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Abstract: In the present work, shape tailored Cu,O microparticles were synthesized by changing the
nature of the reducing agent and studied subsequently. D-(+)-glucose, D-(+)-fructose, D-(+)xylose,
D-(+)-galactose, and D-(+)-arabinose were chosen as reducing agents due to their different reducing
abilities. The morpho-structural characteristics were studied by X-ray diffraction (XRD), scanning
electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS), while their photocatalytic
activity was evaluated by methyl orange degradation under visible light (120 min). The results show
that the number of carbon atoms in the sugars affect the morphology and particle size (from 250 nm
to 1.2 um), and differences in their degree of crystallinity and photocatalytic activity were also found.
The highest activity was observed when glucose was used as the reducing agent.

Keywords: reducing sugars; copper(I) oxide; visible light activity; photocatalysts; shape tailoring

1. Introduction

One of the most promising approaches to convert solar energy into chemical energy is
heterogenous photocatalysis [1,2]. The photocatalytic degradation of organic pollutants in
wastewater can be achieved by using different semiconductors irradiated with ultraviolet
or visible light [3].

Due to the practical usage of natural solar energy for wastewater treatment, the
development of visible-light-active semiconductors is preferable. To this end, different
types of photocatalysts were created, of which the most researched are perhaps the SnS; [4],
ZnS [5], BiOx (X = Cl, Br, I) [6], and MWO, (M%* = Co, Cu, Pb, Cd, Mn, and Zn) [7]. An
example of promising results using vis-light-active photocatalysts were presented by Ning
et al. [8]. Many parameters can affect the photocatalytic activity, this is the reason why
several scientific publications focus on this feature.

In solution-phase synthesis of CuyO crystals, a typical route is the simple reduction of
copper (II) salts [9,10]. By modifying the experimental parameters (e.g., temperature, stabi-
lizing agent, or reducing agent) investigated so far, significant structural and morphological
differences were induced and thus, the photocatalytic activity of the semiconductors could
be increased [11]. The morphology [12], optical properties [13-15], crystal structure [16,17],
and applicability [18,19] of semiconductors can also be controlled by varying the previously
listed synthesis parameters.
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One of the parameters just mentioned can be the temperature [20] or the stabilizing
agent [9,10]. As mentioned above, different precursor materials can be used, which can
lead to changes in the properties of the product as well [9].

The amount and the type of the reducing agents may also have an important influence,
similar to the effect of compounds used in noble metal nanoparticles’” synthesis [21,22].
The most commonly used reducing agents in the synthesis of noble metal nanoparticles
are hydrazine and borohydride (strong reducing agents) or sometimes hydrogen gas for
slower reduction, which result in different particle shapes [23-25].

Typical reducing agents for the synthesis of Cu,O are ascorbic acid [26-28] and
glucose [29-32]. However, a systematic study concerning the influence of different reducing
agents is still missing.

Since photocatalysis can be considered/viewed as a green chemical water purification
process regarding some aspects, it is important for these semiconductors to be produced in
the most environmentally friendly manner possible. As examples, in their environmentally
friendly synthesis, glucose and other aldose and ketose sugars were demonstrated as
promising candidates for reducing agents [33].

For this reason, in this study, the production of CuyO semiconductors was accom-
plished by chemical reduction with sugars having different carbon chain length, which has
also been demonstrated by Kumbhar, P et al. [34]. The impact of these compounds on the
characteristics of the semiconductors and their photocatalytic behavior was studied.

2. Results
2.1. Investigation of Structural Properties of Cu,O Samples—Dependence on Reducing Agent

Scanning electron microscopy was used to study the morphology of the Cu;O mi-
croparticles. From the SEM micrographs shown in Figure 1, a microcubic CuyO morphology
can be observed, which could be related to the ethylenediaminetetraacetic acid (EDTA)
complexing agent used in the synthesis [10,30]. The particle size distributions are presented
in the inserted histograms of the samples.
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Figure 1. Scanning electron microscopy (SEM) micrographs of CuyO microcubes obtained from CuCl, precursor; the effect

of the reducing sugars (top row: sugars containing six carbon atoms; bottom row: sugars containing five carbon atoms) can

be observed in the size distribution and the morphology; the inset figure on the upper left for each sample contains the SEM

micrograph of a single particle, while the particle size distribution is presented in the upper right corner of each micrograph.
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From the histograms, the predominant size was ~1.2 um in most cases. The exceptions
were sample CupO_GA, where the size distribution of the particles was wide (0.5-1.5 um),
and sample CupO_XY, where smaller particles with a size of 250 nm and larger particles
with a size of 1.2 pm could be simultaneously observed.

Furthermore, the SEM micrographs show another interesting morphological fea-
ture: in case of a reducing sugar of six carbon atoms (CuyO_GA, CuyO_GL, CupO_FR)—
additional edges appeared on the microcubes’ faces; this phenomenon was not observed in
the samples where the reducing sugar contained five carbon atoms.

The degree of the delimiting planes which formed the new edge was calculated using
Image]J. The highest value was registered for fructose (16°), followed by glucose (9°), while
the smallest angle was in the case of galactose (4°). After analyzing the morphology of
the particles, the crystal structure of the particles was determined by X-ray diffractome-
try (XRD).

The XRD patterns of the microcubes are shown in Figure 2. All the diffractions of
the samples observed at 20° values of 29.40°, 36.33°, 42.16°, 61.47°, 73.35°, and 77.41°
can be attributed to the characteristic diffractions of cubic Cu,O (JCPDS file no. 05-0667),
which correspond to the (110), (111), (200), (220), (311), and (222) crystallographic planes,
respectively. From the XRD patterns, no other characteristic signals of CuO or Cu can be
detected, indicating that pure Cu,O was obtained.
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Figure 2. XRD patterns of the Cu,O samples—all the characteristic diffractions of Cu,O were marked
with a grey rectangle.

As the signal/noise ratio increases, the degree of crystallinity decreases in the diffrac-
tograms (from top to bottom, Figure 2).

To investigate the optical properties of the Cu,O materials, their diffuse reflectance
spectroscopy (DRS) spectra were recorded, then the first derivatives of the spectra were
plotted (Figure 3) and deconvoluted. The deconvolution revealed the appearance of three
different peaks located at 595 nm (2.08 eV), 639 nm (1.94 eV) and 722 nm (1.71 eV). The
peak corresponding to the band gap value of Cup;O was observed at 1.94 eV (at 639 nm) but
several other possible electron transitions could be assigned based on the literature [35].
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Figure 3. The deconvolution of the first order-derivative diffuse reflectance spectroscopy (DRS) spectra of the synthesized
CuyO samples (500-800 nm).

As detailed in the discussion of SEM micrographs, influence of the reducing sugars’
carbon chain length (five vs. carbon six carbon atoms) was observed. In the DRS spectra
of CupO_XY and CuyO_AR, a new band appeared at 722 nm assigned to the localized
surface plasmon resonance (LSPR) [36] of CuyO. The broad appearance of this LSPR
band is in agreement with the literature [37—40]. Localized surface plasmon resonance
can be observed at increased concentration of free carriers (holes) in the material due to
the introduction of copper vacancies, resulting in the increase of hole concentration as
well [41,42].

The LSPR is related to and dependent on the degree of crystallinity [35]. This is in
agreement with the observations reported here, as the specific LSPR band was observed
only in the case of samples with the highest crystallinity (CuyO_XY and Cu;O_AR).

The peak located at 595 nm can be explained by the appearance of the excitonic
bandgap, which can form when the semiconductor absorbs a photon of higher energy than
its own band gap [40]. The exciton band for Cu,O is located around 2.1 eV [40,41].

2.2. Investigation of the Effect of Reducing Sugars on the Photocatalytic Activity of CupO Samples

After the physico-chemical characterization of the samples, their photocatalytic per-
formance was determined using visible light irradiation, using methyl orange as model
pollutant. As it was mentioned in the introduction, photocatalytic oxidation is an important
purification process that involves a light-activated catalyst which reacts with adsorbed
organic pollutants to oxidize them. Essentially, these molecules undergo a chemical reac-
tion that transforms them into harmless substances. As shown in Figure 4, the efficiency
of the methyl orange (MO) photodegradation by the different Cu,O samples showed
promising results.
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Figure 4. Degradation curves of methyl orange during the photocatalytic degradation tests under
visible light irradiation.

Significant differences were observed among the photocatalytic activities of the sam-
ples. In case of the arabinose-reduced sample (Cu,O_AR), the photocatalytic activity was
negligible with a conversion of only 6.4%. The highest activity, 91.2%, was observed with
the CupO reduced by glucose (CuyO_GL).

As shown in Figure 5, the small specific surface area values also proved that hier-
archical systems were not composed of smaller crystallites. The sample with the lowest
specific surface area was Cu,O_FR (0.1 m?/ g) and the largest is CupO_GL (2 m?/ g). Itis
well known that the accuracy of N, adsorption (Brunauer-Emmett-Teller - BET) analysis is
very low in the region of the above-mentioned specific surface area values. However, there
is some surprising correlation between photocatalytic activity and specific surface areas.
Differences in surface area of the samples can also contribute to the observed differences in
photocatalytic activity.

Regarding micrometer sized photocatalyst particles and their very low specific surface
areas, aspects responsible for the enhanced photocatalytic activity should be discovered
elsewhere. The possible role of interparticle voids seems to be a plausible solution, in turn,
bulky microcubes in SEM images (Figure 1) do not make it very probable that they possess
notable extent of porosity. Nevertheless, such a significant difference in photocatalytic
activities of samples highlights the importance of using different sugars. One hypothetical
reason could be an instrumentally undetectable constraint, which is caused by the diversity
of sugar molecules.
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Figure 5. Specific surface area of the CupyO samples—N; adsorption measurements (BET).

3. Materials and Methods
3.1. Materials

In the syntheses, copper (II) chloride dihydrate (CuCl, 2H,O, Alfa Aesar, Karlsruhe,
Germany, 99+%) was used as precursor. As stabilization agent, ethylenediaminetetraacetic
acid (EDTA, C19H16N2Og, Molar, Halasztelek, Hungary, 99.5%) was used. Additionally,
sodium hydroxide—NaOH (Molar, Haldsztelek, Hungary, 99.98%) was used as precipita-
tion agent and D-(+)-glucose (Acros Organics, Morris Plains, NJ, USA, 99%), D-(+)-fructose
(Alfa Aesar, Kandel, Germany, 98+%), D-(+)-xylose (Alfa Aesar, Kandel, Germany, 98+%), D-
(+)-galactose (VWR, Radnor, PA, USA, 98+%) and D-(+)-arabinose (Sigma Aldrich, St Louis,
MO, USA >99%) as reducing agents. For the purification step, Milli-Q water and acetone
(VWR, >99.5%) were used. All the chemicals were used without further purification.

3.2. Characterization Methods

X-ray diffractograms (XRD) were acquired by a Rigaku Miniflex II diffractometer
(Prague, Czech Republic) using Cu-K« radiation (A = 1.5406 A), equipped with a graphite
monochromator. Data points were taken in the 26° = 20-80° range at a scan speed of
1-(26°)-min~1 [42].

Scanning electron microscopy (SEM) micrographs were recorded with a Hitachi S-4700
Type Il FE-SEM (Tokyo, Japan) instrument, which operates using a cold field emission gun
(5-15 kV). The size distribution of the particles was estimated from the SEM micrographs
(100 particles were measured) using the Image] 1.52d software (Bethesda, MD, USA).

A JASCO-V650 (USA, Portland) spectrophotometer with an integration sphere (ILV-
724) was used for measuring the diffuse reflectance spectroscopy (DRS) spectra of the
samples (A = 300-800 nm). The possible electron transitions were evaluated by plotting
dR/dA vs. A, where R is the reflectance and A is the wavelength [43], while the indirect
band gap of the photocatalysts was determined via the Kubelka-Munk method [44].

The N, adsorption experiments (BET) were performed to calculate the specific surface
areas of the samples, for which a BELCAT-A (Osaka, Japan)device was used to record the
isotherms at 77 K.

3.3. Assessment of the Photocatalytic Efficiencies

A photoreactor system with 4 x 24 W visible light lamps (irradiation time = 120 min)
was used to measure the photocatalytic activities. The reactor was thermostated at 25 °C us-
ing 1 M NaNOs, to eliminate any UV irradiation. The photocatalyst suspension containing
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the pollutant (initial concentration of methyl orange (MO) Co,mo = 30 uM; catalyst content
Cphotocatalyst = 1.0 g-L~1; total volume of the suspension Vsusp = 100 mL) was continuously
purged with air to keep the concentration of dissolved oxygen constant during the whole
experiment. The concentration decrease of the organic substrate was followed using an
Agilent 8453 spectrophotometer (Agilent Technologies, Waldbronn, Germany) at 464 nm.
It is important to mention that the photolysis of MO under the applied conditions was
negligible [11].

4. Conclusions

Cu, O semiconductor photocatalysts were prepared under the influence of five differ-
ent reducing sugars. The differences in optical properties, crystal structure, and photocat-
alytic activity of the samples were highlighted by examining the effect of the reducing sugars.

It seems that the particle size distribution was the most sensitive to the induced differ-
ences in the reaction mixture. The reducing agents used caused a wide size distribution
spectrum of the particles from 250 nm to 2.5 um. For each sample, usually a ~1.2 um size
was determined.

A significant difference can be observed as a function of the number of carbon atoms
in the reducing sugars: using reducing agents containing five carbon atoms, a new peak
appears at 722 nm in the first-order-derivative of the DRS spectra. This peak is assigned to
the localized surface plasmon resonance (LSPR) of the Cu,O particles, which is also related
to the degree of crystallinity, as this peak appeared in the spectra of the highly crystalline
samples. The change in the ratio of the conduction- (at 639 nm) and the exciton bands (at
595 nm) and the change in the specific surface area of copper(I) oxide particles explains the
magnitude of the photocatalytic excitability. Moreover, in spite of the low specific surface
area, a very high adsorption of MO and a high photoactivity were observed, pointing out
the importance of the surface quality pointed out by the DRS spectra of the samples.
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