharmacological potential as an effective
agent for the treatment of neurodegenerative syndromes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041662/s1, Figures S1–S48: Copies of 1H and 13C
NMR spectra. Table S1: Crystal data and structure refinement for 5a.
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