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Abstract: Radicinin (1), is a fungal dihydropyranopyran-4,5-dione isolated together with some
analogues, namely 3-epi-radicinin, radicinol, 3-epi-radicinol, and cochliotoxin (2–5), from the culture
filtrates of the fungus Cochliobolus australiensis, a foliar pathogen of buffelgrass (Cenchrus ciliaris),
an invasive weed in North America. Among the different metabolites 1 showed target-specific
activity against the host plant and no toxicity on zebrafish embryos, promoting its potential use
to develop a natural bioherbicide formulation to manage buffelgrass. These data and the peculiar
structural feature of 1 suggested to carry out a structure-activity relationship study, preparing
some key hemisynthetic derivatives and to test their phytotoxicity. In particular, p-bromobenzoyl,
5-azidopentanoyl, stearoyl, mesyl and acetyl esters of radicinin were semisynthesized as well as
the monoacetyl ester of 3-epi-radicinin, the diacetyl esters of radicinol and its 3 epimer, and two
hexa-hydro derivatives of radicinin. The spectroscopic characterization and the activity by leaf
puncture bioassay against buffelgrass of all the derivatives is reported. Most of the compounds
showed phytotoxicity but none of them had comparable or higher activity than radicinin. Thus, the
presence of an α,β unsaturated carbonyl group at C-4, as well as, the presence of a free secondary
hydroxyl group at C-3 and the stereochemistry of the same carbon proved to be the essential feature
for activity.

Keywords: buffelgrass; Cochliobolus australiensis; radicinin; derivatives; SAR; leaf puncture
bioassay; phytotoxicity

1. Introduction

Buffelgrass (Cenchrus ciliaris or Pennisetum ciliare) is an important pasture grass in many semi-arid
regions of the world but it is also an invasive weed in some areas of North America [1]. In the
Sonoran Desert of southern Arizona it has infested thousands of acres of public and private lands,
including Saguaro National Park and the Coronado and Tonto National Forests [2–4]. The increased
fire frequency and intensity in the infested areas is negatively affecting the native species including
the iconic saguaro cactus [5]. The main products currently used to manage buffelgrass are glyphosate
and imazapyr. However, these broad-spectrum herbicides cause heavy damage to the non-target
plants and have a negative environmental and ecological impact [6]. In the past decades the biological
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control has become an effective alternative to combat many weeds that invade natural systems [7,8].
In particular, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural
and safe bioherbicides [9]. Thus, Cochliobolus australiensis (recently classified as Curvularia tsudae)
and Pyricularia grisea, two foliar pathogens that commonly occur on buffelgrass in the invaded North
American range, were studied to evaluate their ability to produce phytotoxic metabolites that can
potentially be used as natural herbicides against this weed. A total of 14 secondary metabolites
belonging to different classes of natural compounds were purified from the in vitro cultures of these
two pathogens [10–12]. When tested by leaf puncture assay on host plant at different concentrations,
radicinin (1, Figure 1) and (10S,11S)-epi-pyriculol resulted to be the most promising compounds. Thus,
their phytotoxic activity was also evaluated on non-host indigenous plants. Radicinin demonstrated
high target-specific toxicity on buffelgrass, low toxicity to native plants and no teratogenic, sublethal,
or lethal effects on zebrafish (Brachydanio rerio) embryos [13]. 1 is now under consideration for the
development of target-specific bioherbicide to be used against buffelgrass, and a rapid and sensitive
HPLC method for its quantification in complex mixtures was recently optimized in order to evaluate
its production by different fungal strains and in different cultural conditions [14]. This manuscript
reports the semisynthesis of some radicinin derivatives and the evaluation of their phytotoxic activity
against buffelgrass. Furthermore, their phytotoxicity was also compared with that of the natural
analogues 3-epi-radicinin, radicinol, 3-epi-radicinol, and cochliotoxin (2–5, Figure 1) and some of their
derivatives (6–15, Figure 1) in order to obtain clues about the structure–activity relationship (SAR) of
these compounds.
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Figure 1. The structures of radicinin (1), 3-epi-radicinin (2), radicinol (3), 3-epi-radicinol (4), 
cochliotoxin (5), radicinin derivatives (6–10, 14, and 15), and the acetyl derivatives of 3-epi-radicinin, 
radicinol, and 3-epi-radicinol (11–13, respectively). 

2. Results and Discussion 

The buffelgrass pathogenic fungus C. australiensis was grown by fermentation and the natural 
compounds 1–5 were isolated from potato dextrose broth (PDB) cultures according to the 
procedures previously published [10,11]. The purity of 1–5 was >98%, as checked by 1H-NMR and 
LC–MS. 

To investigate the structure activity relationship for radicinin as a target-specific phytotoxin 
against buffelgrass, seven derivatives (6–10 and 14–15, Figure 1) were prepared as reported in detail 
in the experimental part. The acetyl derivatives of 3-epi-radicinin, radicinol, and 3-epi-radicinol 11–13 

Figure 1. The structures of radicinin (1), 3-epi-radicinin (2), radicinol (3), 3-epi-radicinol (4), cochliotoxin
(5), radicinin derivatives (6–10, 14, and 15), and the acetyl derivatives of 3-epi-radicinin, radicinol, and
3-epi-radicinol (11–13, respectively).

2. Results and Discussion

The buffelgrass pathogenic fungus C. australiensis was grown by fermentation and the natural
compounds 1–5 were isolated from potato dextrose broth (PDB) cultures according to the procedures
previously published [10,11]. The purity of 1–5 was >98%, as checked by 1H-NMR and LC–MS.

To investigate the structure activity relationship for radicinin as a target-specific phytotoxin
against buffelgrass, seven derivatives (6–10 and 14–15, Figure 1) were prepared as reported in detail in
the experimental part. The acetyl derivatives of 3-epi-radicinin, radicinol, and 3-epi-radicinol 11–13



Molecules 2019, 24, 2793 3 of 10

were also prepared. All the derivatives were characterized as described in Materials and Methods in
detail, and their 1H-NMR data are reported in Tables 1 and 2.

Table 1. 1H-NMR data of radicinin (1) and some of its derivatives (6–10) a.

Position 1 6 7 b 8 c 9 10

2 4.41 dq
(12.4, 6.3)

4.91 dq
(10.3, 6.3) 4.73 m 4.74 dq

(12.4, 6.1)
4.72 dq

(12.4, 6.0)
4.74 dq

(11.0, 6.4)
3 4.00 d (12.4) 5.52 d (10.9) 5.25 d (11.0) 5.27 d (12.4) 5.01 d (12.4) 5.28 d (11.0)
8 5.94 s 5.90 s 5.84 s 5.87 s 5.90 s 5.87 s
9 6.12 d (15.5) 6.10 d (15.5) 6.05 d (15.5) 6.07 d (15.5) 6.09 d (15.5) 6.07 d (15.5)

10 7.00 sext.
(7.1)

6.99 sext.
(7.1)

6.97 sext.
(7.1)

6.99 sext.
(7.1)

7.05 sext.
(7.1)

6.99 sext.
(7.1)

11 2.01 d (7.1) 1.99 d (7.1) 1.95 d (7.1) 1.98 d (7.1) 2.01 d (7.1) 1.99 d (7.1)
Me 1.60 d (6.3) 1.61 d (6.3) 1.54 d (6.3) 1.56 d (6.1) 1.69 d (6.0) 1.57 d (6.4)

CO-Me 2.23 s
2′-6′ 7.94 d (8.6)
3′-5′ 7.65 d (8.6)
S-Me 3.40 s
a The chemical shifts are in δ values (ppm) from TMS. b The signals of the acyl group of this compound are at δ: 3.35
(t, J = 6.5 Hz, CH2-5′), 2.53 (t, J = 7.2 Hz, CH2-2′), 1.80–1.72 (m, CH2-3′), 1.68–1.71 (m, CH2-4′). c The signals of the
acyl group of this compound are at δ: 2.44 (t, J = 7.5 Hz, CH2-2′), 2.0–1.0 (m, CH2-3′-CH2-17′), 0.90 (t, J = 6.7 Hz,
Me-18′).

Table 2. 1H-NMR data of acetyl derivatives of 3-epi-radicinin, radicinol and 3-epi radicinol (11–13) and
of radicinin derivatives (14 and 15) a.

Position 11 12 13 14 15

2 4.90 dq (3.8, 6.4) 4.58 br. s 4.43 dd (6.9,1.2) 3.69 dq (11.2, 6.4) 4.04 dq (9.2, 6.2)

3 5.51 d (3.8) 5.78 br. s 5.16 dd (2.8,
1.2) 4.04 d (11.2) 3.63 t (9.2)

4 5.12 br. s 5.72 d (2.8) 4.49 d (9.2)
4a 1.62–1.43 c

7 4.46 dd (12.2, 4.7) 4.42 m

8 5.88 s 5.81 s 5.79 s 2.19 br dd (13.2, 4.7)
1.63 dd (13.2, 12.2)

2.46 dd (17.1, 14.2)
2.34 dd (17.1, 4.3)

8a 4.33 m

9 6.07 d (15.5) 5.98 d (15.5) 6.02 dd (15.5,
1.4) 1.62–1.43 (2H) c 1.78 m

1.65 m
10 6.98 sext (7.1) 6.77 sext (7.1) 6.78 sext (7.1) 1.62–1.43 (2H) c 1.56 m (2H)
11 1.98 d (7.1) 1.98 d (7.1) 1.94 d (7.1) 0.95 t (7.1) 0.96 t (6.7)
Me 1.47 d (6.4) 1.47 d (6.3) 1.39 d (6.3) 1.41 d (6.4) 1.57 d (6.2)

CO-Me 2.19 s 2.10 s b 2.11 s b

a The chemical shifts are in δ values (ppm) from TMS. b This is the signal of two overlapped acetyl groups. c

Overlapped signals.

Radicinin (1) by reaction with 4-bromobenzoyl chloride yielded its corresponding p-bromobenzoyl
ester (6). Its 1H-NMR spectrum differed from that of 1 for the presence of the typical signals pattern
of the aromatic para-disubstituted residue, appearing as two doublets at δ 7.94 and 7.65 (J = 8.6 Hz),
and for the downfield shift (∆δ 1.52) at δ 5.52 of the signal of H-3. These data were very similar to
those already reported by Robeson et al. [15]. As a stronger evidence of the derivatization, the ESI-MS
spectrum showed the typical signals because of the presence of 79Br and 81Br isotopic peaks, at m/z 419
[M + H]+ and 421 [M + 2 + H]+, respectively.

Radicinin by esterification with 5-azidopentanoic acid was converted into the corresponding
5-azidopentanoyl derivative (7). Its 1H-NMR spectrum differed from that of radicinin for the downfield
shift (∆δ = 1.25) of H-3 at δ 5.25 and for the presence of the signals pattern typical of 5-azidopentanoyl
residue resonating as two triplets at δ 3.35 (J = 6.5 Hz) and 2.53 (J = 7.2 Hz) due to CH2-5′ and CH2-2′,
and two multiplets at δ 1.80−1.72 and 1.68−1.71 due to CH2-3′ and CH2-4′. Further confirmation was
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obtained by the stretching of the –N3 bond in the IR spectrum, with a signal at 2097 cm−1 and by the
ESI-MS spectrum, which showed both the dimeric sodiated [2M + Na]+ and protonated [M + H]+

forms at m/z 745 and 362, respectively.
1 by reaction with stearoyl chloride afforded the corresponding acyl derivative (8). Its 1H-NMR

spectrum, compared with that of radicinin, differed for the downfield shift (∆δ = 1.27) of H-3 at δ 5.27
and showed typical signals of the stearoil residue appearing as two triplets at δ 2.44 (J = 7.5 Hz) and
0.90 (J = 6.7 Hz) due to CH2-2′ and Me-18′ and the presence at δ 2.0–1.0 of the complex multiplet due
to the protons of the residual 15 CH2 groups. The ESI-MS spectrum showed the protonated [M + H]+

form at m/z 517.
Radicinin by reaction with mesyl chloride in pyridine, afforded the corresponding mesyl ester

(9). Its 1H-NMR spectrum, compared to that of 1 showed the downfield shift of H-3 (∆δ = 1.01)
appearing as a doublet (J = 12.4 Hz) at δ 5.01 and the singlet of the mesyl group at δ 3.40. A further
confirmation was obtained by the ESI-MS spectrum, which showed the dimeric sodiated [2M + Na]+

and the protonated [M + H]+ forms at m/z 651 and 315, respectively.
Radicinin (1) was acetylated by usual reaction with Ac2O and pyridine to yield the corresponding

3-O-acetylderivative (10). Its 1H-NMR differed from that of 1 essentially for the downfield shift of H-3
(∆δ = 1.28) appearing as singlet at δ 5.28 and the singlet of the acetyl group at δ 2.23. These data were
very similar to those previously reported [16]. Furthermore, its ESI-MS spectrum showed the dimeric
sodiated [2M + Na]+ and protonated [M + H]+ forms at m/z 579 and 279, respectively.

To investigate the role of the ethenyl side chain as well as those of the dihydropyranopyran-4,5-dione
moiety, a catalytic hydrogenation of radicinin was carried out and two hexahydro derivatives (14 and
15) were obtained as main products. The 1H-NMR of both derivatives showed the absence of the
olefinic pyron proton (H-8) and that (H-9) of the side chain at C-7. In fact 1H-NMR spectrum of 14
showed a triplet (J = 7.1 Hz) at δ 0.95 of the terminal methyl group (H3-11) of the propyl side chain
at C-7, which in the COSY (Correlated spectroscopy) spectrum coupled with the adjacent methylene
group (CH2-10) and this in turn with those of the other one (CH2-9) appearing as overlapped complex
multiplet in the region of δ 1.62–1.43. The presence of the proton H-7 of the α-lactone ring appearing
as dd (J = 12.2 and 4.7) at δ 4.42 was also significant, which in the COSY spectrum coupled with the
broad double doublet (J = 13.2 and 4.7 Hz) and the double doublet (J = 13.2 and 12.2 Hz) at δ 12.19
and 1.63 of the proton of the adjacent methylene group (H2C-8). Another relevant difference was the
upfield shift (∆δ 0.72) of the double quartet (J = 11.2 and 6.4 Hz) of H-2 resonating at δ 3.69 probably
due to the saturation of the alpha α-pyrone ring that also generated the protons of the two headbridge
carbons of the junction between the two rings appearing as multiplets at δ 4.33 and 1.62–1.43 (H-8a and
H-4a, respectively). Furthermore, its ESI-MS spectrum showed the dimeric sodiated [2M + Na]+, the
sodiated [M + Na]+ and protonated [M + H]+ forms at m/z 507, 265 and 243. Similarly, the 1H-NMR
spectrum of 15 showed the signal of the propyl residue of C-7 with a triplet (J = 6.7 Hz) and three
multiplets appearing at δ 0.96 (H3-11), 1.56 (H2-10), and 1.78 and 1.65 (H2-9). The proton assigned to
H-7 resonated at δ 4.42 which in the COSY spectrum coupled with the two double doublets (J = 17.1
and 14.2 and J = 17.1 and 4.3 Hz) at δ 2.46 and 2.34 assigned to the proton of the adjacent methylene
group of CH2-8. Moreover, the significant presence of the doublet (J = 9.2 Hz) of H-4, which coupled in
the COSY spectrum with H-3, resonating as triplet (J = 9.2 Hz) δ 3.63 also coupled with H-2 appearing
as a double quartet (J = 9.2 and 6.2 Hz) at δ 4.04. These coupling constants suggested the stereoselective
reduction of the carbonyl group at C-4. H-4 appeared to be pseudoaxial located with respect to H-3.
Furthermore, its ESI-MS spectrum showed the dimeric sodiated [2M + Na]+, the sodiated [M + Na]+

and protonated [M + H]+ forms at m/z 507, 265 and 243. The same sectrum also showed the ion at m/z
225 generated from the pseudomolecular ion by los of H2O.

3-epi-Radicinin (2) by reaction with Ac2O in pyridine, yielded the corresponding 3-O-acetyl
derivative (11). Its 1H-NMR spectrum, differed from that of 3-epi-radicinin for the downfield shift of
H-3 (∆δ = 1.0) resonating as a doublet (J = 3.8 Hz) at δ 5.51 and the singlet of the acetyl group at δ
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2.19. Its ESI-MS spectrum showed both the protonated [M + H]+ and the dimeric sodiated [2M + Na]+

forms at m/z 279 and 579, respectively.
Radicinol (3) by acetylation, as above described, afforded the corresponding 3,4-O-O’-diacetyl

derivative (12). Its 1H-NMR spectrum, compared with the spectrum of radicinol showed the typical
downfield shifts of H-3 (∆δ = 1.40) and H-4 (∆δ = 1.0) appearing as two broad singlets at δ 5.12 and
5.78 respectively. The spectrum also showed the singlets of the overlapped signals of the two acetyl
groups at δ 2.10. Its ESI-MS spectrum showed the protonated form [M + H]+ at m/z 323.

Similarly, 3-epi-radicinol was converted into its corresponding 3,4-O-O’-diacetyl derivative (13).
The 1H-NMR spectrum of 13 differed from that of 3-epi-radicinol, for the downfield shifts of H-3
(∆δ = 1.31) and H-4 (∆δ = 1.00) appearing as a double doublet (J = 2.8 and 1.2 Hz) and a doublet
(J = 2.8 Hz) at δ 5.16 and 5.72, respectively. The spectrum also showed the singlet at δ 2.11 due to
the overlapped signals of the two acetyl groups. Its ESI-MS spectrum showed the protonated form
[M + H]+ at m/z 323.

The ten hemisynthetic derivatives (6–15) were tested by the buffelgrass leaf puncture assay at
2.5 × 10−3 M as reported in the Materials and Methods section in detail. Their activity was evaluated in
comparison with that showed by the natural metabolites (1–5) previously reported by Masi et al. [13].
Overall, five derivatives (6, 8, 12, 13, and 15) produced no necrosis and were thus completely nontoxic
to buffelgrass, while the other five compounds (7, 9, 10, 11, and 14) were moderately toxic (Figure 2).
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Figure 2. Results of the leaf puncture bioassay on buffelgrass (Cenchrus ciliaris) at a concentration of
2.5 × 10−3 M for the hemisynthetic derivatives (6–15) and the natural compounds (1–5).

A very important factor for the activity appear to be the carbonyl group of the dihydro γ-pyrone
as the phytotoxicity was lost in 3. This was also confirmed by the expected lacking of activity of
radicinol diacetyl derivative (12). The stereochemistry at C-3 also plays a significant role to impart
activity as was with the strong reduction observed by testing 3-epi-radicinin (2). This was confirmed
by the very low activity of its acetyl derivative 11 and the total loss of activity observed by testing the
diacetyl derivatives (12 and 13) of radicinol and 3-epi-radicinol. The hydrogenation of 1 generated 14
which showed the absence of α,β unsaturated carbonyl group explaining the strong loss of activity.
The double bond of the side chain at C-7 also plays a role to impart activity as demonstrated by the
reduction of phytotoxicity observed by testing 5 and confirmed by the decrease of the activity of 14.
The acyl derivatives of 1 showed a strong or total loss of activity, which was only in part retained by the
acetyl and the mesyl derivatives (9 and 10). These compounds are probably more easily hydrolysable
in comparison to the other compounds (6, 7, and 8) as their conjugated bases are more stabilized
for resonance.

The five hemisynthetic derivatives (7, 9, 10, 11, and 14) that showed toxic activity on buffelgrass
leaves at 2.5 × 10−3 M were also tested at a lower concentration of 10−3 M (Figure 3), confirming the
results obtained at higher concentration.
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3. Materials and Methods

3.1. General Experimental Procedures

IR spectra were recorded as deposit glass film on a Perkin Elmer Thermo Nicolet 5700 FT-IR
spectrometer (Thermo Scientific, Waltham, MA, USA). UV spectra were measured in MeOH on
a Jasco V-530 spectrophotometer (Jasco, Tokyo, Japan). 1H-NMR spectra were recorded at 400 or
500 MHz in CDCl3 on Bruker (Bruker, Karlsruhe, Germany) and Varian (Varian, Palo Alto, CA,
USA) instruments. ESIMS (Electrospray ionization mass spectrometry) were recorded using LC/MS
ESIMS-TOF (Electrospray ionization mass spectrometry –Time of flight) system (Agilent 6230B, HPLC
1260 Infinity) (Agilent Technologies, Milan, Italy). Analytical, preparative and reverse phase TLCs
(Thin layer chromatography) were carried out on silica gel (Kieselgel 60, F254, 0.25, 0.5 mm, and RP-18
F254s respectively) plates (Merck, Darmstadt, Germany). The spots were visualized by exposure to UV
radiation, or by spraying first with 10% H2SO4 in MeOH, and then with 5% phosphomolybdic acid in
EtOH, followed by heating at 110 ◦C for 10 min. Column chromatography was performed using silica
gel (Merck, Kieselgel 60, 0.063–0.200 mm).

3.2. Fungal Strains

Cochliobolus australiensis (LJ-4B) strains used in this study were isolated from diseased buffelgrass
tissue collected in Saguaro National Monument, Arizona, AZ, USA, in autumn 2014 and near La Joya,
Hidalgo County in south Texas, USA, in September 2014, respectively.

3.3. Isolation of Fungal Metabolites

The fungal metabolites 1–5 were isolated from in vitro PDB (potato dextrose broth) cultures of C.
australiensis according to procedures previously reported [10,11].

3.4. Preparation of Semisynthetic Derivatives

3.4.1. p-Bromobenzoyl Ester of Radicinin (6)

To radicinin (1, 5.0 mg), dissolved in anhydrous MeCN (300 µL), DMAP (5.0 mg) and
p-bromobenzoylchloride (5.0 mg) were added. The reaction mixture was left under stirring for
5 h. It was then quenched with a 1 N NaHCO3 and extracted with CH2Cl2. The residue obtained
by evaporation was then purified by preparative TLC eluted with CHCl3:i-PrOH (9:1) affording the
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p-bromobenzoyl ester of radicinin (6, 4.17 mg). Derivative 6 had: IR νmax 1763, 1730, 1602, 1532,
1433 cm−1; UV λmax nm (log ε) 345 (4.23), 247 (4.40), 224 (4.23). These data were very similar to those
already reported by Robeson et al. [15]; 1H-NMR, see Table 1; MS (ESI-TOFMS) m/z 421 [M + 2 + H]+,
419 [M + H]+.

3.4.2. 5-Azidopentanoyl Ester of Radicinin (7)

DCC (5.6 mg) and 5-azidopentanoic acid (20 µL) were added to a solution of radicinin (1) in
pyridine (5.0 mg in 300 µL). The mixture was kept under stirring at room temperature for 4 days and
then dried under N2 stream by evaporation of the azeotope obtained by adding MeOH and C6H6.
The residual oil was then purified by TLC eluted with CHCl3-i-PrOH (97:3) affording 5-azidopentanoyl
ester of radicinin (7, 4.38 mg). Derivative 7 had: IR νmax 2097, 1754, 1601, 1523, 1433 cm−1; UV λmax nm
(log ε) 341 (4.15), 221 (4.14); 1H-NMR, see Table 1; MS (ESI-TOFMS) m/z 745 [2M + Na]+, 362 [M + H]+.

3.4.3. Stearoyl Ester of Radicinin (8)

Stearoyl chloride (12.8 mg), DMAP (1.6 mg), and DCC (9.0 mg) were added to radicinin (1, 5.0 mg)
in CH2Cl2 (300 µL) together with 9 mg of DCC. The reaction mixture was kept under stirring for 3 days
and was then dried under N2 stream. The residual oil was purified by preparative TLC eluted with
n-hexane-EtOAc (55:45) yielding the stearoyl ester of radicinin (8, 1.81 mg). Derivative 8 had: IR νmax

1750, 1532, 1433 cm−1; UV λmax nm (log ε) 341 (4.15), 221 (4.14); 1H-NMR, see Table 1; MS (ESI-TOFMS)
m/z 517 [M + H]+.

3.4.4. Mesyl Ester of Radicinin (9)

Mesyl chloride (23 µL) was added to radicinin (1, 5.0 mg) dissolved in CH2Cl2 (300 µL) and
pyridine (40 µL). The reaction mixture was kept overnight and then quenched with a 1 N solution of
NaHCO3. The mixture was then extracted with EtOAc and the organic extract purified by TLC eluted
with CHCl3-i-PrOH (97:3) affording the mesyl ester derivative of radicinin (9, 3.34 mg). Derivative
9 had: IR νmax 1757, 1602, 1532, 1434 cm−1; UV λmax nm (log ε) 342 (4.10), 224 (4.12); 1H-NMR, see
Table 1; MS (ESI-TOFMS) m/z 651 [2M + Na]+, 315 [M + H]+.

3.4.5. Acetyl Ester of Radicinin (10)

Radicinin (1, 4 mg), dissolved in pyridine (100 µL), was acetylated with Ac2O (5 µL) to obtain
derivative 10. The reaction was carried out under stirring for 3 h at room temperature. It was
stopped with MeOH, and the azeotrope formed by addition of C6H6 was evaporated under nitrogen
stream. The residue was then purified by TLC eluted with CHCl3-i-PrOH (95:5) yielding 10 (2.3 mg)
as an amorphous solid. Derivative 10 had: IR νmax 1754, 1602, 1531, 1433 cm−1; UV λmax nm (log ε)
345 (4.12), 227 (4.15); 1H-NMR data (see Table 1) were very similar to those previously reported by
Aldrich et al. [16]; MS (ESI-TOFMS) m/z 579 [2M + Na]+, 279 [M + H]+.

3.4.6. Acetyl Ester of 3-epi-Radicinin (11)

3-epi-radicinin (2, 3 mg), dissolved in pyridine (100 µL), was acetylated with Ac2O (3 µL).
The reaction was carried out following the same procedure used for conversion of 1 into 10 yielding
the corresponding acetyl ester of 3-epi-radicinin (11, 1.76 mg). Derivative 11 had: IR νmax 1750, 1602,
1532, 1433 cm−1; UV λmax nm (log ε) 348 (4.10), 228 (4.12); 1H-NMR, see Table 2; MS (ESI-TOFMS) m/z
579 [2M + Na]+, 279 [M + H]+.

3.4.7. Diacetyl Ester of Radicinol (12)

To radicinol (3, 5 mg), dissolved in pyridine (100 µL), Ac2O (10 µL) was added. The reaction was
kept under stirring at room temperature for 4 h and was then dried as previously reported for the
preparation of 10. The residue was then purified by TLC eluted with CHCl3-i-PrOH (98:2) to afford the
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derivative 12 (3.46 mg). Derivative 12 had: IR νmax 1680, 1650, 1610, 1560 cm−1; UV λmax nm (log ε)
319 (4.04), 271 (3.40), 261 (3.38) 225 (4.51); 1H-NMR, see Table 2; MS (ESI-TOFMS) m/z 323 [M + H]+.

3.4.8. Diacetyl Ester of 3-epi-Radicinol (13)

To epi-radicinol (4, 5 mg), dissolved in pyridine (100 µL), Ac2O (10 µL) was added. The reaction
was carried out following the same procedure used for the conversion of 2 into 11 yielding the
corresponding acetyl ester of 3-epi-radicinol (13, 4.36 mg). Derivative 13 had: IR νmax 1682, 1649, 1611,
1560 cm−1; UV λmax nm (log ε) 318 (4.05), 271 (3.41), 260 (3.36) 225 (4.50); 1H-NMR, see Table 2; MS
(ESI-TOFMS) m/z 323 [M + H]+.

3.4.9. Hydrogenation of Radicinin: Derivatives 14 and 15

Radicinin (1, 6 mg), dissolved in MeOH (1 mL), was added to a presaturated suspension of
10% Pd/C in MeOH (1 mL). Hydrogenation was carried out at room temperature and atmospheric
pressure with continuous stirring. After 3h, the reaction was stopped by filtration on short silica gel
column, eluted with CHCl3-i-PrOH (9:1) and the clear solution was evaporated under reduced pressure.
The crude residue was purified by preparative TLC eluted with CHCl3-i-PrOH (95:5) affording two
different hydrogenated derivatives as main products (14 and 15, 2.12 and 1.40 mg respectively).
Derivative 14 had: IR νmax 3452, 1726, 1673, 1212 cm−1; UV λmax nm (log ε) <220 nm; 1H-NMR, see
Table 2; MS (ESI-TOFMS) m/z 507 [2M + Na]+, 265 [M + Na]+ and 243 [M + H]+. Derivative 15 had: IR
νmax 3450, 1681, 1643 cm−1; UV λmax nm (log ε) <220 nm; 1H-NMR, see Table 2; MS (ESI-TOFMS) m/z
507 [2M + Na]+, 265 [M + Na]+, 243 [M + H]+ and 225 [M − H2O + H]+.

3.5. Leaf Puncture Bioassays

The ten hemisynthetic derivatives (6–15) were first assayed at 2.5 × 10−3 M for phytotoxicity on
the leaves of buffelgrass (Cenchrus ciliaris) and those active at this concentration were then bioassayed
at 10−3 M. Compounds were first dissolved in MeOH (final concentration 4%) and stock solutions
at the two concentrations using sterile distilled water were then prepared. An incision of ca. 3 mm
was made on the adaxial surface of each leaf section of 3 cm with an insulin needle. The leaf sections
were placed in groups of six on the surface of a water-saturated filter paper in each of the four petri
dishes. A total of five leaf sections in each petri dish were tested with the solution containing the
compound, while one leaf section was used as a negative control (4% MeOH only). A droplet (10 µL)
of the appropriate solution was applied over each needle incision using a micropipette. The dishes
were sealed with parafilm and incubated at 24 ◦C for 3 days in a temperature-regulated chamber under
a photoperiod of 14–10 h (light/dark). After 3 days of treatment, necrotic lesion development was
evaluated by removing the petri dish cover, placing a glass disc on the leaf sections to flatten them
into a single plane, and photographing each dish with its leaf sections. Each acquired image was then
analyzed with the software ImageJ to measure the necrotic area caused by the solution.

3.6. Statistical Analyses

Statistical analyses were carried out using the GraphPad Prism 8 software (GraphPadSoftware,
San Diego, CA, USA). Data were represented as the mean ± standard deviation and analyzed
for statistical significance using ordinary one-way or two-ways analysis of variance and multiple
comparisons. For all test, p < 0.5 was considered to indicate a statistically significant difference.

4. Conclusions

These results obtained in this study demonstrated that the α,β unsaturated carbonyl group at C-4
and the stereochemistry at C-3 are important structural features to impart phytotoxicity. Furthermore,
the unsaturation of propenyl side chain also play a role to impart activity.
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Thus, radicinin appears to be the most active compound suitable to develop a target-specific
bioherbicide for buffelgrass control. Considering the very low production of this compound by different
strains of the fungus C. australiensis [14] and the difficulties to scale-up the cultures via a fermenter,
a suitable alternative appears to be its total enantioselective synthesis.
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