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Abstract: Since side-effects of drugs are one of the primary reasons for their failure in clinical trials,
predicting their side-effects can help reduce drug development costs. We proposed a method based
on heterogeneous graph transformer and capsule networks for side-effect-drug-association prediction
(TCSD). The method encodes and integrates attributes from multiple types of neighbor nodes,
connection semantics, and multi-view pairwise information. In each drug-side-effect heterogeneous
graph, a target node has two types of neighbor nodes, the drug nodes and the side-effect ones. We
proposed a new heterogeneous graph transformer-based context representation learning module.
The module is able to encode specific topology and the contextual relations among multiple kinds of
nodes. There are similarity and association connections between the target node and its various types
of neighbor nodes, and these connections imply semantic diversity. Therefore, we designed a new
strategy to measure the importance of a neighboring node to the target node and incorporate different
semantics of the connections between the target node and its multi-type neighbors. Furthermore, we
designed attentions at the neighbor node type level and at the graph level, respectively, to obtain
enhanced informative neighbor node features and multi-graph features. Finally, a pairwise multi-
view feature learning module based on capsule networks was built to learn the pairwise attributes
from the heterogeneous graphs. Our prediction model was evaluated using a public dataset, and
the cross-validation results showed it achieved superior performance to several state-of-the-art
methods. Ablation experiments undertaken demonstrated the effectiveness of heterogeneous graph
transformer-based context encoding, the position enhanced pairwise attribute learning, and the
neighborhood node category-level attention. Case studies on five drugs further showed TCSD’s
ability in retrieving potential drug-related side-effect candidates, and TCSD inferred the candidate
side-effects for 708 drugs.

Keywords: drug-related side-effect prediction; multi-types of neighbor node attributes; diverse
connection semantics learning; heterogeneous graph transformer; neighbor node category-level
attention

1. Introduction

The side-effects of drugs are defined as effects occurring in the body when the drug is
administered at therapeutic doses that are unrelated to its therapeutic purpose, including
adverse reactions that may cause the drug to fail in clinical trials [1–3]. Therefore, providing
precise and efficient identification of drug-related side-effect candidates can aid in lowering
drug development costs and enhance drug safety [4,5]. Computational methods have
demonstrated their ability to aid in drug discovery [6] and design [7] (CADD). They can
also screen for reliable drug-related side-effect candidates [8–10].
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The three categories of currently used drug-side-effect association prediction methods
are as follows: The first category involves estimation of drug and side-effect association
likelihoods based on drug-associated proteins. New indications and adverse reactions are
usually caused by unexpected chemical–protein interactions at off-target sites. Therefore,
the targeted protein information of the drug is used to predict drug-related side-effects.
Compound–protein interaction (CPI) sets [11,12] and drug–protein interactions (DPI) can
also be used to infer drug-related side-effect candidates [13]. However, this class of method
is limited in that only a small fraction of the structural information for the drug-associated
proteins is available [14].

A second class of predictive models uses machine learning to screen candidates for
drug-related side-effects. To combine data on medications, proteins, and side-effects,
five machine learning techniques were used: logistic regression, parsimonious Bayes,
k-nearest neighbors, random forest, and support vector machine [15]. Approaches to
infer potential drug-side-effect associations are based on multi-label learning [16], on
multiple kernels learning and least squares [17], on random forests [18], on a random
wandering and skip-gram algorithm [19], on feature-derived graph-regularized matrix
factorization for predicting drug side-effects (FGRMF) [20], on triple matrix decomposition
based on nuclear target alignment [21], and on non-negative matrix factorization [22].
Mohsen et al. [23] constructed a framework based on a deep neural network (DNN) for
inferring the candidates. However, such models are shallow prediction models which have
difficulty in fully extracting the complicated and nonlinear associations between drugs
and side-effects.

The third category establishes a prediction model based on deep learning to further
enhance prediction performance by extracting the depth and representative features of
the drug and side-effect nodes. The training process of a deep learning model usually
needs several hours or tens of hours. On the other hand, when the model is applied to
inferring the association possibility for a pair of drug and side-effects, it often only needs no
more than a second. The newly advanced models make full use of the diverse data related
to drug and side-effect nodes for drug-side-effect association prediction, including the
similarity and association information of drugs and side-effects as well as the association
information of drugs and diseases. Several approaches integrate multi-source data on drugs
and side-effects, including through use of graph attention networks [24], a similarity-based
deep learning approach for determining the frequencies of drug side-effects (SDPred) using
a multi-layer perceptron [25], graph convolutional autoencoders, and convolutional neural
networks [26], respectively. Recently, hybrid graph neural network models incorporating
graph-embedding and node-embedding modules have been used to model drug-side-
effect associations and to provide candidate predictions [27]. Although deep models have
shown improvements in drug-side-effect association predictions, the above models cannot
adequately fuse the features of the edges between the source and target nodes and do not
integrate the rich positional information in the feature embedding of the node pairs. Our
model aggregates the information from multiple types of neighbor nodes, and encodes the
semantic information of the various connections. Moreover, an attribute learning module
is built to learn the pairwise attributes from a multiple capsule perspective.

In this study, we propose a novel prediction model TCSD for integrating the various
neighbor attributes, the diverse connection semantics, and the pairwise attributes. TCSD’s
main contributions are listed as follows:

(1) First, two heterogeneous graphs composed of drug and side-effect nodes are con-
structed by utilizing two types of drug similarities to complement the encoding of
the specific topology structure and node attributes of each heterogeneous graph. A
target node in each graph has drug neighbor nodes and side-effect nodes, and there
are contextual relationship among the attributes of the target node and the attributes
of its diverse neighbor nodes. Most previous approaches have focused only on aggre-
gating the information of a single type of neighbor node. A module based on a graph
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transformer is established to learn category-sensitive attributes for each category of
neighbor nodes.

(2) Previous approaches did not fully utilize the diverse information of multiple types
of connections among the drug and side-effect nodes. In order to improve the node
feature-learning capacity in each heterogeneous graph, we design a strategy to in-
tegrate the similarity semantic connections between drugs (side-effects) and the
association semantic connections between drugs and side-effects.

(3) Third, we design two attention mechanisms for the effective fusion of learned infor-
mation. To adaptively fuse the encoded contextual features from the drug neighbor
nodes and the side-effect nodes for each target node, we design the attention at the
neighbor category level. Since two heterogeneous graphs make different contribu-
tions to drug-related side-effect prediction, we design an attention from the graph
perspective to discriminate their contributions.

(4) Finally, we propose a capsule network-based strategy to learn the attributes of a
pair of drug and side-effect nodes. The created multiple capsules and the dynamic
routing mechanism enhance position information learning in the pairwise attribute
embedding. Previous approaches did not integrate the information of the positions
in the pairwise embedding. A comprehensive comparison with six state-of-the-art
methods and case studies on five drugs showed TCSD’s superior performance and its
ability in discovering potential association candidates.

2. Materials and Methods

The new prediction model TCSD is presented in Figure 1. It integrates the multi-
modality similarities of medications and side-effects, neighbor context encoding, and
pairwise feature representation to predict drug-related potential side-effects. First, two
drug–side-effect heterogeneous graphs were created based on the associations between
drugs and side-effects as well as the multi-modality similarities (Figure 1a). Afterwards,
to learn the neighbor context encoding of the target node, we built a transformer-based
context encoding (CET) module using a neighbor node category-level and a graph-level
attention mechanism (Figure 1b) with detailed structures, as shown in Figure 2. In parallel,
a capsule network-based acquisition pairwise multi-view feature (MVF) learning module
(Figure 1c) was used to learn the feature map of a pair of drug–side-effect nodes.
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Figure 1. Framework of the proposed TCSD prediction model. (a) Establish two drug-side-effect
graphs according to two types of drug similarities and demonstrate their attribute matrices (b) Learn
the context representations of the drug and side-effect nodes based on a graph transformer and two
attentions (c) Construct the capsule network to learn the multi-view pairwise attributes.
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Figure 2. Illustration of learning the context representation based on graph transformer for a
drug node.

2.1. Dataset

Public databases [28,29] and papers [26,30] addressing drug-side-effect associations,
side-effect similarities, drug chemical substructure similarities, and drug functional simi-
larities were used to gather data on drugs and side-effects. Initially, 80,164 pairs of drug
and side-effect associations were retrieved from the SIDER databank [28]. We obtained
the chemical substructural similarities from the comparative toxicogenomics database [29],
which includes the chemical substructures of 708 drugs. The disease-based drug similarities
were obtained from a previous study [31]. These associations and similarities included
708 drugs, 4192 side-effects, and 5603 diseases.

2.2. Multi-Source Data Matrix Representation and Construction of Heterogeneous Graphs
2.2.1. Matrix Representation of Drug-Side-Effect Associations

We created an association matrix A = Ai,j ∈ RNr∗Ns according to the discovered
associations of the drug-side-effect node pairs. This matrix illustrates the relationships
between Nr drugs and Ns side-effects. The drugs are represented by the rows of A and the
adverse effects are represented by the columns. If a drug ri and side-effect sj are known to
be associated, then Ai,j = 1. If not, then Ai,j = 0.

2.2.2. Matrix Representation of Multi-Modality Similarities of Drugs

When two drugs ri and rj are associated with a greater number of similar diseases,
the functional similarity of the two drugs is usually greater. We, therefore, computed the
functional similarity Ddis

i,j between a pair of drug nodes ri and rj based on the diseases they
are connected with, in accordance with the work of Wang et al. [31]. Similarly, a greater
similarity in the chemical substructures of ri and rj indicates a greater similarity between the
drugs themselves. Based on this biological premise, Dche

i,j was calculated based on Luo et al.
using the cosine similarity to reflect the similarity of the drug chemical substructures [30].
Using the drug-related multi-source data, we obtained a multimodal similarity matrix Dρ

for the drug defined as

Dρ = {
Ddis = Ddis

i,j ∈ RNr∗Nr

Dche = Dche
i,j ∈ RNr∗Nr

, (1)

where ρ = che or dis. Dρ
i,j is used to denote the ρth similarity of ri and rj. In addition,

Dρ
i,j ∈ [0, 1]. The value of Dρ

i,j increases with the degree of resemblance between ri and rj.

2.2.3. Matrix Representation of Side-Effect Similarity

A greater number of similar drugs being associated with side-effects si and sj indicates
a greater similarity between si and sj. We calculated the similarity matrix S = Si,j ∈ RNs∗Ns

of all side-effects based on the approach adopted by Wang et al. [26]. With a number
between 0 and 1, si,j indicates how similar side-effect si and side-effect sj are to one another.
The larger the similarity value, the higher the similarity between si and sj.
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2.2.4. Construction of Drug-Side-Effect Heterogeneous Graphs and Attribute Extraction

Dche and Ddis represent the similarities according to the chemical substructures of the
two drugs and diseases that they are associated with, respectively. We created two drug-
side-effect heterogeneous graphs relying on Dche and Ddis, respectively, where ρ = che or
dis. The set of nodes V = {Vr ∪Vs} in each heterogeneous graph comprises the set of drug
nodes Vr and the set of side-effect nodes Vs; an edge eρ

i,j ∈ Eρ with a weight wρ
i,j ∈Wρ links

a pair of nodes vi, vj. In general, several types of connecting edges can exist between drugs
and side-effects, including a drug–side-effect association edge ers, a drug–drug similarity
edge err, and a side-effect–side-effect similarity edge ess. Wρ contains the association matrix
A and similarity matrices S and Dρ. The adjacency matrix of the ρth heterogeneous graph
is expressed as Iρ,

Iρ =

[
Dρ A
AT S

]
∈ RNtotal∗Ntotal , (2)

where the total number of nodes is Ntotal = Nr + Ns and AT denotes the transpose of the
matrix A. The i-th row in the matrix Iρ denotes the association and similarity of the node vi
with all of the drugs and side-effects, which are considered as node attributes of vi. The
attribute vector xρ

i of the drug ri is defined as

xρ
i =

[
Dρ

i, ‖ Ai,

]
∈ RNtotal , (3)

where ρ = che or dis, and ‖ indicates the operation of the first and last link. The i-th row
of the matrix A, where each side-effect’s association with ri is recorded, is designated by
the symbol Ai,. Dche

i,

(
Ddis

i,

)
is the row i of the matrix Dche

(
Ddis

)
containing the chemical

substructural (functional) similarities with all drugs.
Similarly, the attribute vector of the side-effect sj is represented as yj,

yj =
[
A,j ‖ S,j

]
∈ RNtotal , (4)

where A,j
(
S,j
)

denotes the connection with the association (similarity) of sj and all drugs
(side-effects). The feature embedding matrix Zρ of the node pairs ri and sj is defined as

Zρ =

[
xρ

i
yj

]
=

[
Dρ

i,α Ai,α
Aα,j Sα,j

]
∈ R2∗Ntotal , (5)

where 2 ∗ Ntotal is the dimension of Zρ.

2.3. Context Representation Learning Based on Transformer with Attention

The target node attributes are contextually linked to the attributes of the neighbors
of each category in their neighborhood. In order to learn the context representations of
the nodes, we designed the CET module based on a graph-level attention mechanism to
aggregate information regarding its neighbor nodes. As each heterogeneous graph has a
unique topology, we used a graph transformer (GT) module (Figure 2) for Gche and Gdis.
The semantic information of the similarity or association connection edges between the
neighbor node and target node was used to learn the corresponding neighborhood context
representation. The module comprised le coding levels; layer l can serve as an illustration
of how the context is learned. The CET module’s drug node and side-effect node learning
processes were similar; an example is described for drug ri.

2.3.1. Neighborhood Node Set Extraction

Based on the similarity between the drug ri and all drugs, we obtained the top Nt most
similar neighbors to ri. If Nt = 4, let ri, ra, rb, and rc be the four top neighbor nodes, and
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their attribute vectors be xρ
i , xρ

a , xρ
b , and xρ

c , respectively. The set of attribute vectors of the
drug neighbor nodes of ri is denoted as Sri ,r,

Sri ,r =
{

xρ
i , xρ

a , xρ
b , xρ

c

}
. (6)

Similarly, we can obtain all of the Nk side-effect neighbor nodes associated with ri.
When Nk = 3, the Nk side-effect neighbors of ri are sa, sb, and sc, with ya, yb, and yc being
their attribute vectors, respectively. Thus, the set of attribute vectors of the side-effect
neighbor nodes of ri is represented as Sri ,s,

Sri ,s = {ya, yb, yc}. (7)

2.3.2. Node Attribute Conversion

Sri ,r =
{

xρ
i , xρ

m, m = a, b, c
}

is the set of drug-like neighbor node attribute vectors for

ri. Inspired by Transformer, we mapped the attribute vector xρ
i of ri to a query vector space

and Sri ,r to a key vector space and value vector space. To reduce the bias in the contextual
semantic learning process, we established a multi-headed attention mechanism. In the t-th
attention head, because each drug-like neighbor contributes differently to ri, we employed
a neighbor node-level attention mechanism to calculate the attention weights of ri for each
neighbor. The output query vectors of the layer 1 and layer l coding layers are qρ,1

t (ri) ∈ Rn

and q
ρ,l
t (ri) ∈ Rn, respectively. qρ,1

t (ri) ∈ Rn and q
ρ,l
t (ri) ∈ Rn are calculated as follows,

qρ,1
t (ri) = W1

t,Q · x
ρ
i (8)

qρ,l
t (ri) = W l

t,Q · cρ,l−1(ri),l = 2, . . . , le (9)

where W1
t,Q ∈ Rn∗Ntotal and W l

t,Q ∈ Rn∗Ntotal are the weight matrices of layer 1 and layer l,

respectively. cρ,l−1
i is the vector of the encoded information of ri obtained in layer l − 1; le

is the number of layers of the encoding layer. We calculate the key matrix Kρ,l
t ∈ R4∗n and

value matrix Vρ,l
t ∈ R4∗n for ri as follows:

Kρ,l
t = W l

t,K

[
cρ,l−1

i ‖ cρ,l−1
m

]T
,l = 1, 2, . . . , le (10)

Vρ,l
t = W l

t,V

[
cρ,l−1

i ‖ cρ,l−1
m

]T
,l = 1, 2, . . . , le (11)

where W l
t,K and W l

t,V are the weight matrices. ‖ represents the splicing between two vectors.

cρ,l−1
i and cρ,l−1

m are the results of the layer l− 1 encoding of ri and its neighbors, respectively,

and cρ,0
i and cρ,0

m are their attribute vectors xρ
i and xρ

m, respectively.

2.3.3. Contextual Encoding of Nodes of the Same Type

All of the drug-type neighbor nodes of drug ri form the set {ri, rm, m = a, b, c}, and a
contextual connection exist between the node properties of ri and the properties of these
neighbor nodes. Therefore, we must gather information about the neighbors of ri to update
the attribute vector of ri. We calculate the attention score of rv to ri as α

ρ,l
t (ri, rv),

α
ρ,l
t (ri, rv) = Kρ,l

t W l
t,D · q

ρ,l
t (ri)

T, (12)

where v = i, a, b or c. W l
t,D ∈ Rn∗n is a weight matrix specific to the drug-like neighbor nodes

of ri for fusing the corresponding semantic information for each connection (similarity
connection or association connection). Then, for the neighborhood nodes ri, ra, rb, and
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rc of ri, and the obtained α
ρ,l
t (ri, ri), α

ρ,l
t (ri, ra), α

ρ,l
t (ri, rb), and α

ρ,l
t (ri, rc), the normalized

attention weight is obtained as γ
ρ,l
t,v,

γ
ρ,l
t,v =

exp(αρ,l
t (ri, rv))

∑j∈{i,a,b,c} exp(αρ,l
t
(
ri, rj

)
)

, (13)

where exp is an exponential function. The drug-like neighbor encoding information yρ,l
t,err

(ri)
of ri can be represented as,

yρ,l
t,err

(ri) = ∑v∈{i,a,b,c} γ
ρ,l
t,vVρ,l

t (rv), (14)

where yρ,l
t,err

(ri) ∈ Rn. Finally, the context encoding yl
err [ri] ∈ RnT at the drug neighbor node

level of ri is defined as,

cρ,l−1(ri) = yρ,l
err (ri) =

T
‖

t=1
yρ,l

t,err
(ri), (15)

where ‖ denotes the first and last join of the T-head attention encoding vector. Similarly, for
the set {sa, sb, sc} of the side-effect neighbor nodes of ri, we can obtain the context encoding
yρ,l

ers(ri) specific to that class of neighbor nodes.

2.3.4. Neighborhood Node Category-Level and Graph-Level Attention Mechanisms

Since the drug node ri has two types of neighbor nodes, which are drug and side-
effects, we learn the context encodings yρ,l

err (ri) and yρ,l
ers(ri) of ri, respectively. As yρ,l

err (ri) and
yρ,l

ers(ri) differ in their learning contributions to the final contextual representations of ri, we
propose a neighborhood node category-level attention mechanism. The attention score is
obtained as,

sρ,l
u,nei = hρ,l

nei tanh
(

Wρ,l
u,neiy

ρ,l
eru(ri) + bρ,l

nei

)
, (16)

where u ∈ {r, s}, Wu,nei is the weight matrix of the first-class neighbor nodes; hρ,l
nei and bρ,l

nei
are the weight and bias vectors, respectively. The normalized attention score is calculated
as β

ρ,l
ri ,u,

β
ρ,l
ri ,u =

exp(sρ,l
u,nei)

∑j∈{r,s} exp(sρ,l
j,nei)

. (17)

The contextual encoding of ri, as enhanced by the attention mechanism, is obtained
as Zρ,l

con(ri),
Zρ,l

con(ri) = ∑u∈{r,s} β
ρ,l
ri ,uyρ,l

err (ri), (18)

where Zρ,l
con(ri) ∈ RnT . The encoding result Zρ,le

con(ri) ∈ Rn f in obtained by the le-th layer GT
contains contextual information regarding the two types of neighbor nodes of ri in the
heterogeneous graph Gρ with the discriminative semantics of the connected edge; it is
renamed as Zρ(ri).

xρ
i contains more detailed information and Zρ(ri) carries out learning to obtain the

representative neighborhood contextual encoding. Therefore, we added the information
from xρ

i to Zρ(ri). Given the original attribute vector xρ
i of ri, we first applied a linear

projection S− Linearρ to map it to the attribute space of Zρ(ri). Then, we superimposed it
with Zρ(ri) to obtain a complemented neighbor context encoding as Zadd(ri),

Zρ
add(ri) = S− Linearρ

(
σ
(

xρ
i

))
+ Zρ(ri), (19)

where σ is the relu activation function [32].
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The heterogeneous graphs Gche and Gdis were learned by the CET module to obtain
the contextual encodings of ri and sj represented as Zρ

add(ri) and Zρ
add
(
sj
)

( ρ = che or

dis), respectively. Zche
add(ri)

(
Zdis

add(ri)
)

and Zche
add
(
sj
)(

Zdis
add
(
sj
))

were stacked up and down to

form Zche
add
(
ri − sj

)
∈ R2∗n f in

(
Zdis

add
(
ri − sj

))
. Zche

add
(
ri − sj

)
and Zdis

add
(
ri − sj

)
were fused by

1 × 1 convolution to form a contextual representation Z f in
(
ri − sj

)
∈ R2∗n f in of the node

pair. Z f in(ri) and Z f in
(
sj
)

were spliced first and last, respectively, to form a feature map
Zi,j ∈ R2n f in of ri − sj node pair. yCET denotes the probability distribution of whether ri and
sj are related,

yCET = so f tmax
(

W f Zi,j + b f

)
, (20)

where W f is the weight matrix and b f is the bias vector. yCET = (y0
CET

, y1
CET

), where y0
CET

is the probability that the drug ri and side-effect sj are not associated and y1
CET

is the
probability that they are associated.

2.4. Local Information Enrichment Strategy for Drug-Side-Effect Node Pair Feature Representation
Learning Based on Capsule Networks

Given Zρ ∈ R2∗Ntotal , which contains information regarding the similarity and associa-
tion of ri and sj with all drugs and side-effects and contains 2 ∗ Ntotal elements, we built
the MVF capsule network-based module to deeply integrate the characteristics of multiple
elements at the same position from multiple views. These characteristics formed a capsule,
and all newly created capsules passed through a routing mechanism to further evaluate
the association scores of node pairs. The MVF module contained two convolutional layers
and two capsule layers. The detailed architecture is given in Figure 3.
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Figure 3. Explanation of learning pairwise multi-view features of drug-side-effect node pair with
capsule networks.

2.4.1. Establishment of Primary Capsule Embedding Based on Convolution Operation

The feature-embedding matrices of a node pair ri and sj in the heterogeneous graphs
Gche and Gdis are Zche and Zdis, respectively. Zche and Zdis were stacked up and down
to form the node pair feature-embedding matrix Z ∈ R2∗2∗Ntotal of ri and sj. Z was fed
to the convolution module to form the embedding of the primary capsule network. The
convolution module contained one layer of single-group convolutional layers and one layer
of multi-group convolutional layers. In the first convolutional layer, we applied a one-

round zero-fill operation on Z to create a new matrix
∧
Z for learning the edge information.

l f and w f were the length and width of the filter, respectively. If the number of filters

was n f , the filter Wconv1 ∈ Rl f ∗w f ∗n f was applied to the matrix
∧
Z and the feature map

Zconv1 ∈ Rn f ∗(4−w f +1)∗(2+Ntotal−l f +1) is obtained as,

Zconv1,k(i, j) = f
(

Wconv1(k, :, :) ∗
∧
Zk,i,j + bconv1(k)

)
,

i ∈
[
1, 4− w f + 1

]
, j ∈

[
1, 2 + Ntotal − l f + 1

]
, k ∈

[
1, n f

] (21)
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where f is the relu activation function [32] and bconv1 is the bias vector. Zconv1,k(i, j) is

the element of the i-th row and j-th column of the k-th feature map Zconv1,k.
∧
Z(i, j) is the

element of the matrix
∧
Z in row i column j. When the k-th filter slides to position

∧
Z(i, j), the

region inside the filter is
∧
Zk,i,j, which can be calculated as,

∧
Zk,i,j =

∧
Z
(

i : i + w f , j : j + l f

)
,
∧
Zk,i,j ∈ Rw f ∗l f . (22)

We build the w-group convolution in the second layer. Each group of convolution
can be considered as a view of the feature map, and the attributes of the node pairs can be
learned from multiple views. The filter size in each set of convolutions was Wconv2 ∈ R2∗2,
and Zconv1 was fed to the second convolutional layer to form Zw

conv2 ∈ Rw∗2∗Ntotal .

2.4.2. Creation of the Primary Capsule Layer

We encapsulated the value Z1
conv2(p), Z2

conv2(p), . . . , Zw
conv2(p) of the p-th(p = 1, 2, . . . ,

2 ∗ Ntotal) position on the w feature maps Z1
conv2, Z2

conv2, . . . , Zw
conv2 into a capsule to form

up ∈ Rw. This capsule contained information regarding multiple views in the local area
when the filter was slid into the p-th position of the feature map Zconv1.The primary capsule
layer contained [2 ∗ Ntotal ] capsules of w-dimensional vectors.

2.4.3. Design of Capsule Layer Routing Mechanism

We used primary and digital capsule layers to build the MVF module. The digital
capsule layer consisted of nqn nqd-dimensional prediction capsules vq(q = 1, 2, . . . , nqn); all
of these capsules received input from all of the primary capsules up(p = 1, 2, . . . , 2 ∗ Ntotal)
of the previous layer. We implemented the delivery of location information from the
primary capsule layer to the digital capsule layer by means of weights determined by the
routing mechanism. First, up was used to determine the correlation between the two layers
by multiplying by the weight matrix Wpq to obtain the vector as ûq|p ∈ Rnpd ,

ûq|p = Wpqup. (23)

ûq|p was fed into the prediction capsule vq based on the coupling coefficients cpq as
determined by the dynamic routing process, which were proportional to the weights of
the features. We performed a dynamic routing process ndr times to compute cpq. We
first initialized the weight bpq = 0 between capsule p and capsule q. Next, the coupling
coefficient cpq was obtained by normalizing the weights bpq with So f tmax and the output
vector oq was generated by weighted summation; cpq and oq are represented as,

cpq =
exp(bpq)

∑k∈{1,2,...,npn} exp(bpk)
(24)

oq = ∑p cpqûq|p (25)

The modulus lengths of oq1 and oqnpn were used as the uncorrelated and correlated
fractions between ri and sj, respectively. oq was employed after a nonlinear compression
function to produce an output capsule vq as,

vq =
‖ oq‖2

1+ ‖ oq‖2 ·
oq

‖ oq ‖
, (26)

where the value of the modulus length vq is between 0 and 1. The update rules for bpq are
as follows:

bpq ← bpq + ûq|p � vq, (27)
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where � denotes the dot product operation of two vectors. The routing mechanism is
completed once after updating bpq. After ndr updates, the coupling coefficients cpq are

finally determined and the final prediction capsules v f in
q are formed. The modulus length

of each vector is passed through the So f tmax layer to obtain the associated probability
distribution yq

NMF as,

yq
MVF =

exp(‖ vq ‖)
∑k∈{1,2,...,npn} exp(‖ vk ‖)

. (28)

The prediction scores were evaluated based on the modulus length and the scores
yMVF =

[
y1

MVF, y
npn
MVF

]
were associated with probability distributions, including the proba-

bilities that the drug-side-effect node pair was not associated and that they were associated.

2.5. Final Integration and Optimization

The cross-entropy between the true label z and predicted association probability yCET
was defined as the loss function when the prediction is based on the node neighbor context
encoding, as follows,

LOSSCET = −
Ntrain

∑
i=1

c

∑
j=1

zi log(yCET , j), (29)

where Ntrain is the number of training sample sets. The predicted results are classified as
relevant and irrelevant (c = 2). The true label zi = 1(zi = 0) represents the true correlation
(uncorrelated) between all drugs and side-effects. In the MVF module, the cross-entropy-
based loss LOSSMVF is defined as,

LOSSMVF = −
Ntrain

∑
i=1

c

∑
j=1

zi log(yMVF, j). (30)

We used the Adam algorithm [33] to optimize the loss functions LOSSCET and
LOSSMVF. Finally, a weighted sum of yCET and yMVF was calculated to obtain the fi-
nal predicted association score as y,

y = γ× yCET + (1− γ)yMVF, (31)

where γ ∈ (0, 1) is a hyperparameter for adjusting the two knowledge contributions.

3. Experimental Evaluations and Discussions
3.1. Parameter Settings and Evaluation Metrics

TCSD was implemented in the Pytorch framework using a graphics processing unit
(Nvidia GeForce GTX 2080Ti). For the CET module, the number of neighbor nodes per class
Nt = Nk = 10, the number of coding layers le = 2, and the number of heads for the multi-
headed attention was set as 8. The two encoding layers’ output feature dimensionalities
were 2400 and 2000. In the MVF module, the first convolutional layer included 64 filters,
while the second layer had w = 8 groups of convolutions, the number of filters was 512,
and the size of all the filter kernels was set to 2 × 2. The numbers of capsules in the
initial and digital capsule layers were 4900 and 2, respectively. The dimensionality of each
digital capsule was set to 32 and the number of routing mechanism iterations ndr = 3. The
parameter γ at final fusion was set to 0.3.

Each prediction model’s effectiveness was evaluated using five-fold cross-validation.
The positive case samples were those where the drug-side-effect associations were known
and the negative case samples were the unobserved associations. As a result, we obtained
80,164 known associations betweeen drug and side-effect and 2,887,772 unknown associ-
ations. All positive case samples were divided at random into five equal parts: four of
each multiple were used to train the prediction model, whereas the rest of the positive case
sample set was used for testing. Randomly chosen counterexamples were used for testing,
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with the remaining counterexamples being used for training an array of counterexamples
equal to the amount of samples in the training set that were positive.

The evaluation metrics include the area under the receiver operating characteristic
(ROC) curve (AUC) [33,34], the area under the precision-recall (PR) curve (AUPR) [35], and
the maximum k recall. The ratio of known associations to unobserved associations was
approximately 1:36; evidently, a significant category imbalance existed between them. Thus,
the AUPR was also used to evaluate the predictive performance as being more informative
than the AUC. We determined the top k ∈ [30, 60, . . . , 240] candidates’ recall rates as another
measure of the model performance because biologists typically select drug-side-effect pairs
from among these candidates and perform further relevant experiments.

3.2. Ablation Experiment

We conducted a series of ablation experiments to evaluate the contribution of the CET
module, MVF module, and neighborhood node category-level attention mechanism (NCA)
(Table 1). First, we removed the attention mechanism that was utilized to fuse the neighbor
context encodings of multiple types of neighbor nodes for the target node. We performed
vector summation to obtain the context representation of the target node. Next, we trained
each of the two modules (CET and MVF) to obtain the contextual representation and the
pairwise attributes. The attribute vectors of a pair of drug and side-effect nodes were
concatenated and then went through a fully connected network to obtain the association
score. The complete model with the CET module, MVF module, and NCA obtained
the highest AUC = 0.977 and AUPR = 0.351. In the absence of the CET module, the
prediction performance decreased by 1.4% in the AUC and 14.2% in the AUPR compared
to TCSD. In the absence of the rich local features obtained by the MVF module, the AUC
decreased by 0.6% and the AUPR decreased by 9.7% relative to TCSD. Without the NCA,
the contribution of the contextual encoding to improving the prediction performance was
the largest; the main reason for this was that the Transformer-based encoding strategy can
propagate the node properties between the drug and side-effect nodes, thereby learning the
contextual information between nodes. The MVF module learns the second most important
contribution of the node pair feature representation to the results and enriches the local
information of the node pairs in the process of building capsules. Accordingly, the routing
mechanism can better learn the importance of the capsules.

Table 1. Performance demonstration of the ablation experiments.

CET MVF NCA Average AUC Average AUPR

× X × 0.963 0.209
X × X 0.971 0.254
X X × 0.976 0.298
X X X 0.977 0.351

3.3. Comparison with Other Methods

The six most advanced approaches were compared to our model (TCSD) in order to
anticipate the drug-side-effect associations: GCRS [26], idse-HE [27], SDPred [25], Galeaon’s
method [21], random walk-signed heterogeneous information network (RW-SHIN) [19],
Ding’s method [17] and feature-derived graph regularized matrix factorization (FGRMF) [20].
For a fair comparison, the hyperparameters of each model were set with the same parame-
ters as suggested in each study. The training and testing time of TCSD and the compared
methods are listed in the Supplementary Table S2.

For each drug, we calculated the corresponding AUC and AUPR in each multiple
and then took the average value for the five-fold crossover as the final prediction result.
The average values of the AUC and AUPR for 708 drugs were taken as the prediction
performance of the entire method. As shown in Figure 4, TCSD obtained the highest AUC
of 0.977, i.e., 0.9% and 2.0%, respectively, higher than idse-HE and GCRS, 3.1% and 3.2%
better than SDPred and Ding’s method, respectively, 5.8% higher than FGRMF, 6.5% better
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than Galeaon’s method, and 8.5% higher than RW-SHIN, the worst-performing method.
For the mean AUPR of all drugs, TCSD obtained the best mean AUPR value of 0.351,
i.e., 7.9%, 12.5%, 16.0%, 17.2%, 22.0%, and 25.2% higher than the values from the above
methods, respectively.
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FGRMF(0.919)
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TCSD(0.351)
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RW-SHIN(0.099)
Ding s method(0.191)
FGRMF(0.179)

Figure 4. ROC curves and PR curves of our method and the compared methods for drug-side-effect
association prediction.

Idse-HE did not perform as well as our method—the possible reason is that it ignored
the semantic information of the various connections in the heterogeneous graph. Our
approach and GCRS both achieved good performance, primarily because we built multiple
heterogeneous graphs and built an independent learning module for each heterogeneous
graph. This suggests that separately learning the topological information specific to each
heterogeneous graph is necessary for improving the prediction accuracy. SDPred, which is
based on a multi-layer perceptron, and Ding’s method, which is based on central kernel-
aligned multicore learning, both scored lower than GCRS. One possible reason for this
is that both methods do not consider the topological structure in the drug-side-effect
heterogeneous graphs. In addition, FGRMF and Galeaon’s method had similar AUC and
AUPR values, with somewhat worse performance than the fourth-best, Ding’s method.
One possible reason is that both are shallow prediction models constructed using matrix
decomposition-based methods; these cannot dig deeper into the complex connections
between drugs and side-effects. The performance of RW-SHIN was inferior to the other
methods because it only builds a network of drug nodes without considering the topological
information between side-effect nodes.

For the 708 AUCs (AUPRs) results for all prediction methods for the 708 drugs, we
used 708 paired results for comparing TCSD with another method as calculated using
pairs of Wilcoxon tests. With a p-value threshold of 0.05, the data demonstrated that TCSD
significantly outperformed the other six approaches (Table 2).
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Table 2. Results of the Wilcoxon test by comparing TCSD and the other six methods.

GCRS idse-HE SDPred
Ding’s

Method FGRMF
Galeaon’s
Method RW-SHIN

p-value of AUC 8.4303 × 10−4 2.6327 × 10−4 4.7184 × 10−6 3.4493 × 10−11 1.8906 × 10−34 4.9532 × 10−41 2.5631 × 10−79

p-value of AUPR 2.6205 × 10−5 1.3362 × 10−5 5.3927 × 10−6 4.6451 × 10−14 2.2247 × 10−26 3.7876 × 10−37 4.8253 × 10−54

For the top k drug candidates with side-effects, a higher recall indicates that more
real drug and side-effect associations are included in these candidates. Our TCSD model
consistently outperformed other methods at different k thresholds and ranked 50.3% of the
positive cases in the top 30 candidates, 65.4% in the top 60, 73.0% in the top 90, and 78.1%
in the top 120. GCRS has higher recall rates than idse-HE for the top 30 and 60 candidates.
The former ranked 47.0% and 59.6% positive samples, while the latter ranked 42.1% and
58.1%, respectively. Idse-HE achieved slightly higher recall rates than GCRS for the top 90,
120, and 240 candidates. Idse-HE ranked 67.1% and 73.9% for the top 90 and 120 candidates,
while GCRS ranked 66.8% and 71.9% (Figure 5). The AUC value of GCRS was very close
to that of SDPred, but all of the recall rates of GCRS were higher than those of SDPred.
When k was increased from 30 to 120, the SDPred ranked 41.8%, 54.9%, 62.3% and 67.4%,
respectively. Ding’s method was not as good as SDPred, with corresponding recall rates
of 35.5%, 48.2%, 56.3%, and 62.2%, respectively. The recall rates of FGRMF (32.8%, 45.2%,
52.5%, 58.1%) were slightly higher than those of Galeaon’s method (32.3%, 43.6%, 51.7%,
56.8%). The lowest recall rates were obtained by the RW-SHIN method with recall rates of
23.7%, 34.3%, 41.3% and 47.2%, respectively.

Top30 Top60 Top90 Top120 Top150 Top180 Top210 Top240
0.0
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0.4
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0.8
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ca

ll

TCSD 
GCRS 

idse-HE 
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Galeaon s method
RW-SHIN

Ding s method FGRMF

Figure 5. Recall rates of all the prediction methods at various top k values.

3.4. Case Studies on Five Drugs

According to the world mental health report in 2022, nearly one billion people across
the World suffered from mental diseases. Therefore, to further demonstrate TCSD’s ability
to predict drug-side-effect associations, we analyzed five psychotropic drugs, including
Amitriptyline, Olanzapine, Clozapine, Aripiprazole, and Asenapine. First, using the model,
we were able to obtain association scores for each drug candidate side-effect and ranked
them accordingly. Then, the top 15 potential side-effects for each drug were compiled and
analyzed. The results are listed in Tables 3–7.
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Table 3. Top 15 candidate side-effects related to Amitriptyline.

Drug Rank Side-Effect Evidence Rank Side-Effect Evidence

1 Edema Drugcentral, MetaADEDB,
SIDER

9 Diarrhea Drugcentral, MetaADEDB, Rxlist,
SIDER

2 Nausea MetaADEDB, Rxlist, SIDER 10 Hypotension Drugcentral, MetaADEDB, Rxlist,
SIDER

3 Vomiting Drugcentral, MetaADEDB,
Rxlist, SIDER

11 Confusion Drugcentral, Rxlist, SIDER

Amitriptyline 4 Rash Drugcentral, MetaADEDB,
Rxlist, SIDER

12 Leukopenia Drugcentral, MetaADEDB, Rxlist,
SIDER

5 Dizziness Drugcentral, MetaADEDB,
Rxlist, SIDER

13 Constipation Drugcentral, MetaADEDB, Rxlist,
SIDER

6 Blurred vision Drugcentral, MetaADEDB,
Rxlist

14 Paresthesia Drugcentral, MetaADEDB, Rxlist,
SIDER

7 Anorexia MetaADEDB, Rxlist, SIDER 15 Syncope MetaADEDB, Rxlist, SIDER
8 Headache Drugcentral, MetaADEDB,

Rxlist, SIDER

Table 4. Top 15 candidate side-effects related to Olanzapine.

Drug Rank Side-Effect Evidence Rank Side-Effect Evidence

1 Edema Drugcentral, MetaADEDB,
Rxlist, SIDER

9 Paresthesia Drugcentral, MetaADEDB, Rxlist,
SIDER

2 Vomiting Rxlist, MetaADEDB, Rxlist,
SIDER, Literature [36]

10 Dizziness Drugcentral, MetaADEDB, Rxlist,
SIDER

3 Headache Drugcentral, MetaADEDB,
Rxlist, SIDER

11 Back pain Drugcentral, MetaADEDB, Rxlist,
SIDER

Olanzapine 4 Nausea Drugcentral, MetaADEDB,
Rxlist, SIDER

12 Pruritus Drugcentral, MetaADEDB, Rxlist,
SIDER

5 Rash Drugcentral, MetaADEDB,
Rxlist, SIDER

13 Dry mouth Rxlist, SIDER

6 Confusion Drugcentral, Rxlist, SIDER 14 Cough Drugcentral, MetaADEDB, Rxlist,
SIDER

7 Diarrhea Drugcentral, Rxlist, SIDER 15 Arthralgia Drugcentral, MetaADEDB, Rxlist ,
SIDER

8 Constipation MetaADEDB, Rxlist, SIDER,
Literature [36]

Table 5. Top 15 candidate side-effects related to Clozapine.

Drug Rank Side-Effect Evidence Rank Side-Effect Evidence

1 Edema Drugcentral, MetaADEDB,
Rxlist, SIDER

9 Vomiting Drugcentral, MetaADEDB, Rxlist,
SIDER

2 Nausea Drugcentral, MetaADEDB,
Rxlist, SIDER

10 Rash Drugcentral, MetaADEDB, Rxlist,
SIDER

3 Pruritus Drugcentral, MetaADEDB,
SIDER

11 Blurred vision Rxlist, Literature [37]

Clozapine 4 Diarrhea Drugcentral, MetaADEDB,
Rxlist, SIDER

12 Headache Drugcentral, MetaADEDB, Rxlist,
SIDER

5 Anemia Drugcentral, SIDER 13 Thrombocytopenia Drugcentral, MetaADEDB, Rxlist,
SIDER

6 Paresthesia Drugcentral, Rxlist, SIDER 14 Nervousness Drugcentral, MetaADEDB
7 Pain Drugcentral, MetaADEDB,

Rxlist, SIDER
15 Dizziness Drugcentral, MetaADEDB, Rxlist,

SIDER
8 Anorexia MetaADEDB, Rxlist, SIDER
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Table 6. Top 15 candidate side-effects related to Aripiprazole.

Drug Rank Side-Effect Evidence Rank Side-Effect Evidence

1 Edema Drugcentral, MetaADEDB,
Rxlist, SIDER

9 Tachycardia Drugcentral, MetaADEDB, Rxlist,
SIDER

2 Headache Drugcentral, MetaADEDB,
Rxlist, SIDER

10 Blurred vision Drugcentral, MetaADEDB, Rxlist

3 Rash Drugcentral, MetaADEDB,
Rxlist, SIDER

11 Dyspepsia Drugcentral, MetaADEDB, Rxlist,
SIDER

Aripiprazole 4 Dizziness MetaADEDB, MetaADEDB,
Rxlist, SIDER

12 Chest pain Drugcentral, MetaADEDB, Rxlist,
SIDER

5 Nervousness Drugcentral, MetaADEDB,
SIDER

13 Hemorrhage MetaADEDB

6 Infection Drugcentral, MetaADEDB,
Rxlist, SIDER

14 Hypersensitivity Drugcentral, MetaADEDB, Rxlist,
SIDER

7 Constipation Drugcentral, MetaADEDB,
Rxlist, SIDER

15 Fatigue Drugcentral, MetaADEDB, Rxlist,
SIDER

8 Back pain Drugcentral, MetaADEDB,
SIDER

Table 7. Top 15 candidate side-effects related to Asenapine.

Drug Rank Side-Effect Evidence Rank Side-Effect Evidence

1 Edema MetaADEDB, Rxlist, SIDER 9 Dyspnea Rxlist, SIDER
2 Vomiting Rxlist, SIDER 10 Constipation MetaADEDB, Rxlist, SIDER
3 Headache MetaADEDB, Rxlist, SIDER 11 Confusion Rxlist

Asenapine 4 Pain MetaADEDB, Rxlist, SIDER 12 Blurred vision unconfirmed
5 Nausea MetaADEDB, Rxlist, SIDER 13 Fatigue Drugcentral, MetaADEDB, Rxlist,

SIDER
6 Dizziness MetaADEDB, Rxlist, SIDER 14 Anorexia unconfirmed
7 Rash Rxlist, SIDER 15 Pruritus unconfirmed
8 Diarrhea Drugcentral, Rxlist

MetaADEDB is a comprehensive repository of clinically reported adverse drug events
(ADEs) containing 744,709 associations between 8498 drugs and 13,193 ADEs [38]. Rxlist
is a searchable database of more than 5000 drugs that have appeared in physician articles
and authoritative websites, such as U.S. Food and Drug Administration (FDA)-related
side-effects, drug safety issues, and other bases of prescribing information [39]. Drug
Central collects information on the structure, pharmacological effects, and indications of
active drug ingredients approved by the FDA and other regulatory agencies, as well as
on ADEs [40]. SIDER is a database of marketed drugs and their adverse reaction records,
covering 5868 side-effects and 139,756 pairs of associations between 1430 drugs [28]. As
shown in Table 3, 12 candidates are supported by Drug Central, 14 are included in MetaAD-
EDB, and the Rxlist and SIDER databases also contain 14 candidates, respectively. Table 4
lists the candidates of the drug Olanzapine, and 12, 12, 15, and 15 candidates are recorded
in the databases Drug Central, MetaADEDB, Rxlist, and SIDER, respectively. In addition,
the constipation and vomiting of patients after they have taken the drug was confirmed
by the literature [36]. We labeled these two candidates with “Literature” and added them
in Table 4. As shown in Tables 5 and 6, in terms of the drugs Clozapine and Aripiprazole,
each of these two drugs has 13 candidates in Drug Central. There are 12 candidates and
15 in MetaADEDB, while Rexlist contains 12 candidates, and SIDER includes 13 candidates.
In addition, dizziness and blurred vision appeared with high chance after the drug was
used over 3 months [37]. The side-effect “Blurred vision” was labeled with “Literature” in
Table 5. Similarly, the drug has 2, 7, 12, and 10 candidates in the four databases, respectively.
Thus, TCSD has the ability to identify potential drug-related side-effect candidates. It can
screen reliable candidates for biologists to undertake subsequent wet-experiment studies
to determine the actual associations.
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3.5. Predicting Novel Drug-Related Side-Effects

After we verified the predictive performance of the TCSD model, our model was
utilized to predict candidate side-effects for 708 drugs, which included the drugs belonging
to the antitumor, digestive, psychiatric, and nutritional categories. Biologists usually select
the top-ranked candidate side-effects for biological experiments to determine the actual
drug-related side-effects. We list the top 30 candidate side-effects for each of 708 drugs in
the Supplementary Table S1.

4. Conclusions

We presented a model (TCSD), which deeply integrates the similarity and association
connections with diverse semantics within multiple heterogeneous graphs for inferring
potential drug-side-effect association candidates. Two constructed drug-side-effect hetero-
geneous graphs were beneficial for formulating their specific neighbor context encoding
based on a graph-sensitive transformer. The graph-sensitive transformer also integrated the
discriminative semantics from the different types of connections between a target node and
its multiple kinds of neighbor nodes. A multi-layer capsule network-based module was
established to capture the multi-view attribute information for each drug-side-effect node
pair. Two attention mechanisms were designed to produce the more important neighbor
categories and heterogeneous graph information was used to derive higher weights. The
cross-validation results demonstrated TCSD’s improved prediction performance, including
greater AUC and AUPR, and higher recall rates for the top-ranked candidates than the
other six comparison methods. In addition, the case studies on Amitriptyline, Olanzapine,
Clozapine, Aripiprazole, and Asenapine also showed TCSD’s ability in retrieving potential
candidate drug-related side-effects. TCSD inferred the candidate side-effects for 708 drugs.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28186544/s1, Tablse S1: The top 30 candidate side-
effects for each of 708 drugs; Table S2: The training and testing time of TCSD and the compared methods.
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