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Abstract: A study has been carried out to examine the occurrence of multiple solutions for
Copper-Water nanofluids flows in a porous channel with slowly expanding and contracting
walls. The governing equations are first transformed to similarity equations by using similarity
transformation. The resulting equations are then solved numerically by using the shooting method.
The effects of wall expansion ratio and solid volume fraction on velocity and temperature profile
have been studied. Numerical results are presented graphically for the variations of different physical
parameters. The study reveals that triple solutions exist only for the case of suction.
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1. Introduction

Transport phenomena of the fluid in a channel with contracting or expanding walls have
significant applications in the fields of engineering, science and medicine. Blood flows in arteries,
vessels, blood flow in artificial kidneys, circulation in the respiratory system and regression of the
burning plates in rocket motors are some of the most prominent applications of the flow in a porous
channel with expanding or contracting walls [1]. The first attempt to study viscous flow inside
a permeable pipe of contracting cross area was by Uchida and Aoki [2]. Later, this problem was
illuminated by Bujurke et al. [3] both numerically and analytically. Goto and Uchida [4] presented
a theoretical framework of unsteady incompressible laminar flows in a pipe. Suction or injection
took place at the walls of pipe and the radius of the pipe as varied with respect to time. In addition,
Majdalani et al. [5], Dauenhauer and Majdalani [6], Majdalani and Zhou [7] investigated the problem
of laminar flow in a channel with porous expanding walls numerically as well as asymptotically. Later,
analytical solutions were obtained by Rahimi et al. [8] for the case of expanding and contracting porous
channel walls. Reddy et al. [9] used perturbation techniques to analyze the effects of heat and mass
transfer on the asymmetric flow in a porous channel with expanding or contracting walls. A series
solution of uniformly expanding or contracting walls in a semi-infinite rectangular porous channel
was investigated by Mohyud-din et al. [10]. An analytical solution was investigated by Magalakwe
and Khalique [11] regarding the flow and heat transfer between slowly expanding or contracting walls.
Xinhui et al. [12,13] analyzed the flow of non-Newtonian fluid in a porous channel with expanding or
contracting walls. Many researchers have investigated the fluid flow behavior between expanding or
contracting walls analytically as well as numerically under the various fluid flow conditions [14–20].

On the other hand, the most promising implication of nanofluids is the enhancement of
heat transfer in modern engineering systems [21–24]. Nanofluids are prepared for increasing
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thermophysical properties, for instance, thermal conductivity, thermal diffusivity, thickness, and
convective heat transfer coefficients that have been diverged from those of the base fluids like water,
ethylene or tri-ethylene-glucose and diverse coolants, biofluids, and polymer game plans, as clarified
by Choi [25] and Wong and Leon [26]. An extensive range of review papers of the nanofluids have
appeared in recent years. Freidoonimehr et al. [27] investigated the problem of two dimensional
nanofluid flow through expanding or contracting porous walls numerically. None of the investigations
cited above did not deal with the multiple solutions of nanofluids in a porous channel. Flow of Carbon
nanotubes water-based nanofluid in a channel with expanding or contracting walls was considered
by Ahmed et al. [28]. Numerical solutions were obtained by two different numerical schemes called
Galerkin’s method and Runge-Kutta-Fehlberg method. Hatami et al. [29] discussed the numerical
solution of nanofluid flow in a rectangular channel with expanding or contracting porous walls. They
concluded that velocity boundary layer thickness near the channel walls decreases as Reynold number
and nanoparticles volume fraction increases. Investigations of the authors cited above are confined to
the single solution only.

The focus of the present work is to investigate the occurrence of multiple solutions of Copper-water
(Cu-water) nanofluid in slowly expanding or contracting walls which has not been studied before.
It is hoped that this study will contribute to a better understanding of the flow behavior related to
nanofluids in deformable walls.

2. Problem Formulation

We consider a two dimensional flow of unsteady, laminar and incompressible nanofluids in a
porous channel where the channel walls are variant in the direction of y-axis and can be expanded or
contracted with respect to the time dependent rate

.
a. Moreover, both of the channel walls are assumed

to have the same permeability, and uniform wall suction/injection is imposed at the walls. The fluid is
considered symmetric about y-axis as shown in Figure 1.
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where u and v are the velocity component along x and y axes respectively, ρn f is effective density,
µn f is the effective dynamic viscosity,

`

ρCp
˘

n f is heat capacitance and kn f thermal conductivity of the
nanofluid. These physical quantities are described mathematically by Tiwari and Das [30]

ρn f “ ρ f p1´ ϕq ` ρs (5)

µn f “
µ f

p1´ ϕq2.5 (6)

`

ρCp
˘

n f “
`

ρCp
˘

f p1´ ϕq `
`

ρCp
˘

s ϕ (7)

kn f

k f
“

ks ` 2k f ´ 2ϕ
´

k f ´ ks

¯

ks ` 2k f ` 2ϕ
´

k f ´ ks

¯ (8)

Here ϕ is the solid volume fraction, ϕs is for nanosolid-particles, ϕ f is for base fluid. Our
preference is to solve Equations (1)–(4) through Equations (5)–(9) subject to the boundary conditions

u px, aq “ 0, v paq “ ´vw “ ´A
.
a, T “ TH (9)

Bu
By
px, 0q “ 0, v p0q “ 0, T “ Tw (10)

Fluid can be injected or sucked with uniform velocity vw at the channel walls. Moreover, the
injection/suction coefficient A – vw.

a
that appears in Equation (9) is a measure of wall permeability.

Introduce stream function such that

u “
Bψ

By
, v “

´Bψ

Bx
(11)

Solve the system of Equations (1)–(4) and eliminate pressure term from Equations (2) and (3) by
introducing vorticity ω, we get

Bω

Bt
` u

Bω

Bx
` v

Bω

By
“

µn f

ρn f

ˆ

B2ω

Bx2 `
B2ω

By2

˙
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where ω “

´

Bv
Bx ´

Bu
By

¯

.
We can develop similarity solution from the mean flow stream function in the light of boundary

conditions Equations (9) and (10). For this, consider y ” y
a and stream function can be written as:

ψ “
υ

a ptq
xF pη, tq where η “

y
a ptq

(13)

Put Equation (13) into Equation (11) we get

u “
υx

a2 ptq
Fη , v “

´υ

a ptq
F pη, tq , θ pηq “

T´ TH
Tw ´ TH

(14)

Fη is partial derivative of F with respect to η. Use Equation (14) in Equation (12) we get

`

F
˘

ηηηη
`

ν f

νn f
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α
”

η
`

F
˘
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`
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˘
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˘

ηηη
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˘
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υ

`

F
˘
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where α “
.
aa
υ is the wall expansion ratio.
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Subject to boundary conditions

Fη “ 0, F “ R, θ “ 0, η “ 1 (16)

Fηη “ 0, F “ 0, θ “ 1, η “ 0 (17)

Here R “ avw
υ is the cross flow Reynolds number and R ą 0 is for injection and R ă 0 for suction

through the walls [8,28,29].
For self-similar solution, we consider f “ F

R by the transformation introduced by Uchida and
Aoki [2], Dauenhauer and Majdalani [6]. This can lead us to consider the case α is a constant and
f “ f pηq. Therefore, fηηt “ 0. So Equation (15) becomes:

f 4 ` A1 p1´ ϕq2.5 `α rη f 3 ` 3 f 2 s ` R
`

f f 3 ´ f 1 f 2
˘˘

“ 0 (18)

θ2 `
A1

A2
pPr f R` αηPrq θ1 “ 0 (19)

Boundary conditions are:

f p0q “ 0, f 2 p0q “ 0, θ p0q “ 1
f p1q “ 1, f 1 p1q “ 0, θ p1q “ 0

+

(20)

3. Numerical Computation

In order to find the numerical solution of Equations (18) and (19) subject to the boundary condition
Equation (20) we employ the shooting method. It is important to notice that Equation (18) is fourth
order nonlinear ODE so we have to change it into the system of first order ODEs such that:

f 1 “ p, p1 “ q, q1 “ s, s1 “ ´A1 p1´ ϕq2.5
pα pηs` 3qq ` R p f s´ pqqq (21)

θ1 “ r, r1 “
´A1

A2
pPr pαη ` R f q rq (22)

Subject to

f p1q “ 1, p p1q “ 0, θ p1q “ 0, q p1q “ α1, s p1q “ α2, r p1q “ α3

f 2 p0q “ 0, f p0q “ 0, θ p0q “ 1

+

(23)

Here, α1, α2 and α3 are missing initial conditions. For the shooting strategy it is worth noting that
we have to shoot the missing initial conditions presented in Equation (23) such that a solution satisfies
the given boundary conditions. The computation of the shooting strategy is done in mathematical
software called Maple 18 with the aid of shootlib function. The detail of the said strategy has been
described by Meade et al. [31].

4. Results and Discussions

This section aims to represent our numerical solutions for the different values of parameters
involved. For this we have prepared figures in order to find the multiple solutions for the different
values of Reynold number R, solid volume fraction ϕ and wall expansion ratio α on skin friction,
velocity and temperature profiles.

To have a pervasive understanding of the triple solutions we plot skin friction f 2 p1q against wall
expansion or contraction ratio α in Figure 2. From this figure it is observed that skin friction f 2 p1q
increases monotonically by the variation of α P r´1.0, 1.0s. Physically we can say that variation of α

from ´1.0 to 1.0 (contracting walls to expanding walls) increases wall drag. This is only because, in
the case of expanding walls, α ą 0 flow towards the center become fast due to the space caused by
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wall expansion. Moreover, a slip regime exists near the wall. Therefore, for expanding walls α ą 0
skin friction increases numerically for all the solutions. It is worth highlighting that there exists only
single solution in the case of injection pR ą 0q and triple solutions are exist only for the case of suction
pR ă 0q. However, to conserve space, we only include the results for the case of suction pR ă 0q in
this paper.Math. Comput. Appl. 2016, 21, 24 5 of 8 
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Figure 2. Skin friction f 2 p1q against the variation of α (wall expansion or contraction ratio).

Figure 3 depicted the behavior of velocity profile f 1 pηq and temperature profile θ pηq for the
variations of solid volume fraction ϕ for the fixed values of Reynold number R and wall expansion
ratio α “ 0.1. It is noticed that velocity profile f 1 pηq decreases near the center of the channel for
the 1st and 3rd solutions. However, the reverse phenomena for the case of 2nd solution is observed.
Similarly, the effect of solid volume fraction ϕ on temperature profile θ pηq is presented in the same
figure. Temperature profile θ pηq is decreased as the strength of solid volume fraction ϕ increases.
Moreover, asymptotical behavior is also observed for the 3rd solution.
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Figure 4a,b show the effect of solid volume fraction ϕ for the fixed values of Reynold number R
and wall expansion ratio α “ ´0.1 on velocity and temperature profiles, respectively. It is observed
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that the trend of fluid velocity and temperature profile are the same as for expanding walls, α ą 0.
The effect of wall expansion α ą 0 on velocity f 1 pηq and temperature θ pηq is depicted in Figure 5a,b,
respectively. It is seen from Figure 5 that velocity near the center of the channel increases for 1st and
2nd solutions and decreases for the 3rd solution. However, the opposite happens near the wall. This
is because fluid moves freely near the center of the channel due to the space generated by the wall
expansion, so therefore fluid velocity f 1 pηq increases gradually near the center of the channel η « 0.
Furthermore, temperature profile decreases gradually by increasing the values of wall expansion,
and asymptotical behavior is observed for the 3rd solution. Figure 6 presented the effect of wall
contraction α ă 0 on velocity profile f 1 pηq and temperature profile θ pηq for the fixed values of solid
volume fraction ϕ for the fixed values of Reynold number R. On the other hand, velocity profile
f 1 pηq decreases near the center of the channel and increases near the channel wall for the case of wall
expansion ratio α ă 0 as shown in Figure 6. Contracting walls α ă 0 provide less space for the fluid to
flow so therefore fluid velocity near the center of the channel decreases, flow towards the channel wall
becomes more noticeable and temperature profile increases for all the solutions.Math. Comput. Appl. 2016, 21, 24 6 of 8 
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Figure 6. Effect of Wall contraction α ă 0 on (a) Velocity Profile f 1 pηq and (b) Temperature Profile θ pηq .

5. Conclusions

Two dimensional flow of nanofluid in slowly expanding or contracting walls is studied in this
paper. Effects of different physical parameters were analyzed. On the bases of these effects the
following conclusions have been made:

1. In the case of injection R ą 0 through porous walls for any value of expanding walls pα ą 0q,
contracting walls pα ă 0q and solid volume fraction ϕ ą 0, there exists only a single solution.

2. Velocity of the nanofluid particles increases at the center of the channel η « 0 as the channel walls
expands α ą 0 and decreases as the channel walls contract α ă 0.

3. The effects of solid volume fraction ϕ on the velocity profile f 1 pηq and temperature profile θ pηq

for both contracting and expanding walls pαă 0 and α ą0q are the same.
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