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Abstract: An easy access to a series of previously unreported heterodinuclear Pd-Ln compounds,
Pd-bpydc-La, Pd-bpydc-Ce and Pd-bpydc-Nd (bpydc = 2,2′-bipyridine-5,5′-dicarboxylate) has been
developed. The Pd-Ln hybrid networks were effectively applied as catalysts in Suzuki–Miyaura
C-C cross-coupling reactions of 4-bromoanisole and 4-bromobenzonitrile with phenylboronic acid,
under mild conditions. A systematic investigation revealed Pd-bpydc-Nd as the most active
catalyst. In all cases, reaction yields varied with the base, catalyst loading and substantially
augmented with temperature (from 30 to 60 ◦C). Substituent effects were operative when changing
from 4-bromoanisole to 4-bromobenzonitrile. The key role played by the lanthanides, aromatic
substrate and base, in modulating the Pd-catalytic cycle has been highlighted. Importantly, the new
catalysts proved to be stable in air and vs. functionalities and are quite efficient in Suzuki–Miyaura
carbon-carbon bond formation conducted in protic solvents.

Keywords: heterobimetallic catalysts; dinuclear complexes; rare-earth metals; Suzuki–Miyaura
cross-coupling

1. Introduction

Palladium-catalyzed C-C bond construction [1–8] that makes use of readily available substrates
and proceeds with high chemoselectivity has established itself as a flexible synthetic protocol for
obtaining substituted arene and heteroarene derivatives [9–13] (e.g., symmetrical or unsymmetrical
biaryls) [14]. This synthesis approach has revolutionized the production of advanced materials [15–18],
pharmaceuticals [19–21], agrochemicals [21,22], liquid crystals [23], and natural or biologically
active compounds [24–28], etc. Numerous attractive strategies have been developed to address
the ample scope of this catalytic process including the utilization of palladium nanoparticles [29–35],
or palladium immobilized on magnetic nanoparticles [36] and natural supports [37], use of nucleophilic
carbene ligands (mostly NHCs) [38–46], Schiff bases [47,48], water-soluble ligands like poly(ethylene
glycol)-functionalized N-heterocyclic carbenes [49], thiourea [50] or phosphines [51,52], induction by
microwave (MW) acceleration [53,54], use of “greener” solvents, such as water [55–65] (activated by
MW [66,67] or in catalysis under micellar conditions [68] for enhancing the solubility of the aromatic
halide), water–DMF [69] or ionic liquids [70]. The reaction has long been the subject of vast research
in transition-metal catalysis. Various transition metal complexes [71–79] (e.g., Ni, Au, Co, Cu, etc.,
as such or combined in pairs as heterobimetallic catalysts), or nonconventional Pd(II)-complexes with
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intricate organic ligands containing S or Se have been intensively explored [80,81]. Efficient transition
metal-free catalysts have also been reported for Suzuki–Miyaura cross-coupling reactions [82].

Significantly, within the last few years, a new generation of heterogeneous catalysts
based on metal–organic frameworks (MOFs) with an Ln-Pd heterobimetallic construction, has
been developed and effectively applied to C-C cross-couplings. In such multifunctional
configurations, the lanthanide nodes are interconnected by appropriate organic linkers to form
rigid porous networks which attach PdCl2, prone to catalyze C-C bond formation. Thus, Jin
and coworkers [83] ingeniously combined Pd nitrophilic metal cations, which coordinate diimine
groups from the 2,2′-bipyridine-5,5′-dicarboxylate (bpydc) linker, with the Ln oxophilic rare
earth metals (Ln = Sm, Eu, Gd or Tb) to build-up MOFs displaying a good heterogeneous
catalytic activity for C-C cross-coupling reactions. With Ln(bpydc)PdCl2 embedded MOFs
they performed the Suzuki–Miyaura reaction of selected aryl halides with arylboronic acid in
toluene at 95 ◦C reporting appreciable yields in biaryls (82–97% yields, 4 h). More recently,
we have developed a novel set of air- and water-stable heterobimetallic coordination complexes
[Ln2Pd3(BPDC)2(HBPDC)2(µ2-O)Cl4(H2O)6·nH2O]m (Ln = Pr, Gd, Tb) binding the rare earth elements
through the carboxylate groups of the heteroleptic organic ligand, 2,2′-bipyridine-4,4′-dicarboxylic acid
and coordinating the nitrophilic Pd cations to the diimine groups of the difunctional organic linker [84].
By properly engineering the Pd network through the inclusion of lanthanides by intermediacy of
a totally different organic vector, the newly created hybrid materials exhibited a reasonably robust
and stable structural pattern with enhanced physical and chemical features which is dependent on
the nature of the lanthanide incorporated. This type of catalyst demonstrated a high performance in
eco-friendly and cost-effective Suzuki–Miyaura, Heck and Sonogashira reactions. Subsequently,
we have extended this concept to the synthesis of heterobimetallic coordination complexes,
[Ln2Pd2(BPDC)5/2(H2O)2·4H2O]n (Ln = Nd, Sm, Eu, Dy) employing the above bifunctional organic
linker 2,2′-bipyridine-4,4′-dicarboxylic acid to associate Pd ions with rare earth elements [85]. The
new class of Ln/Pd heterobimetallic coordination polymers offered a user-friendly methodology for
application as catalysts in Heck and Suzuki–Miyaura cross-couplings under green reaction conditions
(DMF-H2O, 1:1). In both chemical transformations, the new class of complexes displayed an excellent
catalytic activity (yields of 99% in Heck reaction and 98% in Suzuki–Miyaura reaction) as compared to
state of the art. Applying an alternative metallolig and strategy for MOF construction [86,87], a new
set of heterobimetallic Pd/Ln MOFs with Sm, Eu, Tb, Dy, as lanthanide nodes, interconnected by a
distinct bifunctional organic linker, 1,1′-di(p-carboxybenzyl)-2,2′-diimidazole, has been prepared [88].
This novel class of MOFs showed excellent stability in air and water and displayed high catalytic
activity in Suzuki–Miyaura reactions conducted both homogeneously and heterogeneously, in neat
water, ethanol or water–ethanol. Phase switchability was demonstrated when changing from water
(homogeneous reaction) to ethanol (heterogeneous reaction) with beneficial consequences for practical
applications. Such complexes were found to be pH-responsive, in a reversible way, enabling convenient
recovery from acidic water solutions in view of recycling, as well as for environmentally friendly, final
separation of metal residues.

With the aim of disclosing new catalytic abilities of rare-earth elements associated with
palladium when they are incorporated within heterodinuclear Pd networks by means of
2,2′-bipyridine-5,5′-dicarboxylate (bpydc) as the heteroleptic organic linker, we have synthesized
three novel dinuclear Pd-Ln MOF-type catalysts [Pd-bpydc-La (1), Pd-bpydc-Ce (2), Pd-bpydc-Nd
(3)] by a simple one-pot procedure and successfully applied them in Suzuki–Miyaura reaction.
We took advantage of the oxophilic propensity of the lanthanides to properly bind to the carboxylate
groups of the bifunctional organic ligand to create a rigid network tethering Pd chloride at its
nucleophilic nitrogen sites. Additionally, the electronic properties of the dipodal organic linker,
2,2′-bipyridine-5,5′-dicarboxylate, will influence the charge transfer between lanthanide and palladium
active centers, tailoring, thus, the catalytic properties of the metal–organic framework. The final
aim of these investigations lies in the evaluation of the catalytic properties of compounds 1–3 in



Molecules 2018, 23, 2435 3 of 13

heterogeneous cross-coupling of two model aryl bromides, i.e., 4-bromoanisole and 4-bromobenzonitrile,
with phenylboronic acid, in methanol as a solvent, to give the corresponding biphenyl derivatives
(Scheme 1).

Scheme 1. The Suzuki–Miyaura cross-couplings of 4-bromoanisole and 4-bromobenzonitrile with
phenylboronic acid promoted by Pd-bpydc-Ln catalysts (1–3).

2. Experimental Section

2.1. Materials and Synthesis Methodology

All reagents and solvents employed were of commercial grade, purchased from the suitable
suppliers and were used without further purification. Powder XRD patterns were recorded with CuKα

radiation by using a Bruker D8 Advance X-ray diffractometer. Elemental analyses were performed
on a Perkin-Elmer elemental analyzer. Conversions were determined using Agilent 7890 GC-MSD.
IR spectra were measured using a Nicolet IR-470 spectrometer for samples in KBr pellets.

2.2. Synthesis and Characterization of Pd-bpydc-Ln (1–3).

The heteronuclear bimetallic palladium compounds 1–3 have been synthesized in a one-pot
procedure, according to the previously published methodology [88–90]. A mixture of K2PdCl4
(0.29 mmol), 2,2′-bipyridine-5,5′-dicarboxylic acid (0.29 mmol), Ln(NO3)3·6H2O (0.18 mmol) and
water (10 mL) was stirred for 20 min in open air. The mixture was then transferred to a 23 mL Teflon
reactor and kept at 100 ◦C for 24 h under autogenous pressure, thereafter, cooled to room temperature
at a rate of 5 ◦C/h. The resulted yellow crystals were characterized by elemental analysis, powder XRD
and infrared spectroscopy (KBr). Anal. Calcd. for C24 H35N4O19Cl4La1Pd2 (1): C, 24.49; H, 3.00; N, 4.76.
Found: C, 24.41; H, 3.08; N, 4.80. IR (KBr)(cm−1): 3445, 3062, 1694, 1612, 1592, 1555, 1410, 1389, 1294,
1257, 1143, 1054, 858, 835, 778, 699, 661, 599, 415. Anal. Calcd for C24H35N4O19Ce1Cl4Pd2 (2): C, 24.46;
H, 2.99; N, 4.75. Found: C, 24.38; H, 3.10; N, 4.71. IR (KBr)(cm−1): 3448, 3061, 1698, 1613, 1557, 1392,
1296, 1142, 1057, 1037, 858, 893, 776, 700, 661, 527, 419. Anal. Calcd. for C24H35N4O19Cl4Nd1Pd2

(3): C, 24.38; H, 2.98; N, 4.74. Found: C, 24.30; H, 3.10; N, 4.81. IR (KBr)(cm−1): 3458, 3071, 1711,
1623, 1567, 1402, 1302, 1161, 1065, 1042, 861, 888, 779, 706, 683, 568, 421. X-Ray analysis indicated
that compounds 1–3 are isostructural and crystallize in a triclinic crystal system with space group
P-1. Powder X-ray diffraction analyses of compounds 1–3 have been performed at room temperature.
The patterns for 1–3 are in good agreement with the calculated data obtained from the single-crystal
structures, confirming that the purities equal those of the single crystal samples.

2.3. General Procedure for Suzuki–Miyaura Reaction

A mixture of 4-bromoanisole (0.5 mmol) or 4-bromobenzonitrile (0.5 mmol), phenylboronic acid
(0.6 mmol), specified base (0.5 mmol), methanol (1 mL), 0.2–0.5 mol% of catalyst was stirred at 30 ◦C
or 60 ◦C in air. The progress of the reaction was monitored by withdrawing samples periodically
which were analyzed by gas chromatography–mass spectrometry (GC-MS). GC-calculated yields
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were based on the amount of 4-bromoanisole or 4-bromobenzonitrile employed. At the end of the
reaction, the catalyst was separated by simple filtration. The mixture was extracted with diethyl ether
(20 mL), washed with water and dried over anhydrous Na2SO4. The solvent from the extract was
completely removed with a rotary evaporator to obtain the product, which was further purified by
column chromatography on silica gel. All coupling products were identified by Agilent 7890A-5975C
GC-MS and 1H NMR spectroscopy.

3. Results and Discussion

With the new set of Pd-Ln compounds in hand, we focused first on the optimization studies of the
cross-coupling reaction between 4-bromoanisole and phenylboronic acid as special model substrates
(Scheme 1) striving to identify the best catalytic system and reaction conditions. On this line, catalysts
1–3 and various combinations of temperatures, reaction times and catalyst/substrate ratios were
investigated (Table 1).

Table 1. Suzuki–Miyaura cross-coupling of 4-bromoanisole with phenylboronic acid in methanol-induced
by Pd-bpydc-Ln catalysts 1–3.

Entry Catalyst T (◦C) Time (h) Yield (%) a,b,c

1

Pd-bpydc-La (1)

30 8 35.0 a

2 30 8 15.0 b

3 60 4 55.0 a

4 60 4 14.9 b

5

Pd-bpydc-Ce (2)

30 8 25.0 a

6 30 8 25.9 b

7 60 4 91.9 a

8 60 4 88.9 b

9

Pd-bpydc-Nd (3)

30 8 95.0 a

10 30 8 93.4 b

11 60 4 95.0 a

12 60 4 94.9 b

a Reaction conditions: 4-bromoanisole (0.5 mmol), phenylboronic acid (0.6 mmol), sodium tert-butoxide (0.5 mmol),
methanol (1 mL),catalyst (0.5 mol %); b Catalyst (0.2 mol %).; c Reaction yield (%) for total conversion determined
from the internal standard yield, at the specified reaction time, based on gas chromatography (GC), using hexadecane
as internal standard.

For properly surveying and comparing the catalytic performance of our three Pd-bpydc-Ln
compounds (1–3), we used a range of bases and methanol to ensure good solubility of the reaction
partners and intermediates (best for the sodium tert-butoxide–methanol pair). Catalytic runs were
carried out in the 30–60 ◦C temperature range, with catalyst/substrate molar ratios corresponding
to different catalyst loadings (varying from 0.5 mol % to 0.2 mol %). Notably, low catalyst loadings
allowed high yields (93–95%) and conversions (73–99%) to be attained with catalyst 3, at the optimized
reaction time and temperature. For almost all sets of reaction parameters, the recorded conversions
and yields follow the order: Pd-bpydc-Nd (3) > Pd-bpydc-Ce (2) > Pd-bpydc-La (1). An increase
in the product yield with temperature is the general trend for the three catalysts. This result is in
accordance with the fact that palladium-catalyzed cross-coupling in organic solvents is conveniently
performed at higher temperature [83]. Under all tested conditions, Pd-bpydc-Nd (3) is clearly the
best catalyst (Table 1, entries 9–12) affording highest yields (Figure 1) and selectivities. Remarkably,
these favorable yields were obtained at 30 ◦C as well as at 60 ◦C, which are milder than other currently
used temperatures in cross-couplings occurring in common organic solvents.
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Figure 1. Product yields in Suzuki–Miyaura reaction of 4-bromoanisole with phenylboronic acid
catalyzed by 1–3.

Noteworthy, we found that the nature of the lanthanide highly matters. As will be seen below,
the lanthanides play a significant role in tailoring in several ways the catalytic properties of the
palladium complexes. Working either at 30 ◦C or 60 ◦C and at low catalyst loadings the activity
of Pd-bpydc-Nd (3) (yield: 95%; Table 1, entry 9 and 11) surpasses that of the previously reported
Pd(diimine)Cl2 embedded heterobimetallic (Pd-Ln) heterogeneous catalysts [83] which have a related
structure but contain another lanthanide (i.e., Ln = Sm). A sharp variation in product yield and catalyst
activity with temperature was found for Pd-bpydc-Ce (2); this catalyst proved to be highly active at
60 ◦C, even for a low catalyst loading (Table 1, entry 7 and 8) but displayed lower yields at 30 ◦C
(Table 1, entry 5 and 6) under the employed reaction conditions (8 h reaction time, 0.2 mol % or 0.5 mol
% catalyst loading). Most intriguingly, under best conditions catalyst Pd-bpydc-La (1) provided only
moderate yields (max. 55%, Table 1, entry 3), as compared to Nd and Ce. This totally distinct behavior
of the La complex is still not well understood. Since compounds 1–3 having as rare-earth elements La,
Ce, Nd are isostructural, we assume that the observed dissimilarities in activity should not stem from
the crystal structure but originate from the nature of the lanthanides and their mode of coordination
into the metal–organic framework. The varying Lewis acid character and electropositivity of the
three rare-earth elements may determine the stability and activity of the coordinated Pd sites with
consequences on the reaction outcome. To rationalize this different behavior of the Pd-Ln catalysts,
we consider that the lanthanides would build a specific electronic environment at the palladium
site through the organic linker, as a function of their electropositive propensity and are, therefore,
responsible for the activity and stability of the catalyst. Furthermore, the differences in electropositivity
and reducing the power of the three lanthanides, La, Ce, and Nd, may affect otherwise the palladium
catalytic cycle and particularly the reductive elimination step by favoring the generation of Pd(0)
species able to resume a new catalytic cycle (Scheme 2).

In our case, Nd3+ endowed with a small ionic radius and high availability of the f-electrons
(Table 2) seems to have a strong influence on the Pd site through charge transfer, mediated by the
flexible organic linker, conducive to an enhancement of the reductive elimination step of the Pd
catalytic cycle. This process occurs via synergistic cooperation between the lanthanide and the aromatic
linker in transferring charge density to the nitrogen-Pd bond.
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Scheme 2. Influence of lanthanides (Ln = La, Ce, Nd), substrate, base and solvent on the Pd catalytic
cycle in the Suzuki–Miyaura cross-coupling reaction.

Table 2. Ln3+ radius (pm) and electron configuration of La, Ce, and Nd.

Lanthanide La Ce Nd

Ln3+ radius (pm) a 103 102 98.3
Ln3+ electron

configuration b 4f0 4f1 4f3

a [91]; b [92].

The lanthanides, having multiple coordination abilities and an enhanced oxophilic character,
enable the formation of a 3D framework anchoring PdCl2 and yielding, thus, a highly active and stable
Pd catalyst.

Another significant observation is that low catalyst loadings result in a slight drop in the yield
and conversion. Obviously, in our experiments, the yields are consistently higher when the catalyst
amount is 0.5 mol %. Moreover, Table 1 convincingly demonstrates that, under the promotion of our
dinuclear catalytic systems, the reaction in methanol can lead to advantageous results. The rationale
behind the excellent performance in methanol likely lies in the fact that it can dissolve most of the
substrate and base ensuring a favorable concentration of these compounds in the reaction medium.
Furthermore, methanol is cheap and readily available; however, running catalytic tests in this solvent
at more elevated temperatures is hindered by its relatively low boiling point. Gratifyingly, from the
above data, Pd-bpydc-Nd catalyst (3) in methanol as the solvent is an excellent choice for efficient
application in the Suzuki–Miyaura cross-coupling.

Variation of the base (Table 3) showcased that sodium and potassium hydroxide, as well as
sodium tert-butoxide, are the most appropriate bases affording high yields (Table 3, entries 1, 3 and 5),
even at lower catalyst loading (0.2 mol %) and reaction temperature (30 ◦C).

Interestingly, the other tested inorganic bases (e.g., sodium and potassium carbonates) gave rather
good yields proving that the employed bases provide a sustainable outcome in the biaryl product
(yields of 92–95%), thus, widening the scope of our catalytic process.

As commonly accepted, an important issue in the Suzuki reaction is the nature of the aryl
halide, R-X. In this respect, the above-investigated parameters that affect the reaction course
have been conducted on 4-bromoanisole as a model substrate. A different R-X substrate, namely
4-bromobenzonitrile, was additionally examined in cross-couplings with phenylboronic acid (Table 4),
under the same reaction conditions as given in Table 3, allowing, thus, an accurate comparison of the
two aryl substrates.
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Table 3. Suzuki–Miyaura cross-coupling of 4-bromoanisole with phenylboronic acid in the presence of
Pd-bpydc-Nd (3) when various bases are employed a.

Entry Catalyst Base Yield (%) b

1

Pd-bpydc-Nd
(3)

KOH 95.0
2 K2CO3 91.9
3 NaOH 92.0
4 Na2CO3 92.0
5 NaOtBu 95.0

a Reaction conditions: 4-bromoanisole (0.5 mmol), phenylboronic acid (0.6 mmol), base (0.5 mmol), methanol (1 mL);
reaction time 8 h; temperature: 30 ◦C, catalyst: 0.2 mol %. b Reaction yield (%) for total conversion determined from
the internal standard yield, at the specified reaction time, based on the GC, using hexadecane as internal standard.

Table 4. Suzuki–Miyaura cross-coupling of 4-bromobenzonitrile with phenylboronic acid in the
presence of Pd-bpydc-Nd (3) when various bases are used a.

Entry Catalyst Base Yield (%) b

1

Pd-bpydc-Nd
(3)

KOH 94,2
2 K2CO3 94.5
3 NaOH 97.6
4 Na2CO3 95.9
5 NaOtBu 90.8

a Reaction conditions: 4-bromobenzonitrile (0.5 mmol), phenylboronic acid (0.6 mmol), base (0.5 mmol), methanol
(1 mL); reaction time 8 h; temperature: 30 ◦C, catalyst: 0.2 mol %. b Reaction yield (%) for total conversion
determined from the internal standard yield, at the specified reaction time, based on the GC, using hexadecane as
internal standard.

Studies on the substrate scope unequivocally indicated that, for each base, conversions and
yields pertaining to reactions with 4-bromobenzonitrile (Table 4) are superior to those obtained
with 4-bromoanisole (Table 3). These results are reasonable taking into account the well-established
fact that oxidative addition [Pd(0) to RPd(II)X] is the rate-determining step in the Pd catalytic
cycle [5,7,90,93] and, therefore, aryl halides activated by an electron-withdrawing group, as is the
case of 4-bromobenzonitrile, are more reactive in the oxidative addition step as compared with
substrates bearing electron-donating groups (i.e., 4-bromoanisole). The increase in reactivity of
4-bromobenzonitrile could, thus, explain the obvious difference observed for the carbonates for the
two substrates, these weak bases becoming quite effective in C-C couplings with the new aryl bromide
(entries 2–4 Table 4 vs. entries 2–4 in Table 3, Figure 2).

Figure 2. Product yields in Suzuki–Miyaura reaction of 4-bromobenzonitrile with phenylboronic acid
catalyzed by 3.
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Furthermore, the high level of activity maintained by all bases examined by us may be rationalized
by considering the same mechanism of action exerted by the base in activating the organoboron
compound in the transmetalation step of the Pd catalytic cycle (Scheme 2) [93–95]. Inherent differences
could be determined by the nature of the counter cations and solubility pattern of the base in the
protic medium.

Recyclability of the Pd-bpydc-Nd (3) catalyst has been demonstrated in the reaction of
4-bromoanisole with phenylboronic acid, in consecutive runs, working under our mildest conditions.
It was found that the catalyst could be reused three times without significant loss of the catalytic
activity. Nonetheless, the structure of the catalyst after three runs could not be determined so far and
further investigations are to be conducted in this respect.

4. Conclusions

In summary, the heterodinuclear compounds, Pd-bpydc-La, Pd-bpydc-Ce, and Pd-bpydc-Nd
(bpydc = 2,2′-bipyridine-5,5′-dicarboxylate), synthesized in a one-pot procedure, provided
advantageous access to biphenyl derivatives by cross-coupling of aryl bromideswithphenylboronic
acid. The attractive feature of our approach lies in the association of palladium, the most active and
traditionally employed transition metal for the catalyzed Suzuki–Miyaura reaction, with rare earth
metals, i.e., La, Nd or Ce, that together with the organic linker build MOFs with good chemical, thermal
and mechanical stability. The beneficial cooperativity between the electropositive Ln ions and the
electrophilic Pd ions, providing a distinct electronic environment at the Pd active sites, seems to be
favored by the bifunctional organic linker, finally leading to a highly active Pd catalyst.

Both high conversions and selectivities have been attained, under mild conditions. It was found
that the Pd-bpydc-Nd catalyst performs best. Use of methanol as the solvent and of alkaline hydroxides
or carbonates as the base led to optimum outcomes. Results suggest that the rare earth elements,
by influencing the activity of palladium, play an important role in attaining the excellent selectivities
observed especially for the combination Pd-Nd. Moreover, this catalyst could be recycled in three
consecutive runs. Further efforts to extend the application of the here disclosed catalytic systems to
other cross-coupling transformations are underway in our laboratory.
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