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Abstract: The protein by-products from carp (Cyprinus carpio) are normally discarded as industrial
waste during fish processing. The objective of this study was to identify and characterise the peptides
with a potential antioxidant activity that are released from carp skin proteins during hydrolysis by
the Protamex enzyme mixture. This study shows that a hydrolysate of carp skin gelatin and its
reversed-phase chromatography fractions have strong in vitro antioxidant properties. Among these
fractions, the alanine-tyrosine (Ala-Tyr) dipeptide was identified as the major compound with high
antioxidant potential. The peptide has good stability during in vitro enzymatic digestion assay and
can inhibit the angiotensin-converting enzyme (ACE). In conclusion, our study proves that both
the unfractionated hydrolysate of carp skin gelatin and the above-mentioned Ala-Tyr dipeptide
represents attractive novel compounds for the formulation of antioxidant foods.
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1. Introduction

In the human body, the imbalance between oxidation processes involving free-radical production
and the efficiency of antioxidative mechanisms leads to the development of many lifestyle diseases.
Substances that inhibit activity of free radicals retard cell ageing and may play a significant role in
the prevention of degenerative diseases occurring at an older age [1]. Antioxidants are also used
as preservatives for food. Oxidative transformation in food products is a crucial problem in food
technology because it causes deterioration of the sensory quality of products and reduces their
nutritional value. On the contrary, extensive literature indicates that the use of synthetic antioxidants
in food could be the cause of many disorders amongst consumers, such as liver damage or tumours [2].
This fact has led to the identification of new sources of antioxidants in food ingredients already present
in the market.

Production by capture fisheries in 2017 remained stable at 90.4 million tonnes. Nonetheless,
because a significant proportion of wild catches is utilised for fish feed, aquaculture’s share in direct
human consumption is now 55% and increases with each passing year. Domestically produced and
cheap species, such as carp (Cyprinus carpio), are still an important staple in emerging markets across
East and Southeast Asia [3]. Carp (Cyprinus carpio L), as a freshwater fish, is one of the most-willingly
bred species in the world. It is characterized by a fast growth rate and good fodder usage [4]. In 2015,
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the production of carp in Europe totalled 4,328,083 tonnes and is starting to decline [5]. The main
reason for this decline in the market demand for carp is that its traditional offer is mostly in the form
of whole fish. To increase the range of products from carp, manufacturers are looking for alternatives
to fresh carp, which is why these manufacturers are dynamically developing [4]. Processing plants
produce carp mainly in the form of fillets without skin. The commercial use of carp skins, which until
now have been treated as fish industry waste, can bring tangible economic benefits. Carp skin is a
good source of collagen (containing 16%) [6]. This collagen can be processed into protein hydrolysates
with antioxidant as well as other functional properties.

As reported in the literature, protein hydrolysates of gelatin from fish skin often have antioxidant
properties and can be an alternative to synthetic antioxidants [7]. Antioxidant peptides naturally
present in food have a potential for use as factors that prevent adverse texture development, improve
organoleptic properties, and cause functional or nutritional changes in food products owing to
oxidation as well as for the production of pharmaceuticals and cosmetics with lipids. The application
of such peptides may not only extend the lifespan of products (e.g., meat products), but also increase
both their attractiveness for consumers and their availability [8]. According to our preliminary studies,
antioxidative properties are also present in a hydrolysate prepared from the carp skin gelatin. The
objective of this study was to identify and characterise the peptides with a potential antioxidant activity
that are released from carp skin proteins during hydrolysis by the Protamex enzyme mixture.

2. Results and Discussion

The composition and amino acid profile of the carp skin gelatin hydrolysate. The composition of
freeze-dried hydrolysate of carp skin gelatin is given in Table 1.

Table 1. The composition and amino acid profile of the hydrolysate of carp skin gelatin.

The Composition of Carp Skin Gelatin Hydrolysate

Dry weigh [%] 90.00 ± 0.56
Protein [%] 80.09 ± 0.43

Fat [%] 0.93 ± 0.00
Ash [%] 4.48 ± 0.00

Amino acid profile (% of protein)
Alanine (Ala) 11.33 ± 0.06

Arginine (Arg) 9.49 ± 0.05
Aspartic acid (Asp) 6.78 ± 0.04
Glutamic acid (Glu) 7.15 ± 0.04

Glycine (Gly) 28.12 ± 0.15
Histidine (His) 1.04 ± 0.01
Isoleucine (Ile) 1.41 ± 0.01
Leucine (Leu) 2.84 ± 0.02
Lysine (Lys) 4.16 ± 0.02

Methionine (Met) 2.30 ± 0.01
Phenylalanine (Phe) 2.19 ± 0.00

Proline + hydroxyproline (Prol + Hyp) 13.60 ± 0.07
Serine (Ser) 3.86 ± 0.02

Threonine (Thr) 3.05 ± 0.02
Tryptophan (Trp) 0.00 ± 0.00

Tyrosine (Tyr) 0.64 ± 0.00
Valine (Val) 2.59 ± 0.01

The hydrolysate had a high protein concentration and low fat and water contents. According to
Chalamaiah et al. (2012) [9], the protein content of fish protein hydrolysates ranges between 60% and
90% of the total composition; this finding is consistent with our results. The high protein content of
carp skin hydrolysates highlights its potential use in the functional food industry.
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The low-fat content of the protein hydrolysates of carp gelatin is a big advantage because it
correlates with their low susceptibility to oxidative processes. This is an important factor for the
storage and use of protein hydrolysates in the industry. Fat is a medium for fish taste and aroma
and leads to colour changes: The low concentration of fat in protein hydrolysates of the carp gelatin
increases their quality and practical potential as well as positively affects the sensory characteristics of
the obtained hydrolysates. It can be assumed that the hydrolysates with an insignificant fish smell
and taste will be attractive and intentionally used as bioactive compounds for functional foods. The
high ash content could be caused by the addition of an acid and alkali required for pH adjustment and
control during hydrolysis.

The amino acid profile of the carp gelatin hydrolysates is presented in Table 1. The predominant
amino acids were Gly, Pro and Ala, which constituted approximately 28.12%, 13.60% and 11.33% of
the total amino acid content, respectively. These data are in an agreement with our previous findings
that Gly, Pro and Ala are some of the most abundant amino acid residues in gelatin from carp skin [6].
The high proportion of Gly, Pro and Ala has also been found in many ACE-inhibitory peptides [10].

It is worth noting that the hydrophobic amino acids constituted 60.67% of all the amino acids
comprising the hydrolysate. According to Centenaro et al. (2014) [11], for hydrolysates of proteins
and peptides, the greater the hydrophobicity, the higher the lipid solubility, and, therefore, the higher
the antioxidant activity. Thus, the result on the amino acid profile served as a preliminary factor
to evaluate the potency of bioactivity of carp skin–derived peptides. The rich source of potentially
functional amino acids identified in the protein hydrolysates was therefore assumed to contribute to
the antioxidant and ACE-inhibitory activities.

2.1. Isolation and Purification of the Antioxidant Peptides

The antioxidant activity of proteins and peptides is not contingent on only a single mechanism
because proteins contain various amino acids with different biological properties. Some antioxidant
components are more effective as radical scavengers or lipid peroxidation inhibitors, whereas some
others are metal-chelating or reducing agents [7]. Hence, this study involved three in vitro methods,
such as 2,2-diphenyl-1-picrylhydrazyl (DPPH)radical scavenging, ferric reducing antioxidant power
(FRAP), and metal-chelating activity assays.

The gelatin hydrolysate from carp skin obtained as a result of digestion with the Protamex enzyme
mixture is characterised by good antioxidant properties. Fu and Zhao (2015) [12] reported that the
hydrolysis of gelatin gave rise to a noticeable increase in antioxidant capacity. In addition, according
to these authors, the enzymatic hydrolysis of gelatin by various proteases can generate certain peptide
sequences responsible for different bioactivities, including antioxidant activity.

The antioxidant peptide from the carp skin hydrolysate was purified via a simple two-stage
procedure comprising gel filtration and reversed-phase high performance liquid chromatography
(RP-HPLC).

Measurements of antioxidant activity by the FRAP method for fractions from gel filtration
indicated that this activity was distributed to various degrees among all the collected fractions
(Figure 1).
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Figure 1. The elution profile of a carp skin gelatin hydrolysate separated by gel filtration and the ferric
reducing antioxidant power (FRAP) of the fractions.

The total antioxidant activity of the gelatin hydrolysate measured by the FRAP method is a
function of the activity of its individual fractions. Nonetheless, during gel filtration, the most active
fractions were eluted at the end of the chromatogram (fractions No. 60 and 61, Figure 1). According to
the absorbance at 220 nm, this fraction was marked as F8 and was equivalent to ca. 4% of the initial
separated material (and responsible for ca. 10–13% of the total antioxidant activity of the hydrolysate).
This fraction was next separated by reversed-phase HPLC into three major sub-fractions (F8-1, F8-2,
and F8-3; Figure 2A).
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Figure 2. (A) The reversed-phase HPLC pattern of the F8 fraction obtained by gel filtration and (B) the
FRAP activity of the eluted peaks expressed in µM Trolox/mg protein.

It can be observed that the peak with a retention time of 9.5–11.0 min (marked as F8-2) had a
particularly high antioxidant activity as measured by the FRAP method (26.64 µM Trolox/mg protein,
Figure 2B). The remaining fractions had more than 10-fold less antioxidant activity according to this
method. The FRAP method is based on a single electron transfer (SET) reaction between an oxidant
and a free radical [13]. Consequently, the results of the FRAP method regarding RP-HPLC fractions
suggested that fraction F8-2 is a strong natural antioxidant, acting according to the single electron
transfer (SET) mechanism.

On the contrary, all the fractions collected during gel filtration featured a low capacity for iron ion
chelation (<10%; Table 2).

Table 2. DPPH radical—scavenging and metal-chelating activities of the fractions from gel filtration.

Fraction DPPH Radical–Scavenging Activities [%] Metal-Chelating Activity [%]

F1 n/d 5.36 ± 2.46
F2 6.03 ± 3.50 8.31 ± 0.86
F3 n/d 8.07 ± 4.32
F4 n/d 7.20 ± 1.56
F5 12.61 ± 2.27 9.05 ± 2.21
F6 12.93 ± 4.80 7.71 ± 4.06
F7 n/d 8.02 ± 4.01
F8 13.97 ± 7.04 5.90 ± 1.36

n/d not detected.

This result most likely indicates that the chelation of iron ions by the output hydrolysate at
64.01% is a process for which different peptides are responsible cumulatively, and that it is completely
independent from the antioxidant activity measured by the FRAP method.
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The observed stronger chelating activity of hydrolysed gelatin from carp skin, as compared to the
activity of fractions obtained by gel filtration, may indicate a synergistic action of the peptides present in
the hydrolysate. These results are consistent with other reports, which have shown that unfractionated
protein hydrolysates are better metal ion chelators than their fractionated counterparts [14]. The
measurement of the chelating capacity toward iron ions in the F8-2 subfraction obtained after RP-HPLC
revealed that despite the high activity measured by the FRAP method, this fraction did not have the
ability to chelate iron ions.

The DPPH assay of the scavenging of free radicals by the fractions collected during the gel filtration
indicated that such activity observed in the initial hydrolysate (23.76%) was rather a cumulative result
of many different fractions. Fractions F1, F3, F4, and F7 (Figure 1) did not manifest the ability to
scavenge free radicals (0%), but the other tested fractions had the ability to capture free radicals at the
level of less than 13% (Table 2). The measurement of scavenging of free radicals by the F8-2 subfraction
obtained after RP-HPLC suggested that despite the high activity detected by the FRAP method, this
fraction did not have the ability to scavenge free radicals.

Several methods have been developed to evaluate the total antioxidant activity of food and animal
tissues. Among them, the FRAP method, DPPH method, and metal-chelating assay are the most
representative approaches frequently used in various studies. Each of the described tests of antioxidant
activity has a specific mechanism of action with its own benefits and drawbacks; however, in the
absence of a universal method that can produce clear results on a given product, the best solution
is to employ multiple methods at the same time. According to Zou et al. (2016) [15], due to the
different underlying mechanisms between evaluation assays, the values or variation trends obtained
by different assays differ widely, even for the same amino acid sequence and composition.

According to Chen et al. (2012) [2], purification of a protein hydrolysate can greatly increase its
antioxidant activity. Nevertheless, the results obtained in our study do not confirm this rule. The
antioxidant ability of the purified F8-2 fraction—as measured by the FRAP method in comparison
with the unfractionated hydrolysate—increased over 14-fold. In contrast, after the measurement by
the DPPH method and by the assay of chelation of iron ions, the antioxidant ability of the purified
F8-2 fraction significantly decreased (two-fold and 10-fold, respectively). This means that the total
antioxidant activity of the hydrolysate from carp skin corresponds to a cumulative effect dependent on
different peptides, not only on one purified peptide. These assumptions were confirmed by Sarmadi
et al. (2010) [16], who demonstrated that the overall antioxidative activity of a protein hydrolysate
must be ascribed to the integrative effects of several compounds rather than to the individual actions
of peptides.

As a result of the presented research, it was found that the F8-2 fraction is a strong antioxidant,
acting in accordance with the SET mechanism; therefore, it was further analysed in detail to identify
the peptide responsible for this activity.

2.2. Biochemical Characterisation of the Purified Peptide

The active peak being eluted at 10 min (Fraction F8-2, Figure 2A) was subjected to N-terminal
sequencing and yielded only a two-amino acid-long sequence: Ala-Tyr. The analysis of this peptide by
mass spectrometry revealed a spectrum containing a dominant peak at m/z = 253.2, equivalent to the
final mass of 252.2 Da (Figure 3A). This mass is in good agreement with the theoretical mass of the
Ala-Tyr dipeptide, which amounts to 252.27 Da. The MS/MS spectrum of the 253.2 ion independently
confirmed the sequence of the Ala-Tyr peptide (Figure 3B).
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According to Kou et al. (2013) [17], the lower-molecular-weight peptides (molecular mass from
200 to 3000 Da) are the most efficient antioxidants, and bioactive peptides usually contain less than 20
amino acid residues per molecule. The peptides with lower molecular weight have a better chance
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to cross the intestinal barrier and to exert biological effects. The Ala-Tyr peptide with the greatest
antioxidant activity isolated during our study had a low molecular weight (253.2 Da), much lower
than that of the antioxidant peptides isolated until now from fish gelatins [18–20].

The antioxidative activities of peptides are higher than those of free amino acids; this phenomenon
is attributed to the unique chemical and physical properties contributed by the amino acid sequences,
especially the stability of the resultant radicals that do not initiate or propagate further oxidative
reactions [17]. It is also estimated that the presence of amino acids, including Ala and Tyr, may
contribute to the antioxidant activities of peptides [21]. These results underscore the importance of
amino acid composition and peptide size for the antioxidative potential of peptides. In the present
study, the identified peptide (Ala-Tyr) contained the amino acids that have an antioxidant activity.
Thus, the carp skin gelatin hydrolysate has a great potential as a natural antioxidant ingredient for
food and pharmaceutical applications.

2.3. Confirmation of the Biological Activity of the Synthetic Ala-Tyr Peptide

To evaluate the antioxidant activities of the Ala-Tyr dipeptide, the DPPH, FRAP, and
metal-chelating assays of the synthetic peptide were conducted. The results are given in Table 3.

Table 3. Antioxidant properties of the hydrolysate and the synthetic Ala-Tyr peptide as well as their
stability after in vitro digestion.

Before In Vitro Digestion After In Vitro Digestion

FRAP [µM
Trolox/mg
Sample]

DPPH
Scavenging

[%]

Metal
Chelating

Activity [%]

FRAP [µM
Trolox/mg
Sample]

DPPH
Scavenging

[%]

Metal-Chelating
Activity [%]

Hydrolysate
[50 mg/mL] 2.65 a ± 0.07 23.76 a ± 3.94 64.01 a ± 4.64 1.70 b ± 0.11 27.23 a ±2.07 64.31 a ± 9.70

Synthetic
peptides

[10 mg/mL]
89.32 a ± 1.80 38.69 a ± 3.09 3.09 b ± 0.15 62.25 b ± 1.07 34.47 a ± 4.33 73.25 a ± 7.08

a., b.: Results with different lowercase letters are significantly different (p < 0.05).

These results clearly prove that the synthetic peptide, AY, has good antioxidative activity. The
FRAP value was the highest (89.23 µM Trolox/mg sample), and its DPPH-scavenging ability was
the second highest (38.69%). On the contrary, the synthetic peptide showed no ability to chelate iron
ions (3.09%). AY had a high antioxidant activity possibly due to the hydrophobic amino acid content.
As reported in the literature, hydrophobic amino acids in peptides can obviously improve oxidation
resistance [22]. Sae-Leaw et al. (2017) [23] noted that the presence of hydrophobic amino acids, such as
alanine, in the gelatin peptides from seabass skins increases their antioxidant properties. According to
these authors, the accessibility of hydrophobic antioxidant peptides to hydrophobic cellular targets,
such as the polyunsaturated chain of fatty acids, of biological membranes could be augmented, thereby
facilitating the interaction with radical species. According to Delgado et al. (2016) [24], peptides with
Tyr residues have the highest antioxidant activity. Additionally, the presence of Tyr at the C-terminal
position enhances the scavenging activity.

The results indicate that AY may contribute to the antioxidant potential. Nevertheless, other
studies on AY as an antioxidant peptide have not yet been reported.

It has been shown that hydrophobic amino acid residues, such as leucine, valine, alanine, tyrosine,
phenylalanine, or tryptophan, can act as competitive angiotensin-1-converting enzyme (ACE) inhibitors
as they preferably bind the catalytic sites of ACE [25]. Furthermore, according to data from the
literature, after oral administration in spontaneously hypertensive rats, dipeptides with tyrosine at the
C-terminal caused slow, but prolonged reduction of systolic blood pressure [26]. Thus, another test
was carried out to determine in vitro inhibition of ACE by the identified peptide, as shown in Figure 4.
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Figure 4. ACE-inhibitory activity [%] of hydrolysates and the synthetic Ala-Tyr peptide.

The synthetic peptide at the concentration of 10 mg/mL had more than a two-fold better ability to
inhibit ACE than did the hydrolysate of carp skin at a concentration of 50 mg/mL (27.17% and 66.44%,
respectively). The peptide, AY, contains an aromatic amino acid, which may contribute to the increased
potency by enhancing hydrophobic interactions with the enzyme molecule [27].

Dipeptide Ala-Tyr, which is derived from Cyprinus carpio skin gelatin hydrolysate, possesses
antihypertensive activities; along with similar dipeptides, it has received considerable attention for
its antihypertensive effects in vivo [28–30]. Also, in their research, Nakahara et al. [31] isolated nine
dipeptides that had strong ACE-inhibitory properties from Soy Sauce-Like Seasoning, most of these
peptides having an alanine in the N-terminal end, and/or tyrosine in the C-terminal end. The peptide,
AY, with anti-hypertension activity has been isolated by Yang et al. in 2007 [32] from corn gluten
meal. In their tests, with the participation of animals, it was found that the minimum effective
oral dose of peptide AY to reduce blood pressure by 9.5 mm Hg was 50 mg/mL. As a result of our
research, it can be stated that the hydrolysate of gelatin from carp skin is the source of a peptide with
anti-hypertension properties.

2.4. The Effect of Gastrointestinal Proteases on the Antioxidant Activity of the Synthetic Peptide AY and
Gelatin Hydrolysate

The obtained carp gelatin hydrolysate and synthetic peptide were next subjected to simulated
gastrointestinal digestion with pepsin and pancreatin to evaluate their stability and antioxidant activity
after digestion. Only weak changes were found after digestion (Table 3). The antioxidant activity of the
hydrolysate and of the peptide tested with the DPPH method did not differ statistically significantly;
however, the antioxidant activity of digested samples evaluated by the FRAP method was significantly
lower. Similar results were obtained by Harnedy et al. (2017) [33], who digested antioxidant peptides
isolated from the Palmaria palmata seaweed.

The ability of the gelatin hydrolysate from carp skin to chelate iron ions was stable after in vitro
digestion, whereas the synthetic peptide after digestion manifested a many-fold higher chelating
capacity than before digestion (73.25% versus 3.09%, respectively). It can be assumed that as a result of
the action of digestive enzymes, further hydrolysis of the peptide occurred, and free amino acids, Ala
and Tyr, were formed. According to Gülçin (2007) [34] and Wu et al. (2003) [35], L-Tyr and Ala can
chelate metal ions (at 60% and 32%, respectively); this observation may explain the increase in this
capacity after peptide digestion.

These results indicate that the hydrolysate and synthetic peptide, Ala-Tyr, could effectively
retain the overall antioxidant effect after in-vitro digestion. Future work should concentrate on the
examination of the ability of this peptide to reduce oxidative stress in living tissues.
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3. Materials and Methods

3.1. Extraction and Hydrolysis of Gelatin from Carp Skin

The carp skin was obtained from the Sona Sp. z o.o. fish processing plant (Koziegłowy, Poland),
where it was treated as waste after fish filleting. The skin was cleaned up to remove adjacent tissue
and was ground up (Mado MEW 613). Gelatin was extracted by the method of Duan et al. (2011) [36]
with a modification introduced by Tkaczewska et al. (2018) [6]. The Protamex® (Novozymes) enzyme
preparation was used for gelatin hydrolysis. In brief, 10 g of the lyophilised protein was dissolved
in 150 mL of water, heated to 50 ◦C, and then pH 7 was attained with 1 M HCl. The addition of the
enzyme preparation represented 2% (w/w) of the protein content. Based on our preliminary research,
the reactions were carried out for 3 h. For the first 15 min, pH was constantly monitored and adjusted
with 1 M NaOH, then pH was corrected every 15 min. The reaction was completed by incubating
hydrolysates at 95 ◦C for 15 min, then the samples were cooled down in an ice bath and centrifuged at
8000× g for 15 min at 10 ◦C.

3.2. The Composition and Amino Acid Profile of the Obtained Hydrolysate

Water, lipids, ash, and protein contents were determined by the Association of Official Analytical
Chemists (AOAC)-recommended methods [37].

Before amino acid analysis, 30 mg of enzymatic hydrolysate was additionally hydrolysed using
4 mL of 6 M HCl and 15 µL of phenol at 110 ◦C for 24 h. The sample was sealed in a nitrogen
atmosphere during the process of hydrolysis. The obtained hydrolysate was passed through a syringe
filter with a pore diameter of 45 µm and dried under a constant stream of nitrogen. Next, 10 mL of
the prepared solution was derivatised by mixing with 70 µL of borate buffer (pH 8.2–9.0) and 20 µL
of 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (Waters, Milford, MA, USA) in an acetonitrile
solution (3:1, w/v). The standards were derivatised in the same manner as the samples.

The amino acid analysis was carried out using a Dionex Ultimate 3000 HPLC system (Thermo
Fisher Scientific, Waltham, MA, USA) equipped with an LPG-3400 SD four-channel gradient pump,
WPS 3000 TSL autosampler, and FLD 3400RS four-channel fluorescent detector. Analysis was
performed on a Nova-Pak C18, 4 µm (150 × 3.9 mm) column (Waters, Milford, MA, USA). The
elution buffers were (A) acetate-phosphate buffer and (B) 60:40 acetonitrile/water. The separation
temperature was set to 37 ◦C, and detection settings were as follows: Excitation at 250 nm and emission
at 395 nm wavelengths. The quantitative analysis was performed by 1-point calibration with analytical
standards (50 pmol for each concentration). The quantification of tryptophan was performed in
accordance with the Buraczewska and Buraczewski (1984) [38].

3.3. Fractionation of an Enzymatic Hydrolysate and Purification of the Active Peptide

The dry powder of the hydrolysate was dissolved in ultrapure water at a concentration of
100 mg/mL, centrifuged at room temperature for 5 min at 20,000× g, and passed through a 0.45 µm
filter. Gel filtration was performed in ultrapure water on a HiLoad 16/600 Superdex® 30 pg column
(GE Healthcare, Chicago, IL, USA) at a 0.3 mL/min flow rate. Then, 1 mL of the hydrolysate solution
was loaded on the column at a specific time point. Collected fractions (1.5 mL) were subjected
individually to measure absorbance at 220 nm and 280 nm on a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA), and independently, to estimate the antioxidant activity.
The most active fraction was lyophilised, dissolved in 0.1% (v/v) trifluoroacetic acid (TFA), and
subjected to reverse-phase high pressure liquid chromatography (RP-HPLC) using an UltiMate 3000
chromatograph (Dionex™/Thermo™, Sunnyvale, CA, USA). The separation was performed on a
Discovery C18 250 × 4.6 mm column (Sigma-Aldrich, Poznan, Poland) at a 1 mL/min flow rate by
means of two buffers: (A) 0.1% TFA (v/v) and (B) 0.07% TFA in 80% acetonitrile (both v/v). The linear
gradient from 0% to 60% of buffer B was set up in 15 min, while the spectrophotometric detection was
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carried out at 220 nm and 280 nm. The collected fractions were evaporated in a vacuum centrifuge and
redissolved in ultrapure water.

3.4. Biochemical Characterisation of the Purified Peptide

The N-terminal amino acid sequence was determined on an automatic protein sequencer,
PPSQ-31A (Shimadzu Corp., Kyoto Prefecture, Japan). Mass-spectrometric analyses were performed
by means of an AmaZon ETD spectrometer (Bruker Corp. Billerca, MA, USA) equipped with an
electrospray ion source and an on-line nano-LC chromatograph (Proxeon A/S, Odense, Denmark).

3.5. Determination of the Antioxidant Activities

Ferric reducing ability of plasma (FRAP) method.
Determination of the reducing potential of samples was performed according to the method

described by Khantaphant and Benjakul (2018) [39] with some modifications. The oxidant in
the FRAP assay consisted of acetate buffer (pH 3.6), a ferric chloride solution (20 mM), and a
2,4,6-tripyridyl-s-triazine solution (10 mM TPTZ in 40 mM HCl) at 10:1:1 (v/v/v), respectively, and
was freshly prepared on the day of analysis. Thus, 100 µL of an appropriately diluted sample was
added to 900 µL of the above FRAP solution in microfuge tubes and vortexed. The tubes were
incubated at 37 ◦C for 30 min in the dark, and after that, absorbance was measured at 593 nm. Greater
absorbance represented higher reducing power of a sample. Some of the results were expressed as
Trolox equivalents (in µmol) of activity per 1 mg of the hydrolysate.

2,2-diphenyl-1-picrylhydrazyl (DPPH) method

The DPPH free radical quenching was determined by the method of Wu et al. (2003) [31] with
a modification described by Borawska et al. (2016) [40]. Equal volumes of the sample and DPPH
solution (0.15 mM) were mixed in 95% ethanol. The absorbance of the mixture was then measured at
517 nm. Lower absorbance represented a higher DPPH-scavenging activity. The scavenging effect was
calculated using the formula:

DPPH radical scavenging (%) =
Ablank − Asample

Ablank
× 100%

Ferrous-ion–chelating abilities.
The ability of the sample to chelate ferrous ions was assessed via the method of Guo et al.

(2001) [41]: 0.5 mL of a sample was first mixed with 4.5 mL of distilled water. It was then mixed with
0.1 mL of 2 mM FeCl2 and then 0.2 mL of 5 mM ferrozine. After 10 min, absorbance of the reaction
mixture was measured at 562 nm. The percentage of ferrous-ion–chelating ability was calculated as
follows:

Chelating ability (%) = 1 −
Asample

Ablank
× 100%

3.6. Measurement of ACE-Inhibitory Activity of the Synthetic Peptide and Hydrolysate

A synthetic alanine-tyrosine (Ala-Tyr) dipeptide was purchased from Sigma-Aldrich (cat. No.
A4003). The purity of the synthesized peptides was 100% as determined by thin layer chromatography.

The ACE-inhibitory activity was measured by a spectrophotometric assay of Nasri et al. (2013) [42]
with some modifications. In brief, 80 µL of a synthetic peptide (10 mg/mL) or hydrolysate
(50 mg/mL) solution was added to 200 µL of 5 mM hippuryl-l-histidyl-l-leucine (HHL), and
then preincubated for 3 min at 37 ◦C. The peptide and HHL were dissolved in 100 mM borate buffer
(pH 8.3) containing 300 mM NaCl. The reactions were then initiated by adding 20 µL of 0.1 U/mL
ACE from rabbit lungs (Sigma-Aldrich, Poznan, Poland), prepared in the same buffer. After incubation
at 37 ◦C for 30 min, the enzymatic reactions were stopped by addition of 250 µL of 0.05 M HCl. The
released hippuric acid (HA) was extracted with ethyl acetate (1.7 mL). The upper layer of the solution
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was evaporated at 95 ◦C under a constant flow of nitrogen. The residue was dissolved in 1 mL of
distilled water, and the absorbance of the extract at 228 nm was determined on a spectrophotometer
(UV/VIS, HeliosWaltham, MA, USA). The ACE-inhibitory activity was calculated using the equation:

ACE inhibition (%) =
A1 − A2

A1 − A3
× 100%

where A1 is the absorbance of the ACE solution without an inhibitor (carp gelatin protein hydrolysate),
A2 denotes the absorbance of the tested sample of carp protein hydrolysate, and A3 indicates the
absorbance of the HHL solution (a buffer was added instead of the ACE solution and sample).

3.7. Effects of Gastrointestinal Proteases on the Antioxidant Activity of the Synthetic Peptide and Gelatin
Hydrolysate

An in vitro digestion model system involving the enzymes similar to those in the upper
gastrointestinal digestive tract of humans was employed as described by Teixeira et al. (2016) [43].
pH of the synthetic peptide or hydrolysate solutions (30 mg/mL in water) was adjusted to 2.0 with
HCl (1 M), and pepsin 40 mg per g of protein (Sigma-Aldrich, Poznan, Poland)] was added. After
incubation at 37 ◦C for 1 h, pH of the solution was adjusted to 5.3 with 0.9 M NaHCO3. Pancreatin
40 mg per g of protein (Sigma-Aldrich, Poznan, Poland)] was added, pH was adjusted to 7.5 (1 M
NaOH), and the mixture was incubated at 37 ◦C for 2 h. At the end of the digestion, both enzymes
were inactivated by heating in boiling water for 10 min. The digested peptide and hydrolysate solution
were centrifuged (11,000× g; 15 min), and the supernatant was lyophilised. The antioxidant activities
of the digested peptide and hydrolysate were measured after digestion.

3.8. Statistical Analysis

All the analyses were performed in triplicate and the data were subjected to a statistical analysis in
the STATISTICA 12.0 software (Dell Software, Tulsa, OK, USA). Significance of the differences between
groups was established by one-way analyses of variance (ANOVA) and Tukey’s post hoc test (p < 0.05).
The results are presented as average± standard deviation.

4. Conclusion

The presented study shows that the carp skin gelatin hydrolysate and its RP-HPLC fractions
have strong in vitro antioxidant properties, as evidenced by their high FRAP value. Nonetheless,
according to metal chelation and DPPH-scavenging assays, fractionation of the hydrolysate attenuated
its antioxidant properties. In the hydrolysate, the Ala-Tyr dipeptide was identified, and it is responsible
for the high antioxidant activity tested using the FRAP method. The peptide has good stability during
in vitro digestion assay. Given that a negative effect of fractionation was observed for natural free
radicals, the unfractionated hydrolysate of carp skin gelatin may be a better alternative as an ingredient
for formulation of antioxidant foods in comparison with the fractionated peptides. The small size
(250 Da) of the dipeptide discovered in this work may contribute to its good intestinal absorption
and potency as an in vivo antioxidant. Future work will concentrate on the examination of the ability
of this peptide to reduce oxidative stress in living tissues. The results of this study can aid in the
development of practical applications of fish gelatin peptides as antioxidants.
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