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Abstract: Explosive growth in geospatial and temporal data as well as the emergence of
new technologies emphasize the need for automated discovery of spatiotemporal knowledge.
Spatiotemporal data mining studies the process of discovering interesting and previously
unknown, but potentially useful patterns from large spatiotemporal databases. It has
broad application domains including ecology and environmental management, public
safety, transportation, earth science, epidemiology, and climatology. The complexity
of spatiotemporal data and intrinsic relationships limits the usefulness of conventional
data science techniques for extracting spatiotemporal patterns. In this survey, we review
recent computational techniques and tools in spatiotemporal data mining, focusing on
several major pattern families: spatiotemporal outlier, spatiotemporal coupling and
tele-coupling, spatiotemporal prediction, spatiotemporal partitioning and summarization,
spatiotemporal hotspots, and change detection. Compared with other surveys in the
literature, this paper emphasizes the statistical foundations of spatiotemporal data mining and
provides comprehensive coverage of computational approaches for various pattern families.
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We also list popular software tools for spatiotemporal data analysis. The survey concludes
with a look at future research needs.

Keywords: spatiotemporal data mining; survey; review; spatiotemporal statistics;
spatiotemporal patterns

1. Introduction

Explosive growth in geospatial and temporal data as well as the emergence of new technologies
emphasize the need for automated discovery of spatiotemporal knowledge. Spatiotemporal data mining
studies the process of discovering interesting and previously unknown, but potentially useful patterns
from large spatial and spatiotemporal databases [1–5]. Figure 1 shows the process of spatiotemporal
data mining. Given input spatiotemporal data, the first step is often preprocessing to correct noise,
errors, and missing data and exploratory space-time analysis to understand the underlying spatiotemporal
distributions. Then, an appropriate spatiotemporal data mining algorithm is selected to run on the
preprocessed data, and produce output patterns. Common output pattern families include spatiotemporal
outliers, associations and tele-couplings, predictive models, partitions and summarization, hotspots, as
well as change patterns. Spatiotemporal data mining algorithms often have statistical foundations and
integrate scalable computational techniques. Output patterns are post-processed and then interpreted by
domain scientists to find novel insights and refine data mining algorithms when needed.
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Figure 1. The process of spatiotemporal data mining.

Societal importance: Spatiotemporal data mining techniques are crucial to organizations which
make decisions based on large spatial and spatiotemporal datasets, including NASA, the National
Geospatial-Intelligence Agency [6], the National Cancer Institute [7], the US Department of
Transportation [8], and the National Institute of Justice [9]. These organizations are spread across
many application domains. In ecology and environmental management [10–13], researchers need tools
to classify remote sensing images to map forest coverage. In public safety [14], crime analysts are
interested in discovering hotspot patterns from crime event maps so as to effectively allocate police
resources. In transportation [15], researchers analyze historical taxi GPS trajectories to recommend fast
routes from places to places. Epidemiologists [16] use spatiotemporal data mining techniques to detect
disease outbreak. There are also other application domains such as earth science [17], climatology [1,18],
precision agriculture [19], and Internet of Things [20].
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The interdisciplinary nature of spatiotemporal data mining means that its techniques must developed
with awareness of the underlying physics or theories in the application domains [21]. For example,
climate science studies find that observable predictors for climate phenomena discovered by data science
techniques can be misleading if they do not take into account climate models, locations, and seasons [22].
In this case, statistical significance testing is critically important in order to further validate or discard
relationships mined from data.

Challenges: In addition to interdisciplinary challenges, spatiotemporal data mining also poses
statistical and computational challenges. Extracting interesting and useful patterns from spatiotemporal
datasets is more difficult than extracting corresponding patterns from traditional numeric and categorical
data due to the complexity of spatiotemporal data types and relationships. According to Tobler’s first
law of geography, “Everything is related to everything else, but near things are more related than distant
things.” For example, people with similar characteristics, occupation and background tend to cluster
together in the same neighborhoods. In spatial statistics such spatial dependence is called the spatial
autocorrelation effect. Ignoring autocorrelation and assuming an identical and independent distribution
(i.i.d.) when analyzing data with spatial and spatio-temporal characteristics may produce hypotheses
or models that are inaccurate or inconsistent with the data set [23]. In addition to spatial dependence at
nearby locations, phenomena of spatiotemporal tele-coupling also indicate long range spatial dependence
such as El Niño and La Niña effects in the climate system. Another challenge comes from the fact that
spatiotemporal datasets are embedded in continuous space and time, and thus many classical data mining
techniques assuming discrete data (e.g., transactions in association rule mining) may not be effective.
A third challenge is the spatial heterogeneity and temporal non-stationarity, i.e., spatiotemporal temporal
data samples do not follow an identical distribution across the entire space and over all time. Instead,
different geographical regions and temporal period may have distinct distributions. Modifiable area unit
problem (MAUP) or multi-scale effect is another challenge since results of spatial analysis depends
on a choice of appropriate spatial and temporal scales. Finally, flow and movement and Lagrangian
framework of reference in spatiotemporal networks pose challenges (e.g., directionality, anisotropy, etc.).

Previous surveys: As shown in Figure 2, surveys in spatial and spatiotemporal data mining can be
categorized into two groups: ones without statistical foundations, and ones with a focus on statistical
foundation. Among the surveys without focuses on statistical foundation, Koperski et al. [24] and
Ester et al. [25] reviewed spatial data mining from a spatial database approach; Roddick et al. [12]
provided a bibliography for spatial, temporal and spatiotemporal data mining; Miller et al. [26] cover
a list of recent spatial and spatiotemporal data mining topics but without a systematic view of statistical
foundation. Among surveys covering statistical foundations, Shekhar et al. 2003 [23] reviewed
several spatial pattern families focusing on spatial data’s unique characteristics; Kisilevich et al. [27]
reviewed spatiotemporal clustering research; Aggarwal et al. [28] has a chapter summarizing spatial
and spatiotemporal outlier detection techniques; Zhou et al. [29] reviewed spatial and spatiotemporal
change detection research from an interdisciplinary view; Cheng et al. 2014 [30] reviews state of the art
spatiotemporal data mining research including spatiotemporal autocorrelation, space-time forecasting
and prediction, space-time clustering, as well as space-time visualization; Shekhar et al. 2011 [31]
give the most recent review of spatial data mining research. However, its discussion of spatiotemporal
patterns is limited (e.g., nothing on spatiotemporal change patterns or statistically significant hotspots).
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In summary, there is no current survey in the literature that provides a systematic overview of
spatiotemporal data mining that covers its statistical foundations as well as all major spatiotemporal
pattern families.
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Figure 2. Categorization of spatial and spatiotemporal data mining surveys.

We hope this survey contributes to spatiotemporal data mining research in filling these
two gaps. More specifically: (1) we provide a taxonomy of spatiotemporal data types; (2) we
provide a taxonomy of spatial and spatiotemporal statistics organized by different data types;
(3) we survey common computational techniques for all major spatiotemporal pattern families,
including spatiotemporal outliers, spatiotemporal coupling and tele-coupling, spatiotemporal prediction,
spatiotemporal partitioning and summarization, spatiotemporal hotspots and change patterns. Within
each pattern family, techniques are categorized by the input spatiotemporal data types; (4) we analyze
the research trends and future research needs.

Organization of the paper: This survey starts with the characteristics of the data inputs of
spatiotemporal data mining (Section 2) and an overview of its statistical foundation (Section 3). It then
describes in detail six main output patterns of spatiotemporal data mining related to outliers, association
and tele-coupling, prediction, partitioning and summarization, hotspot, and change patterns (Section 4).
Common software tools are discussed in Section 5. The paper concludes with an examination of research
needs and future directions in Section 6.

2. Input: Spatial and Spatiotemporal Data

One important aspect of spatiotemporal data mining is its input data. This section provides
a taxonomy of different spatial and spatiotemporal data types. The section also summarizes their unique
data attributes and relationships. The goal is to provide a systematic overview of different techniques in
spatiotemporal data mining tasks.

2.1. Types of Spatial and Spatiotemporal Data

The data inputs of spatiotemporal data mining tasks are more complex than the inputs of classical
data science tasks because they include discrete representations of continuous space and time. Table 1
gives a taxonomy of different spatial and spatiotemporal data types (or models). Spatial data can
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be categorized into three models, i.e., the object model, the field model, and the spatial network
model [3,32]. Spatiotemporal data, based on how temporal information is additionally modeled, can be
categorized into three types, i.e., temporal snapshot model, temporal change model, and event or process
model [33–35]. In the temporal snapshot model, spatial layers of the same theme are time-stamped. For
instance, if the spatial layers are points or multi-points, their temporal snapshots are trajectories of points
or spatial time series (i.e., variables observed at different times on fixed locations). Similarly, snapshots
can represent trajectories of lines and polygons, raster time series, and spatiotemporal networks such as
time expanded graphs (TEGs) and time aggregate graphs (TEGs) [36,37]. The temporal change model
represents spatiotemporal data with a spatial layer at a given start time together with incremental changes
occurring afterward. For instance, it can represent motion (e.g., Brownian motion, random walk [38])
as well as speed and acceleration on spatial points, as well as rotation and deformation on lines and
polygons. Event and process models represent temporal information in terms of events or processes.
One way to distinguish events from processes is that events are entities whose properties are possessed
timelessly and therefore are not subject to change over time, whereas processes are entities that are
subject to change over time (e.g., a process may be said to be accelerating or slowing down) [39].

Table 1. Taxonomy of Spatial and Spatiotemporal Data Models.

Spatial Data Temporal Snapshots
(Time Series)

Temporal Change
(Delta/Derivative)

Events/Processes

object
model

point(s) 1. point trajectories
2. spatial time series

displacement/motion (e.g.,
Brownian motion, random
walk), speed/acceleration

spatial/spatiotemporal
point process: Poisson,
Cox, or Cluster process

line(s) line trajectories motion/extension/rotation,
deformation, split/merge

line process

polygon(s) polygon trajectories motion/expansion/rotation/
deformation, split/merge

flat process

field
model

regular,
irregular

raster time series change across raster
snapshots

cellular automation

spatial
network
model

graph spatiotemporal network:
1. time expanded graph,
time aggregated graph;
2. network flow

addition or removal of
nodes and edges

1. random geometric
graph;
2. spatiotemporal event or
process on spatial network;
3. percolation theory

2.2. Data Attributes and Relationships

There are three distinct types of data attributes for spatiotemporal data: non-spatiotemporal attributes,
spatial attributes, and temporal attributes. Non-spatiotemporal attributes are used to characterize
non-contextual features of objects, such as name, population, and unemployment rate for a city. They are
the same as the attributes used in the data inputs of classical data mining [40]. Spatial attributes are used
to define the spatial location (e.g., longitude and latitude), spatial extent (e.g., area, perimeter) [41,42],
shape, as well as elevation defined in a spatial reference frame. Temporal attributes include the timestamp



ISPRS Int. J. Geo-Inf. 2015, 4 2311

of a spatial object, a raster layer, or a spatial network snapshot, as well as the duration of a process.
Relationships on these data attributes are summarized in Tables 2 and 3.

Table 2. Common Relationships among Non-spatial and Spatial Attributes.

Attributes Categories Relationships

non-spatial • nominal
• ordinal
• interval
• ratio

Explicit
• arithmetic
• ordering
• instance of
• subclass of

spatial • location
• area
• perimeter
• shape

Often implicit
• set space: union, intersection, membership, etc.
• topological space: meet, within, overlap, etc.
• metric space: metric: distance, area, perimeter.
directional: above, below, northeastern
• others: shape based and visibility

Table 3. Relationships on Spatiotemporal Data.

Spatial Data Temporal Snapshots
(Time Series)

Change
(Delta/Derivative)

Event/Process

object
model

point(s),
line(s),
polygon(s)

1. spatiotemporal
predicates [43]
2. trajectory
distance [44,45]
3. spatial time series
correlation [46],
tele-connection [47]

1. displacement/motion
speed/acceleration
attraction/repulsion
2. (for line and polygon)
extension/expansion,
rotation, deformation,
split/merge

1. spatiotemporal
co-variance [38]
2. spatiotemporal
coupling for point events
or extended spatial
objects [48–53]

field
model

regular
irregular

1. cubic map algebra [54]
2. temporal correlation,
tele-connection

local, focal, zonal change
across snapshots [29]

cellular automation [55]

spatial
network

graph 1. predecessor/successor
on a Lagrangian path
2. temporal centrality [56]
3. network flow [57–59]

change in centrality,
connectivity

spatiotemporal coupling of
network events

One way to deal with implicit spatiotemporal relationships is to materialize the relationships into
traditional data input columns and then apply classical data mining techniques [60–64]. However, the
materialization can result in loss of information [23]. The spatial and temporal vagueness which naturally
exists in data and relationships usually creates further modeling and processing difficulty in spatial
and spatiotemporal data mining. A more preferable way to capture implicit spatial and spatiotemporal
relationships is to develop statistics and techniques to incorporate spatial and temporal information into
the data mining process. These statistics and techniques are the main focus the survey.
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3. Statistical Foundations

This section provides a taxonomy of common statistical concepts for different spatial and
spatiotemporal data types. Spatial and spatiotemporal statistics are distinct from classical statistics due to
the unique characteristics of space and time. One important property of spatial data is spatial dependency,
a property so fundamental that geographers have elevated it to the status of the first law of geography:
“Everything is related to everything else, but nearby things are more related than distant things” [65].
Spatial dependency is also measured using spatial autocorrelation. Other important properties include
spatial heterogeneity, temporal autocorrelation and non-stationarity, as well as the multiple scale effect.

3.1. Spatial Statistics for Different Types of Spatial Data

Spatial statistics [38,66–68] is a branch of statistics concerned with the analysis and modeling
of spatial data. The main difference between spatial statistics and classical statistics is that spatial
data often fails to meet the assumption of an identical and independent distribution (i.i.d.). As
summarized in Table 4, spatial statistics can be categorized according to their underlying spatial data
type: Geostatistics for point referenced data, lattice statistics for areal data, and spatial point process for
spatial point patterns.

Geostatistics: Geostatistics [69] deals with the analysis of spatial continuity (i.e., dependence across
locations), weak stationarity (i.e., some statistical properties not changing with locations) and isotropy
(i.e., uniformity in all directions), which are inherent characteristics of spatial point reference data. It is
mostly concerned with developing models of spatial dependence for prediction. Under the assumption
of weak stationarity or intrinsic stationarity, spatial dependence at various distances can be captured by
a covariance function or a semivariogram [66]. Geostatistics provides a set of statistical tools, such
as Kriging [66] which can be used to interpolate attributes at unsampled locations. However, real
world spatial data often shows inherent variation in measurements of a relationship over space, due
to influences of spatial context on the nature of spatial relationships. For example, human behavior can
vary intrinsically over space (e.g., differing cultures). Different jurisdictions tend to produce different
laws (e.g., speed limit differences between Minnesota and Wisconsin). This effect is called spatial
heterogeneity or non-stationarity. Special models (e.g., local space-time Kriging [70]) can be further
used to reflect the varying functions at different locations.

Lattice statistics: Lattice statistics studies statistics for spatial data in the field (or areal) model. Here
a lattice refers to a countable collection of regular or irregular cells in a spatial framework. The range
of spatial dependency among cells is reflected by a neighborhood relationship, which can be represented
by a contiguity matrix called a W-matrix. A spatial neighborhood relationship can be defined based
on spatial adjacency (e.g., rook or queen neighborhoods) or Euclidean distance, or in more general
models, cliques and hypergraphs [71]. Based on a W-matrix, spatial autocorrelation statistics can be
defined to measure the correlation of a non-spatial attribute across neighboring locations. Common
spatial autocorrelation statistics include Moran’s I , Getis-Ord Gi∗, Geary’s C, Gamma index Γ [69],
etc., as well as their local versions called local indicators of spatial association (LISA) [72]. Several
spatial statistical models, including the spatial autoregressive model (SAR), conditional autoregressive
model (CAR), Markov random fields (MRF), as well as other Bayesian hierarchical models [66], can be
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used to model lattice data. Another important issue is the modifiable areal unit problem (MAUP) (also
called the multi-scale effect) [73], an effect in spatial analysis that results for the same analysis method
will change on different aggregation scales. For example, analysis using data aggregated by states will
differ from analysis using data at individual family level.

Table 4. Taxonomy of Spatial and Spatiotemporal Statistics.

Spatial Model Spatial Statistics Spatiotemporal Statistics

object
model

point(s)
Geostatistics (point reference data)
1. stationarity, isotropy, variograms,
Kriging
2. local variogram or local
correlation
3. the Modifiable Areal Unit
Problem (MAUP)

Statistics for spatial time series
1. spatiotemporal stationarity, variograms,
covariance, Kriging
2. temporal autocorrelation, tele-coupling
3. physics-inspired models
4. Dynamic Spatiotemporal model (Kalman filter)

Spatial Point Processes
1. Spatial (homogeneous) Poisson
point process, Cox process, cluster
process
2. spatial scan statistics
3. Ripley’s K function

Spatiotemporal Point Processes
1. spatiotemporal (homogeneous) Poission process,
Cox process, cluster process
2. spatiotemporal scan statistics
3. spatiotemporal K-function
4. Planetary/Brownian motion, random walk.

line(s) line process

polygon(s) flat process

field
model

regular,
irregular

Lattice Statistics (areal data model)
1. W-matrix, spatial
autocorrelation, local indicators
of spatial association (LISA)
2. MRF, SAR, CAR, Bayesian
hierarchical model
3. The Modifiable Areal Unit
Problem (MAUP)

Statistics for raster time series
1. EOF analysis, CCA analysis
2. Spatiotemporal autoregressive model (STAR),
Bayesian hierarchical model
3. Dynamic Spatiotemporal model (Kalman filter),
data assimilation

spatial
network

graph Spatial Network Statistics
1. spatial network autocorrelation
2. network K function
3. network Kriging

Spatial point processes: A spatial point process is a model for the spatial distribution of the points in
a point pattern. It differs from point reference data in that the random variables are locations. Examples
include positions of trees in a forest and locations of bird habitats in a wetland. One basic type of point
process is a homogeneous spatial Poisson point process (also called complete spatial randomness, or
CSR) [38], where point locations are mutually independent with the same intensity over space. However,
real world spatial point processes often show either spatial aggregation (clustering) or spatial inhibition
instead of complete spatial independence as in CSR. Spatial statistics such as Ripley’s K function [74,75],
i.e., the average number of points within a certain distance of a given point over the total average intensity,
can be used to test a point pattern against CSR. Moreover, real world spatial point processes such as crime
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events often contain hotspot areas instead of following homogeneous intensity across space. A spatial
scan statistic [76] can be used to detect these hotspot patterns. It tests if the intensity of points inside
a scanning window is significantly higher (or lower) than outside. Though both the K-function and spatial
scan statistics have the same null hypothesis of CSR, their alternative hypotheses are quite different: the
K-function tests if points exhibit spatial aggregation or inhibition instead of independence, while spatial
scan statistics assume that points are independent and test if a hotspot with much higher intensity exists.
Finally, there are other spatial point processes such as the Cox process, in which the intensity function
itself is a random function over space, as well as a cluster process, which extends a basic point process
with a small cluster centered on each original point [38]. For extended spatial objects such as lines and
polygons, spatial point processes can be generalized to line processes and flat processes in stochastic
geometry [77].

Spatial network statistics: Most spatial statistics research focuses on the Euclidean space. Spatial
statistics on the network space is much less studied. Spatial network space, e.g., river networks and street
networks, is important in applications of environmental science and public safety analysis. However, it
poses unique challenges including directionality and anisotropy of spatial dependency, connectivity, as
well as high computational cost. Statistical properties of random fields on a network are summarized
in [78]. Recently, several spatial statistics, such as spatial autocorrelation, K-function, and Kriging, have
been generalized to spatial networks [79–81]. Little research has been done on spatiotemporal statistics
on the network space.

3.2. Spatiotemporal Statistics

Spatiotemporal statistics [38,82] combine spatial statistics with temporal statistics (time series
analysis [83], dynamic models [82]). Table 4 summarizes common statistics for different spatiotemporal
data types, including spatial time series, spatiotemporal point process, and time series of lattice
(areal) data.

Spatial time series: Spatial statistics for point reference data have been generalized for spatiotemporal
data [84]. Examples include spatiotemporal stationarity, spatiotemporal covariance, spatiotemporal
variograms, and spatiotemporal Kriging [38,82]. There is also temporal autocorrelation and
tele-coupling (high correlation across spatial time series at a long distance). Methods to model
spatiotemporal process include physics inspired models (e.g., stochastically differential equations) [38]
and hierarchical dynamic spatiotemporal models (e.g., Kalman filtering) for data assimilation [38].

Spatiotemporal point process: A spatiotemporal point process generalizes the spatial point process
by incorporating the factor of time. As with spatial point processes, there is a spatiotemporal Poisson
process, Cox process, and cluster process. There are also corresponding statistical tests including
a spatiotemporal K function and spatiotemporal scan statistics [38].

Time series of lattice (areal) data: Similar to lattice statistics, there is spatial and temporal
autocorrelation, a SpatioTemporal Autoregressive Regression (STAR) model [85], and Bayesian
hierarchical models [66]. Other spatiotemporal statistics include empirical orthogonal functions (EOF)
analysis (principle component analysis in geophysics), canonical-correlation analysis (CCA), and
dynamic spatiotemporal models (Kalman filter) for data assimilation [82].
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4. Output Pattern Families

4.1. Spatiotemporal Outlier

4.1.1. What are Spatiotemporal Outliers?

To understand the meaning of spatiotemporal outliers, it is useful first to consider global outliers.
Global outliers [86–88] have been informally defined as observations in a data set which appear to be
inconsistent with the remainder of that set of data, or which deviate so much from other observations as
to arouse suspicions that they were generated by a different mechanism. In contrast, a spatiotemporal
outlier [89–92] is a spatially and temporally referenced object whose non-spatiotemporal attribute
values differ significantly from those of other objects in its spatiotemporal neighborhood. Informally,
a spatiotemporal outlier is a local instability or discontinuity.

4.1.2. Application Domains

Detecting spatiotemporal outliers is useful in many applications including transportation, ecology,
homeland security, public health, climatology, and location-based services [93,94]. For example,
spatiotemporal outlier detection can be used to detect anomalous traffic patterns from sensor observations
on a highway road network.

4.1.3. Statistical Foundation

The spatial statistics for spatial outlier detection are also applicable to spatiotemporal outliers as
long as spatiotemporal neighborhoods are well-defined. The literature provides two kinds of bi-partite
multidimensional tests: graphical tests, including variogram clouds [95] and Moran scatterplots [68,96],
and quantitative tests, including scatterplot [97] and neighborhood spatial statistics [93,98].

4.1.4. Common Approaches

The intuition behind spatiotemporal outlier detection is that they reflect “discontinuity” on
non-spatiotemporal attributes within a spatiotemporal neighborhood. Approaches can be summarized
according to the input data types.

Outliers in spatial time series: For spatial time series (on point reference data, raster data, as well
as graph data), basic spatial outlier detection methods, such as visualization based approaches and
neighborhood based approaches, can be generalized with a definition of spatiotemporal neighborhoods.
Thus, for simplicity, we only discuss these basic spatial outlier detection approaches here. The
visualization approach plots spatial locations on a graph to identify spatial outliers. The common
methods are variogram clouds and Moran scatterplot as introduced earlier. The neighborhood
approach defines a spatial or spatiotemporal neighborhood, and a spatial statistic is computed as
the difference between the non-spatial attribute of the current location and that of the neighborhood
aggregate [93,99–101]. Spatial neighborhoods can be identified by distances on spatial attributes (e.g.,
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K nearest neighbors), or by graph connectivity (e.g., locations on road networks) [89]. This research
has been extended in a number of ways to allow for multiple non-spatial attributes [100], average and
median attribute value [99,102], weighted spatial outliers [103], categorical spatial outlier [104], local
spatial outliers [105], and fast detection [106,107].

Flow Anomalies: Given a set of observations across multiple spatial locations on a spatial network
flow, flow anomaly discovery aims to identify dominant time intervals where the fraction of time instants
of significantly mis-matched sensor readings exceeds the given percentage-threshold. Figure 3a is
a simple example of problem input, which consists of two neighboring locations (i.e., an upstream
(up) and downstream (down) sensor), 10 time instants, and the notion of travel time (TT) or flow
between the locations. The output contains two flow anomalies; using the time instants at the upstream
sensor, periods 1–3 and 6–9, where the majority of time-points show significant differences in-between
(Figure 3b). Flow anomaly discovery can be considered as detecting discontinuities or inconsistencies
of a non-spatiotemporal attribute within a neighborhood defined by the flow between nodes, and such
discontinuities are persistent over a period of time. A time-scalable technique called SWEET (Smart
Window Enumeration and Evaluation of persistent-Thresholds) was proposed [57,108,109] that utilizes
several algebraic properties in the flow anomaly problem to discover these patterns efficiently. To account
for flow anomalies across multiple locations, recent work [58] defines a teleconnected flow anomaly
pattern and proposes a RAD (Relationship Analysis of Dynamic-neighborhoods) technique to efficiently
identify this pattern.

1 2 3 4 5 6t =

20 20 20 20 20 20

20 40 20 40 20 20

1 1 1 1 1 1

7 8 9 10

20 20 20 20

40 20 40 40

up =

down =

TT  = 1 1 1 1

(a)Example Input

1 2 3 4 5 6t =

20 20 20 20 20 20

20 40 20 40 20 20

1 1 1 1 1 1

7 8 9 10

20 20 20 20

40 20 40 40

up =

down =

TT  = 1 1 1 1

(b)Example Output

Figure 3. Flow Anomaly Example. (a) Example input. (b) Example output.

Anomalous moving object trajectories: Detecting spatiotemporal outliers from moving object
trajectories is challenging due to the high dimensionality of trajectories and the dynamic nature.
A context-aware stochastic model has been proposed to detect anomalous moving pattern in indoor
device trajectories [110]. Another spatial deviations (distance) based method has been proposed
for anomaly monitoring over moving object trajectory stream [111]. In this case, anomalies are
defined as rare patterns with big spatial deviations from normal trajectories in a certain temporal
interval. A supervised approach called Motion-Alert has also been proposed to detect anomaly
in massive moving objects [112]. This approach first extracts motif features from moving object
trajectories, then clusters the features, and learns a supervised model to classify whether a trajectory
is an anomaly. Other techniques have been proposed to detect anomalous driving patterns from taxi GPS
trajectories [113–115].
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4.2. Spatiotemporal Couplings and Tele-Couplings

4.2.1. What are Spatiotemporal Couplings and Tele-Couplings?

Spatiotemporal coupling patterns represent spatiotemporal object types whose instances often occur in
close geographic and temporal proximity. These patterns can be categorized according to whether there
exists temporal ordering of object types: spatiotemporal (mixed drove) co-occurrences [48] are used
for unordered patterns, spatiotemporal cascades [51] for partially ordered patterns, and spatiotemporal
sequential patterns [53] for totally ordered patterns. Spatiotemporal tele-coupling [46] is the pattern of
significantly positive or negative temporal correlation between spatial time series data at a great distance.

4.2.2. Application Domains

Discovering various patterns of spatiotemporal coupling and tele-coupling is important in applications
related to ecology, environmental science, public safety, and climate science. For example, identifying
spatiotemporal cascade patterns from crime event datasets can help police department to understand
crime generators in a city, and thus take effective measures to reduce crime events [116].

4.2.3. Statistical Foundation

The underlying statistic for spatiotemporal coupling patterns is the spatiotemporal cross K
function [117], which extends spatiotemporal Ripley’s K function (Section 3.2) to the case of
multiple variables.

4.2.4. Common Approaches

Mixed Drove Spatiotemporal Co-Occurrence Patterns represent subsets of two or more different
object-types whose instances are often located in spatial and temporal proximity. Discovering MDCOPs
is potentially useful in identifying tactics in battlefields and games, understanding predator-prey
interactions, and in transportation (road and network) planning [118,119]. However, mining MDCOPs
is computationally very expensive because the interest measures are computationally complex, datasets
are larger due to the archival history, and the set of candidate patterns is exponential in the number
of object-types. Recent work has produced a monotonic composite interest measure for discovering
MDCOPs and novel MDCOP mining algorithms are presented in [48,120]. A filter-and-refine approach
has also been proposed to identify spatiotemporal co-occurrence on extended spatial objects [49].

A spatiotemporal sequential pattern is a sequence of spatiotemporal event types in the form of
f1 → f2 → ... → fk. It represents a “chain reaction” from event type f1 to event type f2 and then to
event type f3 until it reaches event type fk. A spatiotemporal sequential pattern differs from a colocation
pattern in that it has a total order of event types. Such patterns are important in applications such
as epidemiology where some disease transmission may follow paths between several species through
spatial contacts. Mining spatiotemporal sequential patterns is challenging due to the lack of statistically
meaningful measures as well as high computation cost. A measure of sequence index, which can be
interpreted by K-function statistics, was proposed in [52,53], together with computationally efficient
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algorithms. Other works have investigated spatiotemporal sequential patterns from data other than
spatiotemporal events, such as moving object trajectories [121–123].

Cascading spatio-temporal patterns: Partially ordered subsets of event-types whose instances are
located together and occur in stages are called cascading spatio-temporal patterns (CSTP). In the domain
of public safety, events such as bar closings and football games are considered generators of crime.
Preliminary analysis revealed that football games and bar closing events do indeed generate CSTPs.
CSTP discovery can play an important role in disaster planning, climate change science [124,125] (e.g.,
understanding the effects of climate change and global warming) and public health (e.g., tracking the
emergence, spread and re-emergence of multiple infectious diseases [126]). A statistically meaningful
metric was proposed to quantify interestingness and computational pruning strategies were proposed to
make the pattern discovery process more computationally efficient [50,51].

Spatial time series and tele-connection: Given a collection of spatial time series at different locations,
teleconnection discovery aims to identify pairs of spatial time series whose correlation is above a given
threshold. Tele-connection patterns are important in understanding oscillations in climate science.
Computational challenges arise from the length of the time series and the large number of candidate
pairs and the length of time series. An efficient index structure, called a cone-tree, as well as a filter
and refine approach [46,127] have been proposed which utilize spatial autocorrelation of nearby spatial
time series to filter out redundant pair-wise correlation computation. Another challenge is spurious
“high correlation” pairs of locations that happen by chance. Recently, statistical significant tests have
been proposed to identify statistically significant tele-connection patterns called dipoles from climate
data [47]. The approach uses a “wild bootstrap” to capture the spatio-temporal dependencies, and takes
account of the spatial autocorrelation, the seasonality and the trend in the time series over a period
of time.

4.3. Spatiotemporal Prediction

4.3.1. What is Spatiotemporal Prediction?

Given spatiotemporal data items, with a set of explanatory variables (also called explanatory attributes
or features) and a dependent variable (also called target variables), the spatiotemporal prediction problem
aims to learn a model that can predict the dependent variable from the explanatory variables. When the
dependent variable is discrete, the problem is called spatiotemporal classification. When the dependent
variable is continuous, the problem is spatiotemporal regression. One example of spatiotemporal
classification problem is remote sensing image classification over temporal snapshots [128], where the
explanatory variables consists of various spectral bands or channels (e.g., blue, green, red, infra-red,
thermal, etc.) and the dependent variable is a thematic class such as forest, urban, water, and agriculture.
Examples of spatiotemporal regression include yearly crop yield prediction [129], and daily temperature
prediction at different locations.
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4.3.2. Application Domains

Spatiotemporal prediction has broad applications such as land cover classification on remote sensing
images [130], future trends projection in global or regional climate variables [131], and real estate price
modeling [132].

4.3.3. Statistical Foundation

The statistical foundation of spatiotemporal prediction techniques includes classical statistics
augmented to account for lagged (spatially and temporally) variables [133], as well as spatiotemporal
statistics including spatial and temporal autocorrelation, spatial heterogeneity and temporal
non-stationarity, as well as the multi-scale effect (introduced in the Section 3).

4.3.4. Common Approaches

Spatiotemporal Autoregressive Regression (STAR): In the spatial autoregression model, the spatial
dependencies of the error term, or, the dependent variable, are directly modeled in the regression
equation [134]. If the dependent values yi are related to each other, then the regression equation
can be modified as y = ρWy + Xβ + ε, where W is the neighborhood relationship contiguity
matrix and ρ is a parameter that reflects the strength of the spatial dependencies between the elements
of the dependent variable via the logistic function for binary dependent variables. SpatioTemporal
Autoregressive Regression (STAR) extends SAR by further explicitly modeling the temporal and
spatiotemporal dependency across variables at different locations. More details can be found in [68].

Spatiotemporal Kriging: Kriging [68] is a Geostatistic technique to make predictions at locations
where observations are unknown, based on locations where observations are known. In other words,
Kriging is a spatial “interpolation” model. Spatial dependency is captured by the spatial covariance
matrix, which can be estimated through spatial variograms. Spatiotemporal Kriging [82] generalizes
spatial kriging with a spatiotemporal covariance matrix and variograms. It can be used to make
predictions from incomplete and noise spatiotemporal data.

Hierarchical Dynamic Spatiotemporal Models: Hierarchical dynamic spatiotemporal models
(DSMs) [82], as the name suggests, aim to model spatiotemporal processes dynamically with a Bayesian
hierarchical framework. On the top is a data model, which represents the conditional dependency of
(actual or potential) observations on the underlying hidden process with latent variables. In the middle
is a process model, which captures the spatiotemporal dependency with the process model. On the
bottom is a parameter model, which captures the prior distributions of model parameters. DSMs have
been widely used in climate science and environment science, e.g., for simulating population growth or
atmospheric and oceanic processes. For model inference, Kalman filter can be used under the assumption
of linear and Gaussian models.
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4.4. Spatiotemporal Partitioning and Summarization

4.4.1. What is Spatiotemporal Partitioning and Summarization?

Spatiotemporal partitioning, or Spatiotemporal clustering is the process of grouping similar
spatiotemporal data items, and thus partitioning the underlying space and time [27]. It is important
in many societal applications. For example, partitioning and summarizing crime data, which is spatial
and temporal in nature, helps law enforcement agencies find trends of crimes and effectively deploy their
police resources. It is important to note that spatiotemporal partitioning or clustering is closely related
to, but not the same as spatiotemporal hotspot detection. Hotspots can be considered as special clusters
such that events or activities inside a cluster have much higher intensity than outside.

Spatiotemporal summarization aims to provide a compact representation of spatiotemporal data.
For example, traffic accident events on a road network can be summarized into several main routes
that cover most of the accidents. Spatiotemporal summarization is often done after or together with
spatiotemporal partitioning so that objects in each partition can be summarized by aggregated statistics
or representative objects.

4.4.2. Application Domains

Spatiotemporal partitioning and summarization are important in many societal applications such as
public safety, public health, and environmental science. For example, partitioning and summarizing
crime data, which is spatial and temporal in nature, helps law enforcement agencies find trends of crimes
and effectively deploy their police resources [135].

4.4.3. Statistical Foundation

Relevant statistics for spatiotemporal partitioning and summarization include spatiotemporal point
density estimation [38] (e.g., Kernel density function), and temporal correlation for spatial time
series, etc.

4.4.4. Common Approaches

Spatio-Temporal Event Partitioning: Some classic clustering algorithms for two dimensional space
can be easily generalized to spatiotemporal scenarios [136]. These techniques can be classified as global
partitioning, density-based, hierarchical, and graph based. Global partitioning groups spatial objects to
maximize within-group similarity. Examples are K-means, K-Medoids, EM algorithm, CLIQUE [137],
BIRCH, and CLARANS [138]. Density based approaches first identify “dense” points and connect
them to form contiguous clusters or partitions. Examples include ST-DBSCAN [139], a spatiotemporal
extension of its spatial version called DBSCAN [140,141], as well as ST-GRID [142], which splits the
space and time into 3D cells and merges dense cells together into clusters. The hierarchical approach,
e.g., agglomerative [40], dendrogram [40], and BIRCH [143], partitions or groups spatiotemporal data
at different hierarchical levels. Graph based approaches such as Chameleon [40,144] first represent data
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items as a sparse k nearest neighbor graph, then partition the graph into segments, and hierarchically
merge graph segments according to the similarity between original segments and merged segments.

Spatial Time-Series Partitioning: Spatial time series partitioning aims to divide the space into regions
such that the correlation or similarity between time series within the same regions is maximized. Global
partitioning methods such as K Means, K Medoids, and EM can be applied. So can the hierarchical
approach. However, due to the high dimensionality of spatial time series, density-based approaches and
graph-based approaches are often not effective. When computing similarity between spatial time series,
a filter-and-refine approach [46] can be used to avoid redundant computation.

Trajectory Data Partitioning: Trajectory data partitioning aims to partition trajectories into groups
according to their similarity. Algorithms are of two types, i.e., density-based and frequency-based. The
density based approaches [145,146] first break trajectories into small segments and apply density-based
clustering algorithms similar to DB-SCAN [140] to connect dense areas of segments. The frequency
based approach [147] uses association rule mining [63] algorithms to identify subsections of trajectories
which have high frequencies (also called high “support”).

Spatiotemporal Summarization: Data summarization aims to find compact representation of a data
set [148]. It is important for data compression as well as for making pattern analysis more convenient.
As shown in Table 5, data summarization can be conducted on classical data, spatial data, as well as
spatiotemporal data. For spatial time series data, summarization can be done by removing spatial and
temporal redundancy due to the effect of autocorrelation. A family of such algorithms has been used
to summarize traffic data streams [149]. Similarly, the centroids from K Means can also be used to
summarize spatial time series. For trajectory data, especially spatial network trajectories, summarization
is more challenging due to the huge cost of similarity computation. A recent approach summarizes
network trajectories into k primary corridors [150,151]. The work proposes efficient algorithms to reduce
the huge cost for network trajectory distance computation.

Table 5. Summarization Framework for Various Data Types.

Data Types Partition Definition Summarization

classical data partition of rows of records aggregate statistics: sum, count, mean, etc.

spatial data
partition of Euclidean space representatives: centroids, medoids, etc.
partition of spatial network representatives: K main routes, etc.

spatio-temporal data partition of trajectories on a
spatial or spatio-temprol network

representatives: K primary corridors, etc.

4.5. Spatiotemporal Hotspots

4.5.1. What are Spatiotemporal Hotspots?

Given a set of spatial objects (e.g., activity locations) in a study area, spatiotemporal hotspots are
regions together certain time intervals where the number of objects is anomalously or unexpectedly high
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within the time intervals. Spatiotemporal hotspots are a special kind of clustered pattern whose inside
has significantly higher intensity than outside.

4.5.2. Application Domains

Application domains for spatiotemporal hotspot detection range from public health to criminology.
For example, in epidemiology finding disease hotspots allows officials to detect an epidemic and allocate
resources to limit its spread [152].

4.5.3. Statistical Foundation

Spatiotemporal scan statistics [76,152] are used to detect statistically significant hotspots from
spatiotemporal datasets. It uses a cylinder to scan the space-time for candidate hotspots and perform
hypothesis testing. The null hypothesis states that the activity points are distributed randomly according
to a homogeneous (i.e., same intensity) Poisson process over the geographical space. The alternative
hypothesis states that the inside of the cylinder has higher intensity of activities than outside. A test
statistic called the log likelihood ratio is computed for each candidate hotspot (or cylinder) and the
candidate with the highest likelihood ratio can be evaluated using a significance value (i.e., p-value).

4.5.4. Common Approaches

Clustering based approaches: Clustering methods can be used to identify candidate areas for a
further evaluation of spatiotemporal hotspots. These methods include global partitioning, density based
clustering and hierarchical clustering (see Section 4.4). These methods can be used as a preprocessing
step to generate candidate hotspot areas, and statistical tools may be used to test statistical significance.
CrimeStat, a software package for spatial analysis of crime locations, incorporates several clustering
methods to determine the crime hotspots in a study area. CrimeStat package has k-means tool, nearest
neighbor hierarchical (NNH) clustering [153], Risk Adjusted NNH (RANNH) tool, STAC Hot Spot
Area tool [135], and a Local Indicator of Spatial Association (LISA) tool [72] that are used to evaluate
potential hotspot areas. Although many of the clustering methods mentioned above are generally
designed for two dimensional Euclidean space and mostly used for pure spatial data, they can be
used to identify spatiotemporal candidate hotspots by considering the temporal part of the data as
a third dimension. For example, DBSCAN will cluster both spatial and spatiotemporal data using the
density of the data as its measure.

Spatiotemporal Scan Statistics based approaches: Spatiotemporal hotspot detection can be seen as a
special case of pure spatial hotspot detection by the addition of time as a third dimension. Two types
of spatiotemporal hotspots that are of particular importance: “persistent” spatiotemporal hotspot and
“emerging” spatiotemporal hotspot. A “persistent” spatiotemporal hotspot is defined as a region where
the rate of increase in observations is constantly high over time. Thus, a persistent hotspot detection
assumes that the risk of an hotspot (i.e., outbreak) is constant over time and it searches over space and
time for an hotspot by simply totaling the number of observations in each time interval. An example
tool for persistent spatiotemporal hotspot detection is SaTScan, which uses a cylindrical window in
three dimensions (time is the third dimension) instead of the circular window in two dimensions [152]
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used for detecting spatial hotspots. An “emerging” spatiotemporal hotspot is a region where the
rate of observations is monotonically increasing over time [154,155]. This kind of spatiotemporal
hotspot occurs when an outbreak emerges causing a sudden increase in the number observations. Such
phenomena can be observed in epidemiology where at the start of an outbreak the number of disease
cases suddenly increases. Tools for the detection of emerging spatiotemporal hotspots use spatial scan
statistics with the change in expectation over time [156].

4.6. Spatiotemporal Change

4.6.1. What are Spatiotemporal Changes and Change Footprints

Although the single term “change” is used to name the spatiotemporal change footprint patterns
in different applications, the underlying phenomena may differ significantly. This section briefly
summarizes the main ways a change may be defined in spatiotemporal data [29]:

Change in Statistical Parameter: In this case, the data is assumed to follow a certain distribution and
the change is defined as a shift in this statistical distribution. For example, in statistical quality control,
a change in the mean or variance of the sensor readings is used to detect a fault.

Change in Actual Value: Here, change is modeled as the difference between a data value and its spatial
or temporal neighborhood. For example, in a one-dimensional continuous function, the magnitude of
change can be characterized by the derivative function, while on a two-dimensional surface, it can be
characterized by the gradient magnitude.

Change in Models Fitted to Data: This type of change is identified when a number of function models
are fitted to the data and one or more of the models exhibits a change (e.g., a discontinuity between
consecutive linear functions) [157].

4.6.2. Common Approaches

This section follows the taxonomy of spatiotemporal change footprint patterns as proposed in [29].
In this taxonomy, spatiotemporal change footprints are classified along two dimensions: temporal and
spatial. Temporal footprints are classified into four categories: single snapshot, set of snapshots, point
in a long series, and interval in a long series. Single snapshot refers to a purely spatial change that does
not have a temporal context. A set of snapshots indicates a change between two or more snapshots of
the same spatial field, e.g., satellite images of the same region.

Spatial footprints can be classified as raster footprints or vector footprints. Vector footprints are
further classified into four categories: point(s), line(s), polygon(s), and network footprint patterns. Raster
footprints are classified based on the scale of the pattern, namely, local, focal, or zonal patterns. This
classification describes the scale of the change operation of a given phenomenon in the spatial raster
field [158]. Local patterns are patterns in which change at a given location depends only on attributes
at this location. Focal patterns are patterns in which change in a location depends on attributes in that
location and its assumed neighborhood. Zonal patterns define change using an aggregation of location
values in a region.
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Spatiotemporal Change Patterns with Raster-Based Spatial Footprint: This includes patterns of
spatial changes between snapshots. In remote sensing, detecting changes between satellite images can
help identify land cover change due to human activity, natural disasters, or climate change [159–161].
Given two geographically aligned raster images, this problem aims to find a collection of pixels that have
significant changes between the two images [162]. This pattern is classified as a local change between
snapshots since the change at a given pixel is assumed to be independent of changes at other pixels.
Alternative definitions have assumed that a change at a pixel also depends on its neighborhoods [163].
For example, the pixel values in each block may be assumed to follow a Gaussian distribution [164]. We
refer to this type of change footprint pattern as a focal spatial change between snapshots. Researchers in
remote sensing and image processing have also tried to apply image change detection to objects instead
of pixels [165–167], yielding zonal spatial change patterns between snapshots.

A well-known technique for detecting a local change footprint is simple differencing. The technique
starts by calculating the differences between the corresponding pixels intensities in the two images.
A change at a pixel is flagged if the difference at the pixel exceeds a certain threshold. Alternative
approaches have also been proposed to discover focal change footprints between images. For example,
the block-based density ratio test detects change based on a group of pixels, known as a block [168,169].
Object-based approaches in remote sensing [167,170,171] employ image segmentation techniques to
partition temporal snapshots of images into homogeneous objects [172] and then classify object pairs in
the two temporal snapshots of images into no change or change classes.

Spatiotemporal Change Patterns with Vector-Based Spatial Footprint: This includes the
Spatiotemporal Volume Change Footprint pattern. This pattern represents a change process occurring
in a spatial region (a polygon) during a time interval. For example, an outbreak event of a disease can be
defined as an increase in disease reports in a certain region during a certain time window up to the current
time. Change patterns known to have an spatiotemporal volume footprint include the spatiotemporal scan
statistics [173,174], a generalization of the spatial scan statistic, and emerging spatiotemporal clusters
defined by [156].

5. Spatial and Spatiotemporal Analysis Tools

This section lists currently existing spatial and spatiotemporal analysis tools, including geographic
information system (GIS) softwares, spatial and spatiotemporal statistical tools, spatial database
management systems, as well as spatial big data platforms.

GIS Softwares: ArcGIS [175] is the currently most widely used commercial GIS software for
working with maps and geographic information. It has an extension named Tracking Analyst to support
visualization and analysis for spatiotemporal data. QGIS [176] (previously Quantum GIS) is a very
popular open source GIS software.

Spatial Statistical Tools: R provides many packages for spatial and spatiotemporal statistical
analysis [177], such as spatstat for point pattern analysis, gstat and geoR for Geostatistics, spdep for areal
data analysis. Matlab also provides Mapping Toolbox [178] and other spatial statistical toolboxes. SAS
recently provides support on spatial statistics [179] such as KRIGE2D Procedure for Kriging, SIM2D
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Procedure for Gaussian random field, SPP Procedure for spatial point pattern, and VARIOGRAM
Procedure for variograms.

Spatial Database Management Systems: Many commercial database provides extensions to support
spatial data, such as Oracle Spatial [180], and DB2 Spatial Extender [181]. PostGIS [182] is
a widely used open source spatial database management systems, which is an extension to Postgres,
an object-relational DBMS.

Spatial Big Data Platform: The upcoming spatial big data from vehicle GPS trajectories, cellphone
location data, as well as remote sensing imagery exceeds the capabilities of traditional spatial DBMS,
and requires new platforms to support scalable spatial analysis. Current spatial big data platforms include
ESRI GIS on Hadoop [183,184], Hadoop GIS [185], and Spatial Hadoop [186].

6. Research Trend and Future Research Needs

Most current research in spatiotemporal data mining uses Euclidean space, which often assumes
isotropic property and symmetric neighborhoods. However, in many real world applications, the
underlying space is network space, such as river networks and road networks [187–189]. One of the main
challenges in spatial and spatiotemporal network data mining is to account for the network structure in
the dataset. For example, in anomaly detection, spatial techniques do not consider the spatial network
structure of the dataset, that is, they may not be able to model graph properties such as one-ways,
connectivity, left-turns, etc. The network structure often violates the isotropic property and symmetry
of neighborhoods, and instead, requires asymmetric neighborhood and directionality of neighborhood
relationship (e.g., network flow direction).

Recently, some cutting edge research has been conducted in the spatial network statistics and data
mining [80]. For example, several spatial network statistical methods have been developed, e.g.,
network K function and network spatial autocorrelation. Several spatial analysis methods have also been
generalized to the network space, such as network point cluster analysis and clumping method, network
point density estimation, network spatial interpolation (Kriging), as well as network Huff model. Due to
the nature of spatial network space as distinct from Euclidean space, these statistics and analysis often
rely on advanced spatial network computational techniques [80].

We believe more spatiotemporal data mining research is still needed in the network space. First,
though several spatial statistics and data mining techniques have been generalized to the network
space, few spatiotemporal network statistics and data mining have been developed, and the vast
majority of research is still in the Euclidean space. Future research is needed to develop more
spatial network statistics, such as spatial network scan statistics, spatial network random field model,
as well as spatiotemporal autoregressive models for networks. Furthermore, phenomena observed
on spatiotemporal networks need to be interpreted in an appropriate frame of reference to prevent
a mismatch between the nature of the observed phenomena and the mining algorithm. For instance,
moving objects on a spatiotemporal network need to be studied from a traveler’s perspective, i.e., the
Lagrangian frame of reference [190–192] instead of a snapshot view. This is because a traveler moving
along a chosen path in a spatiotemporal network would experience a road-segment (and its properties
such as fuel efficiency, travel-time etc.) for the time at which he/she arrives at that segment, which
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may be distinct from the original departure-time at the start of the journey. These unique requirements
(non-isotropy and Lagrangian reference frame) call for novel spatiotemporal statistical foundations [187]
as well as new computational approaches for spatiotemporal network data mining.

Another future research need is to develope spatiotemporal graph big data platforms, motivated
by the upcoming rich spatiotemporal network data collected from vehicles. Modern vehicles have
rich instrumentation to measure hundreds of attributes at high frequency and are generating big data
(Exabyte [193]). This vehicle measurement big data (VMBD) consist of a collection of trips on
a transportation graph such as a road map annotated with several measurements of engine sub-systems.
Collecting and analyzing VMBD during real-world driving conditions can aid in understanding
the underlying factors which govern real world fuel inefficiencies or high greenhouse gas (GHG)
emissions [194]. Current relevant big data platforms for spatial and spatiotemporal data mining include
ESRI GIS Tools for Hadoop [183,184], Hadoop GIS [185], etc. These provide distributed systems
for geometric-data (e.g., lines, points and polygons) including geometric indexing and partitioning
methods such as R-tree, R+-tree, or Quad tree. Recently, SpatialHadoop has been developed [186].
SpatialHadoop embeds geometric notions in language, visualization, storage, MapReduce, and
operations layers. However, spatio-temporal graphs (STGs) violate the core assumptions of current
spatial big data platforms that the geometric concepts are adequate for conveniently representing STG
analytics operations and for partition data for load-balancing. STGs also violate core assumptions
underlying graph analytics software (e.g., Giraph [195], GraphLab [196] and Pregel [197]) that
traditional location-unaware graphs are adequate for conveniently representing STG analytics operations
and for partition data for load-balancing. Therefore, novel spatiotemporal graph big data platforms are
needed. Several challenges should be addressed, e.g., spatiotemporal graph big data requires novel
distributed file systems (DFS) to partition the graph, and a novel programming model is still needed to
support abstract data types and fundamental STG operations, etc.

7. Summary

This paper provides an over view of current research in the field of spatiotemporal data mining from
a computational perspective. Spatiotemporal data mining has broad application domains including
ecology and environmental management, public safety, transportation, earth science, epidemiology,
and climatology. However, the complexity of spatiotemporal data and intrinsic relationships limits
the usefulness of conventional data science techniques for extracting spatiotemporal patterns. We
provide a taxonomy of different spatiotemporal data types and underlying spatiotemporal statistics.
We also review common spatiotemporal data mining techniques organized by major output pattern
families: spatiotemporal outlier, spatiotemporal coupling and tele-coupling, spatiotemporal prediction,
spatiotemporal partitioning and summarization, spatiotemporal hotspots, and change detection. Popular
software tools for spatial and spatiotemporal data analysis are also listed. Finally, we discuss the cutting
edge research areas and future research needs.
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