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Abstract: In this paper, taking the generalized synchronization problem of discrete chaotic systems
as a starting point, a generalized synchronization method incorporating error-feedback coefficients
into the controller based on the generalized chaos synchronization theory and stability theorem
for nonlinear systems is proposed. Two discrete chaotic systems with different dimensions are
constructed in this paper, the dynamics of the proposed systems are analyzed, and finally, the phase
diagrams, Lyapunov exponent diagrams, and bifurcation diagrams of these are shown and described.
The experimental results show that the design of the adaptive generalized synchronization system
is achievable in cases in which the error-feedback coefficient satisfies certain conditions. Finally,
a chaotic hiding image encryption transmission system based on a generalized synchronization
approach is proposed, in which an error-feedback coefficient is introduced into the controller.

Keywords: chaotic synchronization; generalized synchronization; chaotic hiding and anti-hiding;
parameter control; transmission system

1. Introduction

Chaos is a unique nonlinear dynamical phenomenon with the properties of ergodic-
ity, initial sensitivity, and the long-term unpredictability of motion trajectories [1–4]. In
recent years, the study of chaos has become very popular, and it is widely used in the
field of secure communication [5–7]. Chaos control and synchronization theory, which has
great potential for application in the field of chaos research, has also become a hot spot
in the high-tech competition between countries [8,9]. From the point of view of chaotic
system interactions, studies related to chaotic synchronization can be divided into the
following categories: generalized synchronization, phase synchronization, hysteresis syn-
chronization, and so on [10–13]. In addition, during the process of research, researchers
have proposed complete synchronization, projective synchronization, and adaptive syn-
chronization [14–17]. In practical studies, the problem of parameter selection is inevitable
regarding the structural differences between the drive and response systems. The gen-
eralized synchronization problem for chaotic or hyperchaotic systems would be a more
relevant and worthwhile approach, given that the problems mentioned above can be easily
solved for generalized chaotic synchronization systems. Meanwhile, the development of
generalized synchronization theory has provided new tools for constructing more secure
communication systems.

Generalized synchronization is the gradual convergence of the trajectory curves of
two chaotic systems to a time-independent transformation relationship over time; that
is, a functional relationship is determined between the state of the driven system and
the state of the responding system, and the synchronization of the driven and respond-
ing systems is achieved by this functional relationship, which can be deterministic or
nondeterministic [18–22]. This paper proposes a generalized chaotic synchronization
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method incorporating error-feedback coefficients into the process of determining the func-
tion relationships, which is based on the principle of using the relationships between the
functions in the designed controller to synchronize the drive and response systems. Most
of the systems used in practical engineering are high-dimensional nonlinear systems. With
the continuous research in applied mathematical theory and the rapid development of
computer technology, lower-dimensional chaotic systems in practical applications are fac-
ing more challenges; hence, high-dimensional hyperchaos with more than two Lyapunov
exponents is of significant interest. Based on the above, new 3D and 6D discrete chaotic
systems are constructed and proposed in this paper. The constructed new high-dimensional
chaotic systems are used as the driving systems, and the response system is constructed by
the proposed generalized chaotic synchronization method that incorporates error-feedback
coefficients. The effectiveness of the synchronization method was confirmed by experiment.

The paper is organized as follows: The generalized synchronization theoretic of dis-
crete chaotic systems and the stability principle of error systems are analyzed in Section 2.
A new 3D discrete chaotic system is proposed in Section 3, in which the dynamic behavior
of phase diagrams, Lyapunov exponent diagrams, and bifurcation diagrams are depicted
and analyzed. Subsequently, a generalized chaotic synchronization method incorporat-
ing error-feedback coefficients is proposed, with a new 3D discrete chaotic system as
the driving system. The effectiveness of the method was verified by experimental sim-
ulations. In Section 4, a new 6D discrete chaotic system is proposed, and the dynamic
behavioral properties of its phase diagram, Lyapunov exponent diagram, and bifurcation
diagram are analyzed. Then, the new 6D discrete chaotic system is applied as the driving
system through the proposed generalized chaotic synchronization method incorporating
error-feedback coefficients; the effectiveness of the method was further demonstrated by
performing simulations. In Section 5, a digital image transmission system based on 6D
chaotic synchronization and encryption is proposed, the encryption and decryption pro-
cesses are analyzed in detail, and encryption and decryption simulations are given. Then,
in Section 6, security analyses are carried out based on the previously proposed encrypted
image transmission system. Finally, the conclusion is given in the last section.

2. Theory of Generalized Synchronization for Discrete Chaotic Systems

In our study of chaotic control problems, it is more important to convert the problem of
chaotic synchronization into the analysis of system errors. The main idea is to consider the
difference in the state between the drive and response systems, that is, the synchronization
error of the system. Once a reasonable controller has been designed by parameter changes
to make the system error asymptotically stable at the origin point, then the two systems can
be considered synchronized with each other. Firstly, the mathematical model of generalized
chaotic synchronization is proposed in this paper and described, as follows.

Definition 1. Consider two n-dimensional nonlinear dynamical systems, and describe them using
the following equations:

X(k + 1) = F(X(k)) (1)

Y(k + 1) = Q(Y(k)) + G(X(k), Y(k)) (2)

where X, Y ∈ R, and F(·) as well as Q(·) are n-dimensional nonlinear functions, and G(·) is an
n-dimensional input control function. If the selectable function G(X(k), Y(k)) is applied such that
k→ ∞ , and thus lim

k→∞
‖G(X(k), Y(k))‖ = 0, then it can be translated into the study of the error

system (e(k)), for which e(k) = G(X(k), Y(k)), and therefore lim
k→∞
‖e(k)‖ = 0. In this case, the

drive system and response system can reach a generalized synchronization.

Theorem 1. Define an invertible transform ( H : Rm → Rm );consequently, there is an incorporated
error-feedback coefficient (η).Where the feedback coefficient satisfies the condition η ∈ (−1, 1), it
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can enable the progressive stability of the zero solution of Error Equation (3) of the system, which is
represented as follows:

e(k + 1) = H(Xm(k + 1))−Y(k + 1) (3)

Because the zero solution of Equation (3) is gradually stable, by introducing a rea-
sonable feedback coefficient (η), the drive and response systems can be synchronized in a
universal way.

Hence, according to Theorem 1, it can be concluded that to synchronize the drive
system (1) and response system (2), a nonlinear error system (e(k)) needs to be con-
structed, and the progressive stability of the error equation of the system (e(k + 1) =
H(Xm(k + 1))−Y(k + 1)) needs to be guaranteed. Based on the above, the next major con-
cern is to determine that the system error equation is asymptotically stable at the original
point; therefore, the following lemmas are given:

Lemma 1 ([23]). Given a linear discrete system, which can be defined as follows:

x(k + 1) = Ax(k) (4)

where A is a n× n coefficient matrix, and A ∈ Rn×n, we can draw the following conclusions:

(1) Chaotic system (4) is progressively stable if the modulus of all eigenvalues of matrix A is not
more than 1;

(2) In case there is a matrix (Q > 0), so that the Lyapunov equation (ATPA − P = −Q) has a
unique positive solution (P), system (4) is asymptotically stable.

Proof of Lemma 1(1). Set V(x(k)) = xT(k)x(k), and then the tiny variables of V(x(k)) can
be calculated as follows:

∆V(x(k)) = V(x(k + 1))−V(x(k))
= xT(k + 1)x(k + 1)− xT(k)x(k)
= xT(k)AT Ax(k)− xT(k)x(k)
≤
(
λmax

(
AT A

)
− 1
)
xT(k)x(k)

(5)

Because all the eigenvalues of matrix A have a value of modulo less than 1, all the
eigenvalues of matrix AT A are integers, which are less than 1; therefore, ∆V(x(k)) < 0,
and system (4) is asymptotically stable. �

Proof of Lemma 1(2). Set V(x(k)) = xT(k)Px(k), where P is a positive definite matrix,
given that AT PA − P = −Q, and then the tiny variables of V(x(k)) can be calculated
as follows:

∆V(x(k)) = V(x(k + 1))−V(x(k))
= xT(k + 1)Px(k + 1)− xT(k)Px(k)
= xT(k)AT PAx(k)− xT(k)Px(k)
= xT(k)

(
AT PA− P

)
x(k)

= −xT(k)Qx(k) < 0

(6)

Furthermore, lim
x→∞

x(k) = 0; hence, system (4) is asymptotically stable. �

Based on the proof processes for the stability of linear discrete systems as related in
Lemma 1, the determination processes for the stability of nonlinear discrete systems can be
given through Lemma 2, which is described as follows:

Lemma 2. For a nonlinear discrete system (x(k + 1) = f (x(k)), k = 0, 1, 2 · · · ), let xe = 0
(i.e., f (0) = 0) be the equilibrium point of the proposed system. Provided that the scalar function
x(k) = 0 concerning V(x(k)) satisfies the following:

(1) V(x(k)) > 0,
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(2) ∆V(x(k)) = V(x(k + 1))−V(x(k)) < 0.

then xe = 0 is progressively stable.

Proof of Lemma 2. For condition (1), let V(x(k)) = xT(k)x(k), and in the case of x 6= 0,
V(x(k)) > 0, the first condition is proven. For condition (2), let V(x(k)) = xT(k)Px(k). We
can prove that P is a positive definite matrix from Lemma 1. Moreover, AT PA− P = −Q,
and Q > 0; subsequently, the small changes (V(x(k))) can be described (∆V(x(k))), which
are calculated as follows:

∆V(x(k)) = V(x(k + 1))−V(x(k))
= xT(k + 1)Px(k + 1)− xT(k)Px(k)
= xT(k)AT PAx(k)− xT(k)Px(k)
= xT(k)

(
AT PA− P

)
x(k)

= −xT(k)Qx(k) < 0

(7)

�

Thus, the proof of condition (2) is complete. Based on the above, it is concluded that
nonlinear system (4) is asymptotically stable at the origin point.

Thus, having proved Lemma 1 and Lemma 2, the proof of Theorem 1 can be obtained,
which is as follows:

Proof of Theorem 1. According to Equations (1) and (2), Equation (3) can be calculated
as follows:

e(k + 1) = H(Xm(k + 1))−Y(k + 1) = H(F(X(k)))−Q(Y(k))− G(X(k), Y(k)) (8)

where Q(Y(k)) = F(Y(k)) + U(k), and U(k) is a control function, which be represented
as follows:

U(k) = H(F(X(k)))− F(Y(k)) + (1− η)G(X(k), Y(k)) (9)

Then, Equation (9) can be simplified as the following equation:

e(k + 1) = ηG(X(k), Y(k)) = ηe(k) (10)

Denote the scaled function of the nonlinear error system (e(k) = 0) represented as
V(e(k)) = e(k)Te(k), and then the ∆V(e(k)) is calculated as follows:

∆V(e(k)) = V(e(k + 1))−V(e(k))
= e(k + 1)Te(k + 1)− e(k)Te(k)
= ηe(k)Tηe(k)− e(k)Te(k)
= η2e(k)Te(k)− e(k)Te(k)
=
(
η2 − 1

)
e(k)Te(k)

(11)

Therefore, when the parameter η satisfies the condition η2 < 1, ∆V(e(k)) < 0; hence,
V(e(k + 1))/V(e(k)) < 1 and lim

k→∞
V(e(k)) = lim

k→∞
eT(k)e(k) = 0. �

Furthermore, lim
k→∞

e(k) = 0. Thus, according to Lemma 2, the nonlinear error system

(e(k)) is asymptotically stable when e = 0, and, in turn, the drive and response systems are
asymptotically synchronized.
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3. Analysis of the Dynamical Behavior of 3D Discrete Chaotic Systems and
Implementation of The Proposed Generalized Synchronization Method by
Incorporating Parameter Control
3.1. The Proposed New 3D Discrete Chaotic System

A new 3D discrete chaotic system (12) is proposed in this paper, which is described
as follows: 

x1(k + 1) = 0.665x2
1(k) + 3.5x1(k)− 0.5

x2(k + 1) = 0.82x2
2(k)− 2.34

x3(k + 1) = ax3(k)(1− x3(k))
2

(12)

where the x1, x2, and x3 are iterative variables, and a is a parameter variable. The bifur-
cation diagram with the a of system (12) is represented by Figure 1. It is clear from the
bifurcation diagram that the system is chaotic when a = 6.53, and after 1000 iterations, the
Lyapunov exponents of system (12) are 0.7296, 0.1650, and 0.6226, which are all positive;
thus, system (12) is a hyperchaotic system.
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Figure 1. Bifurcation diagram with the a of the proposed system (12).

Based on 64-bit Matlab software and double-floating-point representation, the initial
values of the state variables of the chaotic system are set differently. The output chaotic
sequences and their autocorrelation are shown in Figure 2, from which we can clearly
see in Figure 2a,b,d,e that the chaotic sequences x1(k) and x3(k) have no periodicity, and
Figure 2a,d demonstrate the proposed chaotic sequences with an initial value sensitivity.
The initial values of the sequences are set as x1(0) = 0.2 and x3(0) = −0.1, respectively,
and the corresponding chaotic iteration diagrams are shown in Figure 2c,f, respectively,
which show that system (12) is not in a chaotic state in this case. Therefore, the initial
values of the chaotic system are what affect the output states of system (12). In addition,
the chaotic attractor phase diagrams of the proposed 3D hyperchaotic mapping are shown
in Figure 3 as x1(0) = −0.3, x2(0) = 0.1, and x3(0) = 0.1.
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Figure 2. Output of chaotic sequences with different initial values of state variables and their autocor-
relations: (a) output of x1(k) when the initial values of the system are different; (b) autocorrelations of
x1(k) when x1(0) = −0.3, x2(0) = 0.1, and x3(0) = 0.1; (c) output chaotic sequences of x1(k) when
x1(0) = 0.2; (d) output of x3(k) when the initial values of the system are different; (e) autocorrelations
of the output chaotic sequences (x3(k)) when x1(0) = −0.1, x2(0) = 0.2, and x3(0) = 0.5; (f) output
chaotic sequences of x3(k) when x3(0) = 0.1.

Entropy 2023, 25, x FOR PEER REVIEW 6 of 19 
 

 

Figure 2a,d demonstrate the proposed chaotic sequences with an initial value sensitivity. 
The initial values of the sequences are set as 1(0) 0.2x =  and ( )3 0 0.1x = − , respectively, and 
the corresponding chaotic iteration diagrams are shown in Figure 2c,f, respectively, which 
show that system (12) is not in a chaotic state in this case. Therefore, the initial values of 
the chaotic system are what affect the output states of system (12). In addition, the chaotic 
attractor phase diagrams of the proposed 3D hyperchaotic mapping are shown in Figure 
3 as 1(0) 0.3x = - , ( )2 0 0.1x = , and ( )3 0 0.1x = . 

   
(a) (b) (c) 

 
(d) (e) (f) 

Figure 2. Output of chaotic sequences with different initial values of state variables and their auto-
correlations: (a) output of ( )1x k  when the initial values of the system are different; (b) autocorrela-

tions of ( )1x k   when ( )1 0 0.3x = −  , ( )2 0 0.1x =  , and ( )3 0 0.1x =  ; (c) output chaotic sequences of 

( )1x k  when ( )1 0 0.2x = ; (d) output of ( )3x k  when the initial values of the system are different; (e) 

autocorrelations of the output chaotic sequences ( ( )3x k  ) when ( )1 0 0.1x = −  , ( )2 0 0.2x =  , and 

( )3 0 0.5x = ; (f) output chaotic sequences of ( )3x k  when ( )3 0 0.1x = . 

  
(a) (b) 

0 20 40 60 80 100
k

-5

-4

-3

-2

-1

0
(-0.3,0.1,0.1)
(-0.1,0.2,0.5)

0 2 4 6 8 10 12 14
k

0

0.5

1

1.5

2

2.5 10247

x1(0)=0.2

0 20 40 60 80 100
k

0

0.2

0.4

0.6

0.8

1

1.2
(-0.3,0.1,0.1)
(-0.1,0.2,0.5)

1 2 3 4 5 6 7

-4

-3

-2

-1

0 10132

x3(0)=-0.1

-5 -4 -3 -2 -1
x1(k)

0

0.2

0.4

0.6

0.8

1

x 3
(k
)

-2 -1 0 1 2
x2(k)

0

0.2

0.4

0.6

0.8

1

x 3
(k
)

Entropy 2023, 25, x FOR PEER REVIEW 7 of 19 
 

 

  
(c) (d) 

Figure 3. Phase diagrams of proposed 3D hyperchaotic mapping ((5)): (a) 1 3x x− ; (b) 2 3x x− ; (c) 

1 2x x− ; (d) 1 2 3x x x− − . 

3.2. Implementation of Proposed Generalized Synchronization Method Incorporating Parameter 
Control 

Let us assume that the system of responding systems of the drive system (12) is as 
follows: 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )( ) ( )

2
1 1 1 1

2
2 2 2

2
3 3 3 3

1 =0.665 3.5 0.5

y 1 =0.82 2.34

y 1 =6.53 1

y k y k y k u k

k y k u k

k y k y k u k

 + + − +
 + − +


+ − +

 (13)

where 1y , 2y , and 3y  are iteration variables, and based on Theorem 1, the system errors 
are calculated as follows: 

( )
( )
( )

1 1 1 1

2 2 2 2

3 3 3 3

e k h x y

e k h x y

e k h x y

 = −


= −
 = −

 (14)

Then, the error system equation can be expressed as follows: 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )( ) ( ) ( )( ) ( )( )

2 2
1 1 1 1 1 1 1

2 2
2 2 2 2 2

2 2
3 3 3 3 3 3 3

1 0.665 3.5 0.5 0.665 3.5 0.5

1 0.82 2.34 0.82 2.34

1 6.53 1 6.53 1

e k h x k x k y k y k u k

e k h x k y k u k

e k h x k x k y k y k u k

 + = + − − + − +
 + = − − − +

 + = − − − +


 (15)

Let the control function be represented by Equation (16): 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( )( )( ) ( ) ( )( )

2 2
1 1 1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2

2 2
3 3 3 3 3 3 3 3 3

( ) 0.665 3.5 0.5 0.665 3.5 0.5

( ) 0.82 2.34 0.82 2.34

( ) 6.53 1 6.53 1

u k h x k x k y k y k h x k y k

u k h x k y k h x k y k

u k h x k x k y k y k h x k y k

η

η

η

 = + − − + − − −
 = − − − − −

 = − − − − −


(16)

Thus, system (14) can be simplified to expression (17): 

( ) ( )
( ) ( )
( ) ( )

1 1

2 2

3 3

1

1

1

e k e k

e k e k

e k e k

η
η
η

 + =


+ =
 + =

 (17)

Let the Lyapunov exponent function of system (17) be represented by the following 
expressions: 

-5 -4 -3 -2 -1
x1(k)

-2

-1

0

1

2

Figure 3. Phase diagrams of proposed 3D hyperchaotic mapping (5): (a) x1 − x3; (b) x2 − x3;
(c) x1 − x2; (d) x1 − x2 − x3.

3.2. Implementation of Proposed Generalized Synchronization Method Incorporating
Parameter Control

Let us assume that the system of responding systems of the drive system (12) is
as follows: 

y1(k + 1) = 0.665y2
1(k) + 3.5y1(k)− 0.5 + u1(k)

y2(k + 1) = 0.82y2
2(k)− 2.34 + u2(k)

y3(k + 1) = 6.53y3(k)(1− y3(k))
2 + u3(k)

(13)

where y1, y2, and y3 are iteration variables, and based on Theorem 1, the system errors are
calculated as follows: 

e1(k) = h1x1 − y1
e2(k) = h2x2 − y2
e3(k) = h3x3 − y3

(14)



Entropy 2023, 25, 818 7 of 18

Then, the error system equation can be expressed as follows:
e1(k + 1) = h1

(
0.665x2

1(k) + 3.5x1(k)− 0.5
)
−
(
0.665y2

1(k) + 3.5y1(k)− 0.5 + u1(k)
)

e2(k + 1) = h2
(
0.82x2

2(k)− 2.34
)
−
(
0.82y2

2(k)− 2.34 + u2(k)
)

e3(k + 1) = h3

(
6.53x3(k)(1− x3(k))

2
)
−
(

6.53y3(k)(1− y3(k))
2 + u3(k)

) (15)

Let the control function be represented by Equation (16):
u1(k) = h1

(
0.665x2

1(k) + 3.5x1(k)− 0.5
)
−
(
0.665y2

1(k) + 3.5y1(k)− 0.5
)
− η(h1x1(k)− y1(k))

u2(k) = h2
(
0.82x2

2(k)− 2.34
)
−
(
0.82y2

2(k)− 2.34
)
− η(h2x2(k)− y2(k))

u3(k) = h3

(
6.53x3(k)(1− x3(k))

2
)
−
(

6.53y3(k)(1− y3(k))
2
)
− η(h3x3(k)− y3(k))

(16)

Thus, system (14) can be simplified to expression (17):
e1(k + 1) = ηe1(k)
e2(k + 1) = ηe2(k)
e3(k + 1) = ηe3(k)

(17)

Let the Lyapunov exponent function of system (17) be represented by the following expressions:

V(e(k)) =
1
2

(
e2

1(k) + e2
2(k) + e2

3(k)
)
≥ 0 (18)

∆V(e(k)) = V(e(k + 1))−V(e(k))
= 1

2
(
e2

1(k + 1) + e2
2(k + 1) + e2

3(k + 1)
)
− 1

2
(
e2

1(k) + e2
2(k) + e2

3(k)
)

=
η2 − 1

2
(
e2

1(k) + e2
2(k) + e2

3(k)
) (19)

It is obvious that when the parameter is |η| < 1, then ∆V(e(k)) < 0, and the error
system is progressively stable at e = 0, according to Lemma 1. The zero solution of error
system (13) is asymptotically stable so that generalized chaotic synchronization can be
achieved. In summary, the incorporation of the error-system-feedback coefficient (η) into
the design of the controller for generalized synchronization in this paper makes the design
of the controller more flexible.

Let the invertible transformation equation be H(x(k)) = Ax(k), and matrix A is
as follows:

A =

2 1 1
1 2 1
1 1 2

 (20)

In the initial condition for the iterative variables x1(0) = −0.3, x2(0) = 0.1, and
x3(0) = 0.1, with 1000 iterations, the dynamical curves of the status variables x1(k), y1(k),
x2(k), y2(k), x3(k), and y3(k) are displayed in Figure 4a,c,e, respectively, whereas the
dynamical curves of e1(k), e2(k), and e3(k) are represented in Figure 4b,d,f, respectively,
from which it can be seen that the difference in the initial values does not affect the
synchronization time.
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and Analysis of The Dynamic Behavior of the Proposed 6D Discrete Chaotic System 

Figure 4. Cont.



Entropy 2023, 25, 818 8 of 18

Entropy 2023, 25, x FOR PEER REVIEW 8 of 19 
 

 

( )2 2 2

1 2 3

1
( ( )) ( ) ( ) ( ) 0

2
V e k e k e k e k= + +   (18) 

( ) ( )

( )

2 2 2 2 2 2

1 2 3 1 2 3

2
2 2 2

1 2 3

( ( )) ( ( 1)) ( ( ))

1 1
( 1) ( 1) ( 1) ( ) ( ) ( )

2 2

1
( ) ( ) ( )

2

V e k V e k V e k

e k e k e k e k e k e k

e k e k e k


 = + −

= + + + + + − + +

−
= + +

 
(19) 

It is obvious that when the parameter is 1  , then ( )( ) 0V e k  , and the error system 

is progressively stable at 0e = , according to Lemma 1. The zero solution of error system 

(13) is asymptotically stable so that generalized chaotic synchronization can be achieved. 

In summary, the incorporation of the error-system-feedback coefficient ( ) into the de-

sign of the controller for generalized synchronization in this paper makes the design of 

the controller more flexible. 

Let the invertible transformation equation be ( )( ) ( )H x k Ax k= , and matrix A is as fol-

lows: 

2 1 1

1 2 1

1 1 2

A

 
 

=
 
  

 (20) 

In the initial condition for the iterative variables ( )1 0 0.3x = −  , ( )2 0 0.1x =  , and 

( )3 0 0.1x = , with 1000 iterations, the dynamical curves of the status variables ( )1x k , ( )1y k

, ( )2x k , ( )2y k , ( )3x k , and ( )3y k  are displayed in Figure 4a,c,e, respectively, whereas the 

dynamical curves of ( )1e k  , ( )2e k  , and ( )3e k   are represented in Figure 4b,d,f, respec-

tively, from which it can be seen that the difference in the initial values does not affect the 

synchronization time. 

    
(a) (b) (c) (d) 

  
(e) (f) 

Figure 4. (a) Dynamical curves of status variables ( )1x k  and ( )1y k ; (b) dynamical curves of ( )1e k

; (c) dynamical curves of status variables ( )2x k  and ( )2y k ; (d) dynamical curves of ( )2e k ; (e) 

dynamical curves of status variables ( )3x k  and ( )3y k ; (f) dynamical curves of ( )3e k . 

4. Implementation of a Universal Synchronization Method with Parameter Control 
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Figure 4. (a) Dynamical curves of status variables x1(k) and y1(k); (b) dynamical curves of e1(k);
(c) dynamical curves of status variables x2(k) and y2(k); (d) dynamical curves of e2(k); (e) dynamical
curves of status variables x3(k) and y3(k); (f) dynamical curves of e3(k).

4. Implementation of a Universal Synchronization Method with Parameter Control
and Analysis of The Dynamic Behavior of the Proposed 6D Discrete Chaotic System
4.1. The Proposed 6D Discrete Chaotic System

High-dimensional chaotic systems have more complex dynamics than low-dimensional
chaotic systems; thus, they are better able to resist the degradation of dynamics caused by
the limited accuracy of computers. In this paper, a new 6D discrete chaotic system (21) is
constructed by expanding on system (12), which can be presented as follows:

x1(k + 1) = 0.665x1(k)
2 + ax1(k)− 0.5;

x2(k + 1) = 0.82x2(k)
2 − b;

x3(k + 1) = cx3(k)(1− x3(k))
2;

x4(k + 1) = −3x2
4(k) + dx4(k) + 0.18;

x5(k + 1) = 4x5(k)(1− x5(k));
x6(k + 1) = 4x6(k)(1− 0.5x6(k));

(21)

where a = 3.5, b = −2.34, c = 6.53, and d = 3.46, after 1000 iterations, and the Lyapunov
exponents of the proposed system are 1.0227, 0.3837, −0.2378, −0.2999, 0.4955, and 1.7245,
respectively; thus, system (21) is a hyperchaotic system because the four Lyapunov expo-
nents are positive.

Based on 64-bit Matlab software and double-floating-point representation, for different
initial values of the state variables, the output of chaotic sequences and their autocorre-
lations are shown in Figure 5, in which Figure 5a,b,d,e prove that the chaotic sequences
x4(k) and x6(k) have no periodicity, and Figure 5a,d demonstrate the proposed chaotic
sequences with an initial value sensitivity. The initial values of the sequences were set
at x4(0) = −0.1, and x6(0) = −0.3, respectively, and the corresponding chaotic iteration
diagrams are shown in Figure 5c,f, respectively, which show that system (21) is not in a
chaotic state in this case. Therefore, the initial values of the chaotic system are what affect
the output states of system (21). In addition, the chaotic attractor phase diagrams of the
proposed 6D hyperchaotic mapping are shown in Figure 6 as x1(0) = −0.3, x2(0) = 0.1,
x3(0) = 0.1, x4(0) = 0.1, x5(0) = 0.1, and x6(0) = 0.1.
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Figure 5. Output of chaotic sequences with different initial values of state variables and their autocor-
relations: (a) output of x4(k) when the initial values of the system are different; (b) autocorrelations of
x4(k) when x1(0) = −0.3, x2(0) = 0.1, x3(0) = 0.1, x4(0) = 0.1, x5(0) = 0.1, and x6(0) = 0.1; (c) out-
put chaotic sequences of x4(k) when x4(0) = −0.1; (d) output of x6(k) when the initial values of the
system are different; (e) autocorrelations of the output chaotic sequences of x6(k) when x1(0) = −0.1,
x2(0) = 0.2, x3(0) = 0.5, x4(0) = 0.5, x5(0) = 0.3, and x6(0) = 0.3; (f) output chaotic sequences of
x6(k) when x6(0) = −0.3.
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Equation (23) is obtained from Lemma 2: 
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Figure 6. Phase diagrams of proposed 6D hyperchaotic system (14): (a) x1(k) − x2(k);
(b) x3(k)− x4(k); (c) x4(k)− x5(k); (d) x5(k)− x6(k); (e) x1(k)− x2(k)− x3(k); (f) x3(k)− x4(k)− x5(k);
(g) x2(k)− x3(k)− x4(k); (h) x4(k)− x5(k)− x6(k).
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4.2. Implementation of Generalised Synchronisation Incorporating Parameter Control

Let the corresponding system of driving system (21) be considered as follows:

y1(k + 1) = 0.665y2
1(k) + 3.5y1(k)− 0.5 + u1(k);

y2(k + 1) = 0.82y2
2(k)− 2.34 + u2(k)

y3(k + 1) = 6.53y3(k)(1− y3(k))
2 + u3(k)

y4(k + 1) = −3y2
4(k) + 3.46y4(k) + 0.18 + u4(k)

y5(k + 1) = 4y5(k)(1− y5(k)) + u5(k)
y6(k + 1) = 4y6(k)(1− 0.5y6(k)) + u6(k)

(22)

Equation (23) is obtained from Lemma 2:

e1(k) = h1x1 − y1
e2(k) = h2x2 − y2
e3(k) = h3x3 − y3
e4(k) = h4x4 − y4
e5(k) = h5x5 − y5
e6(k) = h6x6 − y6

(23)

The equation of the error system can then be expressed as follows:

e1(k + 1) = h1
(
0.665x2

1(k) + 3.5x1(k)− 0.5
)
−
(
0.665y2

1(k) + 3.5y1(k)− 0.5 + u1(k)
)
;

e2(k + 1) = h2
(
0.82x2

2(k)− 2.34
)
−
(
0.82y2

2(k)− 2.34 + u2(k)
)

e3(k + 1) = h3

(
6.53x3(k)(1− x3(k))

2
)
−
(

6.53y3(k)(1− y3(k))
2 + u3(k)

)
e4(k + 1) = h4

(
−3x2

4(k) + 3.46x4(k) + 0.18
)
−
(
−3y2

4(k) + 3.46y4(k) + 0.18 + u4(k)
)

e5(k + 1) = h5(4x5(k)(1− x5(k)))− (4y5(k)(1− y5(k)) + u5(k))

e6(k + 1) = h6(4x6(k)(1− 0.5x6(k)))− (4y6(k)(1− 0.5y6(k)) + u6(k))

(24)

Let the control functions be calculated as follows:

u1(k) = h1
(
0.665x2

1(k) + 3.5x1(k)− 0.5
)
−
(
0.665y2

1(k) + 3.5y1(k)− 0.5
)
+ η(h1x1(k)− y1(k))

u2(k) = h2
(
0.82x2

2(k)− 2.34
)
−
(
0.82y2

2(k)− 2.34
)
+ η(h2x2(k)− y2(k))

u3(k) = h3

(
6.53x3(k)(1− x3(k))

2
)
−
(

6.53y3(k)(1− y3(k))
2
)
+ η(h3x3(k)− y3(k))

u4(k) = h4
(
−3x2

4(k) + 3.46x4(k) + 0.18
)
−
(
−3y2

4(k) + 3.46y4(k) + 0.18 + u4(k)
)
+ η(h4x4(k)− y4(k))

u5(k) = h5(4x5(k)(1− x5(k)))− (4y5(k)(1− y5(k)) + u5(k)) + η(h5x5(k)− y5(k))

u6(k) = h6(4x6(k)(1− 0.5x6(k)))− (4y6(k)(1− 0.5y6(k)) + u6(k)) + η(h6x6(k)− y6(k))

(25)

Then, system (24) can be expressed as follows:

e1(k + 1) = ηe1(k)
e2(k + 1) = ηe2(k)
e3(k + 1) = ηe3(k)
e4(k + 1) = ηe4(k)
e5(k + 1) = ηe5(k)
e6(k + 1) = ηe6(k)

(26)

Consider the Lyapunov exponent functions of system (25) as follows:

V(e(k)) =
1
2

(
e2

1(k) + e2
2(k) + e2

3(k) + e2
4(k) + e2

5(k) + e2
6(k)

)
≥ 0 (27)

∆V(e(k)) =
η2 − 1

2

(
e2

1(k) + e2
2(k) + e2

3(k) + e2
4(k) + e2

5(k) + e2
6(k)

)
≤ 0 (28)

Obviously, according to Lemma 2, when the parameter |η| < 1 and, hence, the error
system is progressively stable at e = 0, the zero solution of the error system (25) is progres-
sively stable, and as a result, the generalized chaotic synchronization can be implemented.
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Let the invertible transformation function be H(x(k)) = Ax(k), and let the coefficient
matrix A be expressed as follows:

A =



2 1 1 1 1 1
1 2 1 1 1 1
1 1 2 1 1 1
1 1 1 2 1 1
1 1 1 1 2 1
1 1 1 1 1 2

 (29)

Moreover, set the initial conditions of the proposed driving system (21) as x1(0) = −0.3,
x2(0) = 0.1, x3(0) = 0.2, x4(0) = 0.01, x5(0) = 0.1, and x6(0) = 0.1. After 1000 iterations,
the dynamical diagrams of the change in the status of the iterations as k changes for
systems (21), (22), and (24) are shown in Figure 7. The Figure 7a–d describe the dynam-
ical diagrams of system (21), and the dynamical diagrams of system (22) are shown in
Figure 7e–h, and Figure 7i–l display the dynamical diagrams of system (23).

Change of Fig.7 and Fig.13 

Dear Mr. Pirv, 

 

Please check below for the revised and better quality Figure 7 and Figure 13.  

Thanks to your hard word so much. 

 

Kind regards, 

Jian Zeng 

 

Attachment: 

 

Fig.7: 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (o) 

Figure 7. Dynamical diagrams of status variables with k: System (21): (a) ( ) ( )( )1 1,x k y k    (b) 

( )1e k   (c) ( ) ( )( )2 2,x k y k   (d) ( )2e k   System (22): (e) ( ) ( )( )3 3,x k y k   (f) ( )3e k   (g) ( ) ( )( )4 4,x k y k

  (h) ( )4e k   System (23): (i) ( ) ( )( )5 5,x k y k   (j) ( )5e k   (k) ( ) ( )( )6 6,x k y k   (o) ( )6e k . 

 

Fig.13:  

Figure 7. Dynamical diagrams of status variables with k: System (21): (a) (x1(k), y1(k)); (b) e1(k);
(c) (x2(k), y2(k)); (d) e2(k); System (22): (e) (x3(k), y3(k)); (f) e3(k); (g) (x4(k), y4(k)); (h) e4(k);
System (23): (i) (x5(k), y5(k)); (j) e5(k); (k) (x6(k), y6(k)); (l) e6(k).

5. Cryptographic Transmission System for Digital Images Based on Proposed
Generalized Chaos Synchronization Approach
5.1. Cryptographic Transmission System for Digital Images

The framework diagram of the proposed encryption and decryption transmission
system constructed in this paper is shown in Figure 8.
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The proposed system is designed for the encrypted transmission of digital images
with pixel matrix values of Rm×n(x, y), Gm×n(x, y), and Bm×n(x, y) for each component of
the color digital image, where the number of pixels in the image is n×m. Then, matrix
components are converted into a sequence of integer values in row order, and the pixel
values are selected in the range (0, 255), converting each pixel value into an 8-bit binary
number. Based on the above operations, the binary sequences R(j), G(j), and B(j), which
are based on the color image, can be obtained, where j ∈ (0, m× n× 8).

The output sequences (x(k)) of the proposed 6D generalized discrete chaotic system
are quantized by the region to generate binary sequences for encryption. Therefore, the
quantification process can be represented by the following equation:

P(j) = P0−1[x(i)] =


1, x(i) ∈

2m−1
∪

n=0
Im
2n

0, x(i) ∈
2m−1
∪

n=0
Im
2n+1

; n = 0, 1, 2 · · · (30)

where m is an arbitrary integer greater than 0, and Im
0 , Im

1 , Im
2 · · · are denoted as 2m consecu-

tive equal intervals on the interval of a range of real-valued sequences. If the output value
of a chaotic sequence is in the odd interval, then it outputs 0, and if it is in the even interval,
then it outputs 1.

The workflow of the whole system is as follows, and the process of encryption on the
transmitter side of the proposed system consists of the following parts:
Step 1: The chaotic sequences generated by the proposed 6D discrete chaotic system
are quantized and denoted as P1(j), P2(j), P3(j), and P4(j). Furthermore, the three color
components of the original image are encrypted with chaotic sequences, and the calculation
formula is Equation (31): 

ER(j) = R(j)⊕ P1(j)
EG(j) = G(j)⊕ P2(j)
EB(j) = B(j)⊕ P3(j)

(31)

Step 2: The encrypted sequences of the three color components are combined into E(k)
using Equation (32):

ER(j)
EG(j)
EB(j)

⇒ E(k) , k ∈ (0, 3× j) (32)

Step 3: Chaotic hiding of E(k) with the chaotic sequence P4(j). The resulting mixed signal
(S(k)) is transmitted in the common channel and is calculated as the following equation:

S(k) = E(k) + P(k) (33)

On the receiving side of the proposed system, the response system will be in general
synchronization with the driver system. Furthermore, the receiver will be able to decode
all the state variables of the sender. Similarly, there are several parts to the decryption
processes for the receiver of the proposed system.
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Step 1: Reconstructing the chaotic signal (y(k)), the sequences generated after quantization
are denoted as P1(j)′, P2(j)

′
, P3(j)′, and P4(3× j)′, as we can see from Figure 8. The

decryption process is the inverse of the encryption process; thus, it is important to perform
the anti-hiding operation on the signal S(k) to obtain E′(k), which is calculated as follows:

S(k)− P(k)4 = E′(k) (34)

Step 2: Decompose E′(k) into three color components. The formulation is calculated as
Equation (35), and therefore the encrypted image is decoded using Equation (36):

E′(k)⇒


E′R(j)
E′G(j)
E′B(j)

(35)


E′R(j)⊕ P′1(j) = R′(j)
E′G(j)⊕ P′2(j) = G′(j)
E′B(j)⊕ P′3(j) = B′(j)

(36)

The standard Lena (256 × 256) image was used as an example for the encryption and
decryption processes, and the results of the operation are shown in Figure 9.
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5.2. Time Complexity

As can be seen from the encryption process in Section 5.1, the entire encryption
algorithm consists of simple operations, such as addition, subtraction, and iso-or. However,
in the process of encrypting a three-dimensional matrix of the size 8 × m × n, it takes about
n2 operations to complete the bit-level operation of the encryption of the xor operation.
Hence, the time complexity of the proposed algorithm in this paper is T(n) = O

(
n2).

6. Security Analyses of Proposed Scheme

Security analyses of the transmission system for the proposed digital image encryption
and decryption based on generalized chaotic synchronization are performed in this paper,
which consist of image encryption histogram analysis, key space analysis, key sensitivity
analysis, and correlation analysis.

6.1. Histogram Analysis of Encrypted Image

A color histogram is a presentation of the statistical characteristics and distribution
of the image pixels and is analyzed in terms of three colors: R, G, and B. As can be
seen from the simulation results in Figure 10a–c, the histogram of the original image is
unevenly distributed, whereas the histogram in Figure 10d–f, of the encrypted digital Lena
image in the encryption transmission system with generalized chaotic synchronization, is
uniformly distributed.
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6.2. Keyspace Analysis

Cryptographic system security and resistance to exhaustive attacks are affected by the
size of the key space. The sequences of the 6D discrete hyperchaotic system (21) are applied
at the encryption stage, as the production of keys depends mainly on the parameters and
initial conditions of the system. Hence, all the iterative variables of the proposed chaotic
system (x1, x2, x3, x4, x5, x6, a, b, c, d) can be used as keys. Calculation is
performed by means of the double-floating-point number with 64-bit precision; therefore,
the key space is 253×10 = 2530 > 2100, which is much large than 2100. Consequently, the
security of the image encryption system is improved and the resistance to exhaustive
attacks is increased [24,25].

6.3. Key Sensitivity Analysis

Key sensitivity is an important measure to evaluate the security of an encrypted image.
Security is highly reliable if any minimal change to the key results in a large modification;
thus, the more sensitive the key, the more secure the encryption system. To evaluate the sen-
sitivity of the key of the proposed scheme, the image was decrypted with a keystream with
slight differences, the initial values were set to (x1, x2, x3) = (0.02, 0.03, 0.01), and the result
of making minor changes to the initial values was (x1, x2, x3) =

(
0.02 + 10−15, 0.03, 0.01

)
.

The results of the experiment are illustrated in Figure 11, in which it can be seen that the
image could not be decrypted, even with minor changes to the key.

6.4. Cutting Attack Analysis

To prevent data from being attacked or lost, it is necessary to perform cutting attack
analysis. The same encrypted Lena as in Section 5.1 was cropped with black pixels, which
is shown in Figure 12a. Then, we decrypted the image with keys, and the decrypted image
can be well identified, as shown in Figure 12b. Thus the encryption system proposed in
this paper is resistant to attacks and data loss as well.
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6.5. Correlation Analyses

The analysis of image pixel correlation is one of the important indicators of the
encryption effect of encrypted images. The color images were analyzed for correlations
from R, G, and B, which are represented as red, green, and blue colors, respectively. In
addition, the original image has a strong correlation between adjacent pixels, and an
effective encryption system can reduce the image pixel correlation considerably. The
correlation coefficient results for the Lena test images and their corresponding encrypted
images are shown in Table 1. As can be seen from Table 1, the correlation coefficient between
adjacent pixels in the original image is close to 1, with a strong correlation, whereas in
the encrypted image, neighboring pixels are not correlated, as the correlation coefficient is
close to 0.

Table 1. Correlation coefficient results for original Lena and encrypted Lena.

Image Direction
Plain Image Cipher Image

R G B R G B

Lena
Horizontal 0.9337 0.9170 0.9088 0.0011 0.0013 −0.0065

Vertical 0.9669 0.9604 0.9538 0.0068 0.0048 0.0015
Diagonal 0.9063 0.8886 0.8789 −0.0048 −0.0025 −0.0041

To demonstrate the correlation visually, we plotted scatter plots of all sampled pixel
pairs. The correlations between the test image Lena and its corresponding R, G, and B color
pixels are shown separately. Figure 13a–c,h–j,n–p show that the numerical points of the
original images are clustered around the diagonal of the images; hence, there is a strong
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correlation between neighboring pixels about the original image, whereas the values of the
points in Figure 13d–f,k–m and Figure 13q–s are evenly spread throughout the entire plane
of the images, which indicates that there is virtually no correlation between neighboring
pixels in the encrypted image.
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Figure 13. Correlations between pixel points in different orientations of original image: (a) correlation
between horizontal pixel points of R component; (b) correlation between vertical pixel points of
R component; (c) correlation between diagonal pixel points of R component; (h) correlation between
horizontal pixel points of G component; (i) correlation between vertical pixel points of G component;
(j) correlation between diagonal pixel points of G component; (n) correlation between horizontal pixel
points of B component; (o) correlation between vertical pixel points of B component; (p) correlation
between diagonal pixel points of B component. (d) correlation between horizontal pixel points of
R component; (e) correlation between vertical pixel points of R component; (f) correlation between
diagonal pixel points of R component; (k) correlation between horizontal pixel points of G component;
(l) correlation between vertical pixel points of G component; (m) correlation between diagonal pixel
points of G component; (q) correlation between horizontal pixel points of B component; (r) correlation
between vertical pixel points of B component; (s) correlation between diagonal pixel points of
B component.

7. Conclusions

In this paper, two discrete chaotic systems of different dimensions are constructed.
Additionally, the dynamics of the new systems are analyzed, and the phase diagram,
Lyapunov exponent diagram, and bifurcation diagram of the systems are presented and
analyzed simultaneously. The proposed 3D and 6D discrete chaotic systems were con-
structed as drive systems, and the response systems were constructed by employing the
new generalized synchronization method incorporating error-feedback coefficients. The
experimental results show that the design of adaptive generalized synchronous systems
can be realized provided that the feedback coefficient (η) of the error system satisfies
certain conditions for the design of adaptive generalized synchronous systems. Further,
the generalized synchronization method incorporating the error-feedback coefficient, and
the incorporation of it into the controller, enables simpler and more flexible control of the
generalized synchronization. Finally, a chaotic synchronization and encryption–decryption
system for secure digital image transmission was constructed by applying the method
of generalized synchronous chaotic systems incorporating the error-feedback coefficients
devised in this paper. Due to the limited accuracy of the computer, the system proposed
in this paper is more resistant to dynamic degradation and, hence, these features of high-
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dimensional chaotic systems play an active role and have very good theoretical value in
image encryption as well as chaotic synchronization.
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