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Abstract: Reservoir monthly inflow is rather important for the security of long-term 

reservoir operation and water resource management. The main goal of the present research 

is to develop forecasting models for the reservoir monthly inflow. In this paper, artificial 

neural networks (ANN) and support vector machine (SVM) are two basic heuristic 

forecasting methods, and genetic algorithm (GA) is employed to choose the parameters of 

the SVM. When forecasting the monthly inflow data series, both approaches are inclined to 

acquire relatively poor performances. Thus, based on the thought of refined prediction by 

model combination, a hybrid forecasting method involving a two-stage process is proposed 

to improve the forecast accuracy. In the hybrid method, the ANN and SVM are, first, 

respectively implemented to forecast the reservoir monthly inflow data. Then, the processed 

predictive values of both ANN and SVM are selected as the input variables of a newly-built 

ANN model for refined forecasting. Three models, ANN, SVM, and the hybrid method, are 

developed for the monthly inflow forecasting in Xinfengjiang reservoir with 71-year 

discharges from 1944 to 2014. The comparison of results reveal that three models have 

satisfactory performances in the Xinfengjiang reservoir monthly inflow prediction, and the 

hybrid method performs better than ANN and SVM in terms of five statistical indicators. 

Thus, the hybrid method is an efficient tool for the long-term operation and dispatching of 

Xinfengjiang reservoir. 
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1. Introduction 

Long-term hydrological prediction is of significance for water resource activities, such as reservoir 

operation [1–5], water resource planning [6–9], risk management [10–13], and urbanization [14,15]. 

Hence, hydrologic time-series forecasting, especially monthly inflow, has triggered great interest in 

hydrology and water resources fields [16,17]. In the past several decades, the study of the hydrologic 

time-series forecasting has produced tremendous excitement and attention, and a large number of 

models and approaches have been proposed to improve the quality of forecasting accuracy. These 

developed models can be divided approximately into statistical methods, physical methods, and 

intelligent approaches. However, there was no one method that was appropriate, universally, for any 

reservoirs because the hydrological characteristics of river basins and regions change with variation of 

time and space, and each kind of method has various merits and defects. Statistical methods 

represented by autoregressive moving-average models are rather simple and mature but with lower 

accuracy [18,19]. Physical models like soil and water assessment tool (SWAT) [20] have the clear 

physical mechanism of the rainfall-runoff relation and reflect the nature and features of the hydrologic 

data series from different angles. However, the parameters of these models are not easy to determine 

and the predictive ability is limited in many situations [21–23]. Intelligent methods usually have strong 

robustness and are widely used in many areas, while have a low identifying speed and easy to 

encounter local optimum [24–28].  

Reservoir monthly inflow data is influenced by various unstable factors and always present such 

characteristics as time-varying, non-stationary, and significant outliers. The characteristics of inflow 

data change the correlation between the past and the future. Moreover, there are many noise levels in 

different time-series regions, which further increase the difficulty of forecasting models. Hence, it is 

hard for a single time-series forecasting model to capture the dynamic changing processes and features, 

which may encounter local under-fitting or over-fitting problems [29–33]. The accuracy of a single 

forecast method always has limited effects. In order to obtain better performance, researchers have 

been constantly developing new technologies and methods for the hydrological prediction. In recent 

years, many hybrid approaches take advantage of more than one forecasting method to carry out the 

research work and engineering practice related to the reservoir inflow [34–39]. Application results 

indicate that the hybrid methods have higher forecasting precision than a single forecasting method.  

Many successful applications demonstrate that, with the advantages of good generalizability and 

forecast accuracy, both artificial neural network (ANN) and support vector machine (SVM) are two 

types of efficient and promising approaches in hydrological prediction. Moreover, the research can be 

promoted rapidly on the basis of our early works on ANN and SVM [8,40,41]. Hence, we choose ANN 

and SVM for reservoir monthly inflow forecasting. However, when handling with the monthly inflow 

prediction of Xinfengjiang reservoir, both methods are inclined to acquire relatively poor 

performances. Thus, there are certain promotion spaces for the hydrological series forecasting in 
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Xinfengjiang reservoir. Therefore, in this paper, based on the thought of refined prediction by model 

combination, we propose a hybrid forecasting approach for the reservoir monthly inflow based on 

three classical heuristic algorithms: ANN, SVM, and GA (genetic algorithm). The proposed method 

involves a two-stage forecasting process. In the first phase, with multiple hydrological input 

parameters, ANN and SVM are, respectively, implemented to forecast the reservoir monthly inflow 

data to identify the characteristic correlation, and GA is used for the parameter selection of SVM to 

reduce its performance volatility. In the second stage, in order to enhance the forecasting accuracy 

further, the results of the aforementioned ANN and SVM are selected as the input values of a  

newly-built ANN model, while the observed monthly inflow data are the output variables. When the 

training process is finished, the newly-built ANN model will be used for forecasting, and its 

forecasting results are the final values for operational prediction. In this research, the hybrid method 

was developed and compared with conventional ANN model and SVM model for one month-ahead 

forecasting of inflow data from Xinfengjiang reservoir in Guangdong province, China. It can be 

revealed from the result analysis that the proposed method is characterized by reasonable operation 

and high accuracy.  

The rest of this paper is organized as follows. The description of the Xinfengjiang reservoir and data 

sets are given in Section 2. Section 3 introduces the information of the forecasting methodologies.  

Five different types of error measurements are introduced in Section 4. In Section 5, the 

implementation, including the input variables determination and model developments, and results of 

the forecast models are discussed, and the proposed hybrid method has the best forecasting performance. 

Section 6 briefly presents the major conclusions, limitations and future directions of the study.  

2. Study Area and Data Sets 

2.1. Study Area 

The Pearl River (named Zhujiang in Chinese) is one of the world’s 25 largest rivers in terms of 

annual water discharge and sediment load [42]. The Pearl River originates from the Yunnan Plateau, 

crosses hill country and mountainous areas, and drains into the South China Sea. The Pearl River 

controls a drainage area of 450,000 km2 and reaches a total length of 2400 km. The rainy season 

extends from April to September, followed by a dry season from October to March.  

The Xinfengjiang reservoir, also known as Evergreen Lake, is within the boundaries of Guangdong 

Province, about six kilometers away from Heyuan City. Figure 1 shows the location of the study area 

and the Xinfengjiang reservoir. The reservoir is located on the outlet of Xinfengjiang River, which is a 

tributary of the East River. The East River is one of the three main tributaries of the Pearl River. The 

drainage area of the reservoir is 5740 km2, which accounts for about one quarter of the East River 

Basin area. The average annual rainfall is about 1974.7 mm. The annual inflow at the dam site is about 

192 m3/s. Since being put into production in October 1960, the reservoir began to play comprehensive 

benefit in power generation, flood control, navigation, water supply, etc. The reservoir is equipped 

with four units and its installed capacity arrives 302 million watts. The average annual energy 

generation is 0.99 billion kW·h. As the largest artificial reservoir with multi-year regulating storage in 

south China, the reservoir has the total capacity of 13.90 billion m3, where the dead storage capacity is 
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4.31 billion m3. Its normal water level is 116 m at non-flood season while the corresponding storage is  

10.8 billion m3. Its flood control level is 114 m during the first half of flood season from 1 April to 30 June, 

whilst that is 115 m during the second half of flood season from 1 July to 30 September.  

 

Figure 1. Location of the study area and Xinfengjiang reservoir. 

2.2. Division of Data 

For meta-heuristic algorithms, such as ANN and SVM, the overtraining problem is likely to happen, 

which means that the models have excellent performance on the training data, but do not fit well to 

new data. In order to prevent the overtraining problem, Chau et al. (2005) suggested dividing the data 

into three subsets [5]: Training set for model training, testing set for monitoring the training process 

and validation set for model validation. Hence, in this study, the available data are divided into these 

above three data sets. The feasible monthly inflow data consists of 71 years (852 months) from 1944 to 

2014 in Xinfengjiang reservoir. The first 55 years’ monthly inflow data were used as the training set 

while the last 16 years’ data were for validation. Moreover, of the training data, the first 40 years’ data 

was for model training, and the other 15 years’ data was for the purpose of confirming and validating 

the initial analysis.  

It is hard to extrapolate for forecasting methods when the validation data contains variables beyond 

the range of training data. Table 1 shows the statistical parameters of various data sets, where Xmean, Sd, 

Xmin, Xmax, and Range respectively stand for the mean, standard deviation, minimum, maximum, and 

range of various data sets. We can find that the monthly inflow data for Xinfengjiang reservoir varies 

over a relative wide range from 9.3 to 1506 m3/s. The scope of the training data set includes that of 

testing and validation sets fully. The statistical parameters of the training set are close to the testing 

and validation sets. Hence, the data used for various data sets are representative of the same 

population, so there is no need to extrapolate beyond the range of the data for training.  
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Table 1. The information of various datasets in Xinfengjiang reservoir. 

Datasets 
Statistic 

Xmean Sd Xmin Xmax Range 
Training set 204.1  14.3  9.3  1506.0  1496.7  

Testing set 192.1  13.9  24.5  1300.2  1275.7  

Validation set 176.3  13.3  22.3  1496.4  1474.1  

Original data 195.3  14.0  9.3  1506.0  1496.7  

2.3. Data Preprocessing 

Moreover, according to Lin et al. in 2006 [41] and Wang et al. in 2009 [17], in consideration of the 

numerical difficulties caused by the large attribute values dominating the smaller ones, the 

normalization is an essential process for the raw data before applying the forecasting models to 

prediction in various data sets. Using the following Equation, the values have to be scaled to the range 

between 0 and 1 in the modeling process. 

' min

max min

i
i

q qq
q q

−=
−

 (1) 

where iq  and '
iq  is the original inflow value and scaled inflow value, respectively. maxq  and minq  are 

the maximum and minimum of flow series, respectively.  

3. Forecasting Methodology 

3.1. Artificial Neural Network (ANN) 

As one of the most widely-used artificial intelligence methods, ANN has achieved great success in 

various fields by many researchers and scientists, like time-series prediction and simulation in water 

resources [5]. Through many investigations and practices, ANN has been proven that it is an efficient 

and reliable method in modeling nonlinear relationships between inputs and desired outputs in 

hydrologic time-series forecasting [16,17]. The ANN existence has much different kind of ways.  

ANN is commonly arranged in a series of layers composed of some close-connected processing 

neurons. Three-layer ANN, including one input layer, one hidden layer, and one output layer, is 

usually preferred in practical engineering applications because it can approximate almost any form of 

complex functional relationships between the inputs and desired outputs to arbitrary accuracy.  

Figure 2 shows the sketch map of a typical three-layer ANN. Every node usually gets an accumulated 

value by summing the values of its inputs multiplied by the corresponding weights associated with 

each interconnection, and then send the accumulated value to a nonlinear activation function to 

generate an output value which will be delivered to the following layer. Moreover, any one node of the 

previous layer is fully interconnected to all the nodes of the next layer, and there is no interconnection 

between any two nodes in the same layer. 
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Figure 2. Sketch map of a typical three-layer ANN.  

The back propagation algorithm is one of the most popular learning methods for the ANN training. 

In addition, with our early research works, back propagation can be easily implemented and integrated 

in practical forecasting system [40]. Back propagation can be roughly divided into two stages:  

a feed-forward stage and a backward stage. In the feed-forward stage, the input information is 

delivered to the input layer, the hidden layer and the output layer in sequence, to obtain the output 

information. In the backward stage, the connection weights and thresholds are modified by the 

differences between the computed and desired output values. Without knowing the detailed 

information about the nature of the complex system, ANN can approach the optimal or near-optimal 

relationship between the input data set and the output data set by optimizing the structure of the 

network constantly. Mathematically, the network can be expressed as follow:  

f  =  
 
Y WX + B  (2) 

where Y is the output vector. f is the transfer function. W is the weight vector. X is the weight vector.  
B is the bias vector.  

3.2. Support Vector Machine (SVM) 

Support Vector Machine (SVM), proposed by Vapnik in 1995 [41], is a novel and useful tool for 

data classification and regression analysis. SVM is built on the basis of statistical learning methods and 

the structural risk minimization principle instead of the empirical risk minimization [19,31]. SVM can 

achieve a global optimum, in theory, and has been applied in many fields over the past decades, such 

as hydrology and computer science [43–45]. There are abundant papers about the detailed theory of 

SVM. Here, we introduce the information of SVM in brief, and the interested readers can find the 

detailed theory of SVM by referring to more papers. The fundamental idea of the SVM technique is to 

take advantage of a linear or nonlinear model to map the target input data into a higher dimensional 

characteristic space, so that the primary problem can be solved in the new space. For example, as 

shown in Figure 3, the problem of data classification which cannot be linearly separated on the plane 

may be linearly separable in the space with three or higher dimensions.  
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Figure 3. 2D input space mapping into 3D feature space to separate data linearly. 

In SVM, the map model is usually defined as the kernel function to yield the inner products in the 

feature space and keep the calculated load reasonable. There are four kinds of commonly used kernel 

functions, including linear kernel, polynomial kernel, radial basis function (RBF) kernel, and sigmoid 

kernel [30,41]. Unlike the linear kernel, the RBF kernel can easily handle the non-linear relation 

between class labels and attributes. Compared with polynomial and sigmoid kernels, the RBF kernel 

has fewer tuning parameters, which reduces the complexity of model parameters selection. Moreover, 

the RBF kernel has good performance under general smoothness assumptions. In summary, the RBF 

kernel can improve the computational efficiency and enhance the generalization performance of SVM. 

Hence, the RBF kernel, as shown in Equation (3), is adopted as the kernel function in this study:  

( )
2

2
, exp

2σ
i

i
x x

k x x
 − − =  
  

  (3) 

where k represents the kernel function. 

In the RBF kernel function, there are three parameters needed to be confirmed: the parameter C 

denotes the positive constant, the parameter ε represents the insensitive loss function, and the 

parameter σ denotes the Gaussian noise level of the standard deviation. Different parameter 

combinations can lead to large differences in the forecasting result. Thus, the combination of the three 

parameters has to be optimized, first, in order to improve the forecasting accuracy. Many methods are 

used to select these parameters, such as grid search technique, particle swarm optimization, and genetic 

algorithm. However, at present, no general guidelines are available for the parameter selection of SVM 

because each method has certain advantages and disadvantages. For example, the grid search technique 

has the advantages of simplicity and intuition but is more computationally expensive than other 

optimization techniques. As one of the most classic and popular evolutionary methods, genetic 

algorithm was widely employed to calibrate the combination of the three parameters due to its good 

robustness, adaptability, and simplicity, and satisfied results were also achieved in considerable 

research work. Therefore, for the better forecasting accuracy, we apply the GA to automatically choose 

the effective parameters combination of SVM kernel function. 
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3.3. Genetic Algorithm (GA) 

In nature, for the limited resources, the grim competition exists in different individuals of the same 

or different species, resulting in the fittest individuals outmatching the weaker ones [2,23]. GA is a 

classical heuristic search algorithm which mimics the thought of natural selection and genetic evolution 

in Darwin’s theory. By the power of evolution, GA can provide an efficient and robust search capability for 

the optimization problems associated with numerous complex constraints [34,35]. In GA, each potentially 

feasible or infeasible solution to the problem is encoded as a string of chromosomes. GA usually starts 

from a population of the given size which is generated randomly in the search space. Then GA evolves 

through three essential operators: A selection operator representing the survival of the fittest, a 

crossover operator equating to the mating between individuals, and a mutation operator increasing the 

diversity. On the basis of the initial population, GA calculates the fitness values of all the individuals, 
and the fitness value ( )θF  of the individual θ  uses the following formula:  

( ) ( ) 2

1

1
θ ,θ

n

i i
i

F Y SVM
n =

= −   X  (4) 

where i represents the i-th data; n is the number of training data pairs; Yi is the i-th observed data; Xi is 
the i-th input data vector; ( ),θiSVM X  represents the corresponding simulated value of SVM.  

Then, the members with better fitness values are selected to form the population of the next 

generation. GA uses the crossover and mutation operators to enhance the population diversity.  

GA repeats the above-mentioned process until a certain terminal condition is met and the best 

individual represents the approximate optimal solution of the problem. Here, GA is employed to 

optimize the parameter combinations of the SVM model, and the objective is to minimize the fitness 
value of the optimal individual in the population, i.e., ( )min θF . The flowchart is shown in Figure 4.  

 

Figure 4. The flow chart of optimizing SVM using GA. 
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3.4. Hybrid Forecasting Method 

The reservoir monthly inflow data series is controlled by a number of factors in the real world, 

including weather conditions, underlying surface, human activities, and others. These time-varying 

factors can introduce considerable uncertainty and noise, and affect the process of the inflow data 

series collection, pre-process, and prediction accuracy in the forecasting model. Hence, the reservoir 

monthly inflow data series usually presents the strong properties of randomness and volatility. On the 

one hand, a single forecasting model may reflect only one aspect of the character of the reservoir 

inflow in most cases so it is rather difficult to forecast the monthly inflow data accurately with one 

forecasting model because the bias or a large deviation always exists in the forecasting model. On the 

other hand, the results of two or more forecasting models can show the inflow characteristics from 

various perspectives. It is possible to further improve the prediction accuracy using different 

forecasting results. Therefore, to enhance the performance of the model, special treatment is required 

for the forecasting results to reduce the prediction errors of different models.  

To deal with the problem of noise data caused by these aforementioned uncertain factors, this paper 

develops a hybrid forecast model based on ANN and SVM, which has many advantages discussed in 

the previous sections. The hybrid method is a two-stage process which can find an appropriate 

forecasting model to capture the complex relationship of the nonlinear system. First of all, the ANN A1 

and SVM S1 forecasting model are driven to forecast the targeted reservoir inflow data, respectively, 

gaining two different forecasting results. Secondly, a new ANN model A2 is built for the operational 

prediction, where the two different forecasting results of ANN and SVM are selected as the input 

variables and the real reservoir inflow data is used as the desired value. The two-stage forecasting 

process can be helpful to eliminate random errors of different models and improve the prediction 

ability to a certain degree. The framework of the proposed hybrid method is shown in Figure 5, and the 

process is described as below. 

Step 1. Data processing. Divide the original valid monthly inflow data into various data sets, and 

these raw data are normalized to the preset range from 0 to 1. 

Step 2. Model training in the first stage. Determine the structure of the ANN model A1 and SVM 

model S1, and use the abovementioned data to train both models, respectively, where GA is employed 

for the parameter selection of the SVM model S1. 

Step 3. Model training in the second stage. Determine the ANN model A2 structure and use the 

processed data of the ANN model A1 and SVM model S1 as the input variables to train the model A2. 

Step 4. Model forecasting. The three optimized forecasting models are used to get the future values.  

 

Figure 5. Sketch map of the hybrid method. 
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4. Statistical Measures 

In this paper, the following five different types of error measurements are employed to evaluate the 

quality of the forecasting model. They are root mean square error (RMSE) and mean absolute error 
(MAE), mean absolute percentage error (MAPE), coefficient of correlation (R) and Nash-Sutcliffe (NS) 

efficiency coefficient. RMSE can be an arbitrary positive value and perform better when it is close to 

zero. MAE shows the degree of the absolute error between the forecasted and measured data.  

MAPE can express the relative absolute model error as a percentage. R, which ranges from −1 to 1, is a 

statistical measure of linear relationship between the observed and forecasted data. NS is less than or 

equal to 1, and has better forecasting capability when it is close to 1. The smaller the values of RMSE, 

MAE and MAPE are, the better the performance of the model shows. On the contrary, the larger the 

values of NS and R are, the better the forecasting model performs. The five criteria are calculated using 

the following Equations:  

( )2

1

1 m

i i
i

RMSE y y
m =

= − 
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where iy  and iy  represent the i-th actual value and the i-th forecasted value of the forecasting model, 

respectively; m  is the total number of data set for comparison; y  represents the average value of the 

observed data, 
1

1
=

m

i
i

y y
m =
 ; y  is the average value of the forecasted data, 

1

1
=

m

i
i

y y
m =
 

 . 

5. Results and Discussion 

5.1. Input Variables Determination 

Reasonable input variables can help capture the nonlinear features underlying the process and 

contribute to good model performance. For time-series forecasting, the autocorrelation function (ACF) 

and partial autocorrelation function (PACF) are two common parameters used to diagnose the order of 

the autoregressive process and determine the input vector of the model, too [17,41]. Figure 6 shows the 
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ACF and PACF of the Xinfengjiang monthly inflow series with 95% confidence bands. Obviously, 

both ACF and PACF exhibit the peak value at lag 12, which indicates that twelve antecedent inflow 

values have the most useful information for the inflow forecasting. Hence, 12 antecedent inflow values 

are selected as the input vector based on autocorrelation coefficient analysis in this paper. The purpose 

of this study is to predict the inflow Qt+1 at the time t+1. Hence, the relationship between the output 

and input variables can be expressed as the following Equation: 

( )1 1 2 3 4 5 6 7 8 9 10 11, , , , , , , , , , ,t t t t t t t t t t t t tQ R Q Q Q Q Q Q Q Q Q Q Q Q+ − − − − − − − − − − −=  (10) 

where R  denotes the nonlinear relationship, which are the corresponding model when ANN, SVM, 

and the hybrid method are used for inflow forecasting, respectively. 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Lag ACF

6

11

16

21

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
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6

11

16

21

(a) (b) 

Figure 6. The (a) ACF and (b) PACF of Xinfengjiang monthly inflow series. 

5.2. Development of Various Models 

5.2.1. ANN Model A1 Development 

In the paper, we use a typical three-layer ANN model to forecast the monthly inflow in 

Xinfengjiang reservoir. All the neurons of hidden and output layers use the sigmoid transfer function. 

The twelve inputs and one output are applied to the ANN model, and all variables in the input and 

output data sets are normalized to the range between 0 and 1. The optimal network can be obtained 

using a trial and error procedure to train ANN models with various numbers of nodes in the hidden 

layer. As previously shown, the training data are further divided into the training set and the testing set. 

Based on the performances at different epochs, the cross-validation technique is used to select the 

optimum number of hidden neurons. Training is stopped when the error of the testing set starts to 

increase. Figure 7 shows the performances for the testing set with different hidden neurons from 2 to 25. 

When there are 15 neurons in the hidden layer, the testing error reached the minimum. Hence, the 

optimal ANN A1 architecture is (12, 15, 1). 
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Figure 7. Performance of ANN model with different hidden nodes. 

5.2.2. SVM Model S1 Development 

The setting of parameters plays an important role in the learning and generalization abilities of 

SVM. Larger search space is helpful for better parameters. Hence, the search scopes of three 

parameters are 5 102 ,2C − ∈   , 5 10σ 2 ,2− ∈    and 13 5ε 2 ,2− ∈   . GA is used for the parameter selection 

of the SVM model. The SVM parameters are directly encoded using real value data in the 

chromosomes of the GA. The maximum iteration of GA is 500 and the population size is set to 300. 

Similar to the ANN model, the same data sets are used to optimize the parameters of SVM. To obtain 

more appropriate parameters, the overall process is repeated five times and the best model is selected 

as the final forecasting model. Table 2 displays the performance statistics of SVM models. The results 

indicate that, in the fourth run, SVM model with the optimal parameters (C, ε, σ) = (9.425, 0.823, 0.081) 

behaved the best and should be selected as the forecast model for Xinfengjiang reservoir. 

Table 2. The performance statistics of SVM models using GA over five runs. 

Trial  

No. 

Optimal Parameters  

(C, ε, σ) 

Training Validation 

RMSE MAPE MAE NS R RMSE MAPE MAE NS R 
1 (10.653, 1.032, 0.078) 151.00 59.19 87.85 0.49 0.70 153.90 70.23 93.03 0.42 0.64 

2 (9.827, 0.435, 0.064) 144.82 54.29 85.60 0.53 0.73 133.07 61.87 82.54 0.56 0.75 

3 (2.783, 0.678, 0.125) 152.46 61.54 88.08 0.48 0.69 152.51 66.38 89.44 0.43 0.65 

4 (9.425, 0.823, 0.081) 118.66 70.48 82.44 0.68 0.83 96.60 75.73 74.36 0.77 0.89 

5 (11.803, 1.254, 0.708) 147.80 64.17 88.98 0.51 0.71 154.22 74.28 94.58 0.41 0.65 

5.2.3. ANN Model A2 Development 

The two above models, ANN and SVM, are executed to respectively obtain the predicted data.  

The ANN model A2 uses the results of both ANN model A1 and SVM model S1 as its input variables. 

There are two inputs and one output in the model. A typical three-layer network is used. The sigmoid 

transfer function is used in all neurons of the hidden layer and the output layer. To ensure the 

generalization, all variables are normalized, and a trial-and-error process is repeated to determine the 

optimal hidden layer nodes. The number of neuron in the hidden layer vary from two to nine, and all 

the statistical indexes of different network structures are recorded and compared during the calculation 
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procedure. Finally, the optimal neural network adopted was (2, 5, 1), as shown in Figure 8, which was 

selected as the final forecasting model.  

 

Figure 8. The optimal structure for ANN model A2. 

5.3. Comparison and Discussion 

For the sake of comparison, three forecasting methods, namely ANN, SVM, and the hybrid method 

are tested under the same experimental conditions. The same data sets are used to verify the 

performance of various forecasting models in the same way. Every one-month step is predicted and 

compared with the actual inflow data to calculate the errors. The process is repeated over the whole 

time series, and then the average errors of all the months data are calculated. The obtained appropriate 

architectures of the ANN model A1 and A2 for Xinfengjiang reservoir are (12, 15, 1) and (2, 5, 1), 

respectively. Moreover, using GA for parameter selection, the SVM model with parameters  

(C, ε, σ) = (9.425, 0.823, 0.081) is the forecasting model for Xinfengjiang reservoir. 

Table 3 summarizes the statistical values of the three models in both training and validation periods. 

We can efficiently execute the analysis of the predictive ability of different models for Xinfengjiang 

reservoir. When compared to the original ANN and SVM, the hybrid method can produce better and 

closer prediction accuracy in term of all five measures during various periods. In the training period, 

the hybrid method achieves 19.21%, 24.26%, and 31.50% reduction in the RMSE, MAE, and MAPE 
values of SVM, respectively. Compared with ANN model, improvements of the hybrid model’s 

forecast results regarding the R and NS were approximately 7.23% and 16.18%, respectively. In the 

validation period, the hybrid method can make 16.03%, 20.63%, and 21.83% improvements of the 

ANN forecast results related to the RMSE, MAE, and MAPE, respectively. The R and NS values of the 

hybrid method increase by 2.25% and 6.49% when compared with the SVM model, respectively.  

Thus, the above analysis indicates that the proposed method is able to obtain the best results  

in terms of all five different evaluation measures during both training and validation periods.  

The hybrid method starts the operational prediction using the processed data with more abundant 

information rather than original input vector, which help the forecasting model raise the cognitive level 

for the characteristics of time-variable monthly inflow data. By combining advantages of ANN and 

SVM, the hybrid method can effectively eliminate the noise of the original hydrological series. 

Therefore, the hybrid method can improve the forecasting accuracy of the monthly inflow data from 

Xinfengjiang reservoir.  
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Table 3. Model statistics of three models for Xinfengjiang reservoir. 

Models 
Training Validation 

RMSE MAPE MAE NS R RMSE MAPE MAE NS R 
SVM 118.66 70.48 82.44 0.68 0.83 96.60 75.73 74.36 0.77 0.89 

ANN 118.60 55.20 79.73 0.68 0.83 102.09 63.68 73.49 0.74 0.87 

Hybrid Method 95.86 48.28 62.44 0.79 0.89 85.72 49.78 58.33 0.82 0.91 

Figures 9 and 10 respectively shows a comparison of forecasted versus observed values, and errors 

by predicted minus observed of the three models for the Xinfengjiang reservoir in the validation 

period. Figure 11 shows the scatterplots of observed inflow data versus forecast inflow of the three 

prediction models. Figure 9 demonstrates that the simulation results accord well with the observed 

results and the three models can capture the whole trend of the data series in the validation stage.  

The plots of errors in Figure 10 illustrate that a certain underestimation or overestimation exists in the 

monthly inflow predication value of each model. Due to the small magnitude and frequent occurrences 

of the low inflow pattern, all three models have slightly smaller errors and better generalization in 

these regions than high inflow pattern. The results are consistent with that in Tables 3 and 4. The linear 

trend line of the hybrid method in Figure 11 has the biggest R-squared value, which means that the 

trend line is closest to the perfect 45-degree line. From Figures 9–11, it can be observed that, when 

employed for monthly inflow data prediction, three models can achieve satisfactory performances for 

simulating the monthly inflow of Xinfengjiang reservoir, the hybrid method has high consistency and 

good stability, and performs better than SVM and ANN models in different inflow levels. To sum up, 

in the hybrid method, the ANN and SVM models are first used for the structure identification of 

different resolution in the hydrological time series, and then a newly-built ANN model is constructed 

for the refined prediction so as to enhance the prediction capability of the forecasting model. Therefore, 

the proposed method has satisfied performance when predicting the monthly inflow data series. 
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Figure 9. Comparison of forecasted versus observed data by various methods during the 

validation period. 
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Figure 10. Comparison of errors by various methods during the validation period. 
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Figure 11. Scatter plots of forecasted versus observed data by various methods during the 

validation period. (a) SVM; (b) ANN and (c) Hybrid method. 

Table 4 lists the peak flow estimation of SVM, ANN, and the hybrid method for Xinfengjiang 

reservoir during the validation period. The maximum observed peak inflow is 1496.4 m3/s in  

June 2015, while the forecast value of the SVM, ANN, and hybrid method are 1355.5, 1381.3, and  

1405.7 m3/s, about 9.4%, 7.7% and 6.1% underestimation, respectively. For the second maximum peak 

inflow in June 2008, the SVM, ANN, and the hybrid method can obtain 776.5, 792.3, and  
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840.5 m3/s instead of the observed 1066 m3/s, about 27.2%, 25.7% and 21.2% underestimation, 

respectively. Moreover, for the 16 peak flows, the absolute average relative error of the SVM, ANN, 

and the hybrid method are 15.2%, 15.5% and 10.6%, respectively. Thus, it can be concluded that for 

peak inflow prediction, the hybrid method can obtain better forecast precision than SVM and ANN, 

while there is no significant difference between ANN and SVM. 

Table 4. Peak flow estimates of three models for Xinfengjiang reservoir during the 

validation period. 

Peak No. Date 
Observed Forecast Peak Relative Error (%) 

Peak SVM ANN Hybrid Method SVM ANN Hybrid Method 

1 1999/9 362.0 327.9 346.9 369.5 −9.4 −4.2 2.1 

2 2000/4 497.9 516.0 507.5 434.9 3.6 1.9 −12.7 

3 2001/6 618.1 530.3 488.4 492.9 −14.2 −21.0 −20.3 

4 2002/8 352.6 349.1 376.7 386.2 −1.0 6.8 9.5 

5 2003/6 336.2 272.0 285.6 334.4 −19.1 −15.1 −0.5 

6 2004/5 202.8 237.3 236.8 225.8 17.0 16.8 11.3 

7 2005/6 1496.4 1355.5 1381.3 1405.7 −9.4 −7.7 −6.1 

8 2006/6 783.8 583.2 598.1 679.5 −25.6 −23.7 −13.3 

9 2007/6 687.5 555.7 581.4 592.1 −19.2 −15.4 −13.9 

10 2008/6 1066.0 776.5 792.3 840.5 −27.2 −25.7 −21.2 

11 2009/6 228.2 211.5 252.4 236.1 −7.3 10.6 3.5 

12 2010/6 867.5 701.4 626.7 677.5 −19.2 −27.8 −21.9 

13 2011/5 369.6 293.5 244.1 319.3 −20.6 −34.0 −13.6 

14 2012/6 442.3 315.6 348.7 419.6 −28.6 −21.2 −5.1 

15 2013/5 860.9 766.5 794.2 778.3 −11.0 −7.7 −9.6 

16 2014/5 616.2 544.8 567.0 584.9 −11.6 −8.0 −5.1 

Average (absolute) 15.2 15.5 10.6 

6. Conclusions  

In order to improve the forecasting accuracy of monthly inflow in Xinfengjiang reservoir, this paper 

develops a hybrid forecasting method based on artificial neural network (ANN), support vector 

machine (SVM) and genetic algorithm (GA) to forecast the monthly inflow data series. The forecasting 

process of the hybrid method can be divided into two stages. In the first stage, SVM and ANN are used 

to identify the complex nonlinear characteristic correlation between the input and the output data, and 

GA is implemented to seek for the parameter combination of the SVM model. In the second stage, for 

better forecasting accuracy, the results of the SVM and ANN are taken as input variables of a new 

ANN model, and the corresponding predicative results of the new ANN model is the final forecasting 

inflow value. Three different models, ANN, SVM, and the hybrid prediction model are applied to 

forecast the monthly inflow data from Xinfengjiang dam reservoir of Pearl River Basin in China, and 

five statistical measures are employed to evaluate the performances of these various models. From the 

detailed analysis in this work, it can be concluded that these three models can obtain the satisfactory 

forecasting accuracy for the monthly inflow data in Xinfengjiang reservoir, and the proposed hybrid 

method significantly outperforms the traditional ANN and SVM. Therefore, the hybrid forecasting 

method proposed in this paper can capture the potential information and relationship of the monthly 
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inflow data series and will be helpful for Xinfengjiang reservoir managers to obtain more accurate and 

stable forecasting results. However, due to the limitation of the authors’ time and energy, there are, 

undoubtedly, some defects needed to deepen in further research work. For example, only ANN and 

SVM are compared and considered in the present study for simplicity, more approaches can be 

considered and involved in the hybrid method, to enhance the generalizability of the forecasting 

model. In addition, the accuracy and applicability of the hybrid method in different reservoirs’ monthly 

or other-scale inflow under different climate conditions can also be further examined. 
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