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Abstract: Regional heavy rainfall is usually caused by the influence of extreme weather 

conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring 

low-lying areas, which is responsible for a large number of casualties and considerable 

property loss. The existing precipitation forecast systems mostly focus on the analysis and 

forecast of large-scale areas but do not provide precise instant automatic monitoring and 

alert feedback for individual river areas and sections. Therefore, in this paper, we propose an 

easy method to automatically monitor the flood object of a specific area, based on the currently 

widely used remote cyber surveillance systems and image processing methods, in order to 

obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these 

surveillance systems is used in this study, wherein a flood is considered a possible invasion 

object. Through the detection and verification of flood objects, automatic flood risk-level 

monitoring of specific individual river segments, as well as the automatic urban inundation 

detection, has become possible. The proposed method can better meet the practical needs 

of disaster prevention than the method of large-area forecasting. It also has several other 

advantages, such as flexibility in location selection, no requirement of a standard water-level 

ruler, and a relatively large field of view, when compared with the traditional water-level 

measurements using video screens. The results can offer prompt reference for appropriate 

disaster warning actions in small areas, making them more accurate and effective. 
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1. Introduction 

Intense rainfall within a short period can be caused by extreme weather conditions as a result of 

climate change. When a large amount of water cannot be drained in time within the rainfall area, we face 

river overflow or urban inundation, which frequently causes a large number of casualties and a 

considerable property loss. Therefore, effective near real-time hydrological information is extremely 

important for flood warning and advance resident evacuation. Recently, there have been several studies on 

both forecasting- and monitoring-based flooding warning. At present, the major sources of the forecast 

estimation are large-scale remote sensing methods, including meteorology satellites and radar-based 

quantitative precipitation estimation. The forecast estimation utilizing multiple forecast models, the ensemble 

forecast technique can be used for performing simulations with integrated remote and on-site observation 

data; the analysis results can be further used for forecasting future precipitation or flooding information [1–5]. 

However, as a result of the complex interactions in the atmosphere, the accuracy of precipitation forecasting 

is still a key issue in this field. At the same time, the spatial resolution of a rainfall simulation is limited by 

numerous computing needs. Therefore, it is still very difficult to perform precise precipitation 

forecasting in small-scale areas. On the other hand, the flood monitoring is using on-site water-level 

measurement facilities, such as rainfall observation stations, water level observation stations, and 

meteorological stations. These on-site stations can directly measure the water or rainfall levels and 

provide instant notifications. However, direct sensor measurement of the water level is restricted by the 

particular limitations of the sensor installation location and the unavoidable requirement of frequent 

maintenance. It also has the disadvantage of obtaining only water-level information and not visual evidence 

for judgment. Therefore, recently, the integration of flood monitoring systems and image processing 

techniques for flooding and inundation monitoring has become vital for flood disaster prevention. In this 

paper, we propose a visual flood monitoring system for near real-time flood overflow detection and flood 

risk evaluation using remote surveillance videos. The proposed system can be used as a cyber 

surveillance tool for instant flood monitoring and warning. 

Today, all the developed countries in the world are using a variety of weather forecasting systems to 

assist disaster prevention, relief, and evacuation, in order to drastically reduce the number of casualties and 

the amount of economic loss caused by disastrous weather conditions [4,6–9]. However, these forecast 

systems are normally based on predictions featuring a widespread region and a long lead-time. For both 

precipitation and flood forecasts, the results are not necessarily in line with the real situation and it is 

difficult to obtain precise results for small local areas, because of the various uncertain factors in the natural 

climate system, e.g., the complex interactions between hydrology, monsoon, ocean currents, and clouds. 

Therefore, many studies are currently being conducted with the aim of improving these forecast models.  

At present, it is still not easy to achieve reliable accuracy for precise regional flood forecasting in a given 

small area. 

Besides the weather and precipitation simulations using forecast models, water-level observation 

stations use various water-level measuring sensors to implement in-situ water-level measurements, 
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which not only provide important observation data for weather forecast systems for further analysis 

and prediction, but can also be used for providing instant flood warnings. The instant water-level 

monitoring techniques for precipitation mainly focus on the measurement of the relative height of the 

water surface. In general, four types of measuring sensors are used for quantitatively determining the 

water level: Pressure sensors, bubble gauges, float gauges, and non-contact radar gauges. These 

sensors are used for performing on-site measurements of the water level in rivers, drainage systems, 

sewers, flood storage ponds, and reservoirs [10–14]. Previously, pressure sensors, bubble gauges, and 

float gauges were mostly used for this purpose. However, pressure sensors have to be placed at the river 

bottom or river surroundings, which leads to a relatively high maintenance cost since they can be easily 

destroyed or buried by floods or the accompanied debris and sands. Float gauges have to be stored in the 

water-level towers built in the middle of the river, which can cause the problem of high construction 

costs and difficulties. Bubble gauges use extended measuring tubes to separate the main body from the 

river. These extended measuring tubes need to be replaced when damaged by flood or buried by debris, 

which reduces the maintenance cost by well protecting the important main body of the measuring device. 

However, since the extended tubes still need to be placed inside the river, it can be difficult to maintain a 

high applicability. Moreover, the extended tubes inside the river require frequent maintenance. On the 

other hand, non-contact sensors such as ultrasonic gauges or radar gauges [15–20] are expensive 

themselves and can only be set up where there are structures across the river, which are usually road or 

railway bridges. This obviously will limit the location, range, and sensor density of the water-level 

observation. Moreover, such a technique uses the acoustic or optical reflection principles to measure the 

height of the water surface. Hence, the reliability of the measurement can be easily affected by a number of 

factors, such as the angle between the radiation source and the water surface, air quality, humidity, water 

ripples, rain, fog, and the atmospheric media. 

Besides the abovementioned precipitation forecast models and direct physical water-level 

measurements, image-based water-level measurement techniques have been proposed in many recent 

studies, which employ remote video surveillance images to detect water edges and then convert them to 

water-level results [21–26], or use continuously filmed images to analyze the surface stream velocity of 

water [27]. In most image-based water level measurements, the boundary between the datum 

marks/rulers that are preset in the water and the water surface is considered the water height. After 

obtaining real-time images of the ruler and the region of interest of the water surface through remote 

video streaming, we can identify the water surface junction by using image-processing techniques. The 

water level is then determined by using a “mark to real-world coordinate transfer matrix”, or a preset 

ruler with absolute height. However, such a technique is limited by the installation location of the marks 

or rulers and the requirement of high-quality images. The rulers are usually set on the existing piers or 

embankments—the ones that have been set up in the middle of a river can be easily destroyed, which 

limits the available choices and extensiveness of the observation locations. In the meantime, in order to 

perform an image analysis to determine the water level, the visibility or readability of the marks or 

rulers also need to be maintained. Furthermore, factors such as the camera focal length, camera angles 

to the rulers, and the relative displacement between the camera and the rulers are all sources of 

uncertainties during image reading. In addition, good lighting conditions and clear image quality are 

required for detecting the boundary between the water surface and the ruler. However, in the real 

outdoor world, the lighting conditions are usually either inadequate or excessive and the key timings 
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for detection are usually within the severe typhoon/thunderstorm period. Therefore, the results may 

have considerable noise interference, which adds even more uncertainty sources to images in which the 

water boundaries need to be precisely detected. 

Some studies use optical diffusion and reflection principles to implement nonintrusive water-level 

measurements with external light sources, but some parts of these techniques have to be applied in 

storage barrels with a low light inference and a high water transparency [28–30]. For example, [29] uses 

the horizontal diffusion proportional change in light when it shines in transparent water bodies with 

different water levels. The water level in the tank can be subsequently calculated by using the conversion 

function. Such optical non-contact measurements are usually adopted when the liquid to be measured is 

an acid or an alkali or is prone to chemical reactions, in order to avoid the pollution caused by the 

chemical reactions on the detector surface, or employed in delicately sealed tanks. However, it is 

difficult to utilize such methods in a real-life outdoor environment to measure the flood water level. 

Besides on-site images used for the water-level image analysis, image-based flooding information 

includes large-scale aerial and remote images from satellites [12,31,32] and synthetic aperture radars 

(SARs) [33–36], which are normally used for a large-scale geographic analysis on the flood overflow area. 

However, due to the complex obtaining process, the time delay caused by the large amount of  

post-processing work, satellite or aerial images are usually used in non-instant applications, such as 

meteorology, hydrology, and disaster management. Further, it is not easy to obtain precise data of the 

flood level or the overflow area within a certain small area from aerial photographs. For near real-time 

flood detection and emergency flood warning [37,38], aerial images cannot effectively observe the 

near real-time status of floods or obtain accurate flood overflow data, particularly when a specific 

small area, such as the surroundings of a certain river segment, inner city rivers, urban ditches, flood 

discharge waterways, and road bridges, needs to be monitored. 

The near real-time provision of precise information about flood dynamics from video monitoring is 

an essential task in disaster management. In this paper, we propose a new surveillance video-based 

flood monitoring system. Beyond the current flood warning analysis and notification systems, which only 

rely on precipitation forecasts and water-level sensors, the proposed system is capable of providing near 

real-time remote surveillance video and automated flood monitoring and warning-level analysis. The key 

advantage of this system is the introduction of a new video surveillance concept, in which the flood 

overflow is considered a monitoring object, and the risk level is determined on the basis of the number 

of preset warning points intruded by the flood object. This method avoids the common needs of the 

currently used water-level measuring techniques, i.e., suitable locations and structures (e.g., piers or 

embankments) for setting up the rulers. Moreover, the proposed system does not need high-quality 

images as required by the currently used image-based water-level measuring techniques for the analysis, 

nor does it need the cameras to be completely fixed in order to ensure an accurate overlap of the ruler and 

the region of interest. This technology can improve our monitoring and emergency warning abilities 

against flood overflow and inundation events, serving as a complement to the currently used 

quantitative precipitation forecasts and in-situ water-level measurements. It is also expected to provide 

more timely and accurate flood warning information to disaster relief units and the general public, in 

order to reduce the negative impacts of the flood disasters. 
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2. Image-Based Flood Alarm System 

This study focuses on the dynamic detection of floods, and overflow/inundation is considered an 

intrusion object in the video surveillance image. A surveillance video from a small-scale field of view is 

used as the input source in order to monitor the water flow and overflow trends in the image. An image 

segmentation technique is used for removing the surrounding objects, such as buildings and the 

geographical background, and separating the intrusive objects for a subsequent risk analysis. The image 

segmentation technique was developed many years ago and is currently widely used in the industrial 

and medical sectors [39]. For example, it has industrial applications in image-based automatic product 

quality tests, material defect tests, and package integrity tests. In medical industries, it is used for 

identifying the locations of tumors or other pathological objects, testing early tumor lesions, measuring 

the volume of organs, performing image-based diagnoses, and developing treatment programs. In our 

daily life, this technique is used as the basis of face recognition, environment or traffic monitoring, and 

robot vision. In recent years, it has also been widely applied in telemetry video analyses. For instance, 

it can be used for identifying and separating certain objects in the field of geographic information, to 

obtain information about various environmental objects, such as lands, oceans, cities, forests, and 

agricultural areas. Traditionally, image segmentation can be roughly divided into four algorithm 

categories: (a) point-based segmentation; (b) edge detection-based segmentation; (c) region-based 

segmentation; and (d) hybrid segmentation combining at least two of the above algorithms [40].  

In addition to the region-based image segmentation method, some researchers have proposed  

boundary-based, graph-based, and statistical-based image segmentation methods [41–44]. However, 

various image properties and interference sources under outdoor weather conditions, such as random 

changes in the flooded area, reflection from the impurities in air, storms in a bad weather, high level of 

noise in the images obtained from a heavy rain, and water stains on the camera lenses, can potentially 

have a negative influence on the accuracy of the traditional image segmentation techniques. For 

example, background subtraction, threshold, and watershed would not be able to identify the correct 

boundaries of the flooding objects in an easy manner when the outdoor atmosphere and environment 

change drastically. Therefore, a region-based image segmentation method and a flood-risk classifier 

are proposed in this paper, in order to identify the on-site variation of the rivers overflow area and 

determine the corresponding risk level. Of course, besides monitoring rivers, this method can also be 

used for flood detection in floodways, ditches, sewers, roads, railways, important areas (e.g., airport 

runways), or the surroundings of these important facilities. The proposed image-based flood alarm (IFA) 

system can provide basic information for disaster prevention and warning. This system is connected to 

outdoor surveillance cameras in the case of high-risk rivers or other hotspots. It automatically estimates the 

flood risk of the observed area on the basis of the flood area and a risk classification method described in 

this paper, and then determines whether a prompt initial flood alarm should be given to relevant 

organizations and staff on the basis of the risk evaluation results. 

2.1. Structure of the IFA System 

Today, cyber surveillance systems have already been widely used in many different fields [45–52].  

US National Science Foundation (NSF) first used cyberinfrastructure (CI or Cyber) as a term, which 
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typically is used to refer to modern information technology systems that consists of computing 

systems, data repositories, sensor instruments, data analysis systems and, visualization environments, 

and people, all linked by high speed networks to make possible scholarly innovation and discoveries 

not otherwise possible [53,54]. One of their main applications is long-term, remote surveillance and 

monitoring, such as safety monitoring, security surveillance, and border surveillance. They are also 

often used in ecosystem, environment, and underwater observations. Besides real-time videos for 

remote surveillance, a video surveillance system can record the activities and content changes of all the 

objects and scenes within the field of view, which can be developed into a recording history database 

for future use and analysis. The proposed IFA system is an outdoor flood warning system based on 

surveillance videos and is capable of automatically detecting, evaluating, and reporting flood risks in 

near real-time. It is an unattended active surveillance and early warning system. The IFA combines  

on-site real-time video images with a backend image-processing module to conduct a near real-time 

river overflow and ground inundation analysis. After the image processing module calculates the near 

real-time water overflow range, the system will automatically provide flood alarms if the overflow 

range intrudes the preset warning signs. The flowchart of the system is shown in Figure 1, which 

includes the fluvial monitoring system and the remote cameras. The video streams are transferred to 

the backend flood detection/image module via the Internet for a flood object analysis and the 

subsequent flood risk warning. The detection/image module of the image-based IFA system proposed 

in this paper is composed of two major components: (1) image processing module, which divides the 

images into foreground (i.e., water stream or flood) and background (i.e., geographical environment, 

bridges, buildings, and the sky); and (2) flood risk detection module, which evaluates the risk level of 

the current overflow range and decides whether to send the first risk warning depending on the 

calculated results. Details of these modules are provided in Sections 2.2 and 2.3. 

 

Figure 1. Flowchart of the proposed image-based flood alarm (IFA) system. 

2.2. Image Processing Module 

In the application of the IFA system, the inundation or overflow range needs to be actively detected. 

The flood location and overflow range will then be used for analyzing the current and future flood risks, 

and eventually provide near real-time flood warning information. This flood information can be 
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transferred to an existing early warning system, or be broadcast to the local public to help them 

understand the inundation situation and conduct precautionary actions. Real-time videos of river 

surroundings or urban areas can be easily obtained from the existing remote video surveillance systems. 

However, various uncertainties in the outdoor environment may affect the video quality. As a result, 

simple pixel intensity classification methods, e.g., using a certain threshold to distinguish the foreground 

and the background, are not sufficient to precisely isolate the flooding area. This is due to the fact that 

with varying weather and time, the color intensities and the shapes of both the foreground and the 

background are influenced by illumination, fog, rain, and other atmospheric conditions. Sometimes, 

these visual noises may even appear in a different manner within the same dataset of video streams. 

For example, the rain and fog distribution in the previous frame is similar but fundamentally different 

compared to that in the next frame. Therefore, if a certain color or pixel intensity is used for defining the 

flood range, the definition may easily become ineffective because of the great color variation in the 

image. However, the region-based segmentation method first selects a certain pixel in the region of 

interest as the starting point, which is also known as the seed point. When the pixel intensity of the seed 

point is used as the initial condition, pixels with similar features—based on the preset criteria—are 

considered to be in the same region. The size of this region increases with the entry of nearby pixels; 

therefore, this process is also known as region growth. Since this method only requires the preset position 

coordinates of the seed point and not the range of the pixel intensity, the threshold for segmenting the 

foreground and the background is more flexible. As a result, it can be employed to perform continuous 

segmentation for a particular area even when the colors or intensities of the pixels vary in each frame. 

Therefore, region-based segmentation methods are more suitable for situations where the background 

environment and the shape of the foreground change over time. 

In order to maintain the image consistency for the analysis, river surveillance videos can be obtained from 

a camera in a fixed position, which usually points at a view that includes both the riverbank and the river 

course. Besides the position-fixed cameras, in a camera system with pan-tilt-zoom (PTZ) control,  

the auto-reset function can be used for switching the field of view back to the preset orientation and 

position when inundation detection is needed, in order to ensure the applicability of the priori seed point 

location. The seed point only needs to be set once on each camera lens to perform a long-term analysis 

thereafter. Because of the advantage of a fixed field of view and the normal continuum feature of the flood, 

region-based segmentation is preferred in this situation. The seeds can serve as the reference of image 

segmentation for all the subsequent input images once they are predetermined according to the user 

experience or the real situation. 

Based on the above reasons, region-based image segmentation methods are considered more suitable for 

flood region detection. The main characteristics of region-based image segmentation methods include the 

following: Firstly, the image segmentation result is related to the seed point location but not in an absolute 

relationship; i.e., the seed point only needs to be located approximately in the potential flood region. 

Therefore, precise positioning is not necessary and a relatively high position error tolerance is possible, 

which ensures that any general staff can easily set up the seed point. Further, because of this feature, the 

orientation of the camera does not need to be completely fixed, which saves a considerable amount of labor 

and time cost incurred for calibrating and maintaining the camera position and orientation. Secondly, image 

segmentation can be done without presetting the pixel intensity range for the foreground and the 

background. Therefore, all the shape and size variations of the flood over time can be detected and traced. 
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The objective of region-based image segmentation is to bunch the given seed points with their 

surrounding pixels to form a meaningful region, such as the water body, the sky, and the embankment. 

This study adopts the GrowCut method [55] for region segmentation, which is developed from the 

seeded region growing method. In this method, a cellular automata (CA) algorithm is added to the region 

growing process to simulate the competition between the foreground and the background during 

segmentation. In the CA evolution model, each pixel is treated as a cell, which tends to grow outwards 

and compete with other cells. Similarly, the GrowCut region growth process also starts from the seed 

pixel and expands outwards, with an attempt to occupy all the pixels in the image. GrowCut has two 

types of seed points: Foreground and background; each contains at least one pixel as shown in Figure 2. 

The similar classification also applies for the cellular status, where the foreground and the background 

regions compete with each other according to the region growth criteria. The GrowCut region growth 

criteria are also called the local transition function. This function is used for predicting how the status 

of the current cell (pixel) will change after interacting with nearby cells. The effect of the function is 

the same as that of the traditional region growth criteria and both are criteria for determining whether a 

cell or a pixel should be treated as the foreground or the background. On the other hand, the local 

transition function is different from the traditional region growth criteria in that the status of pixels 

already included in one of the regions may possibly be changed by pixels in the neighboring region 

during the growth process, which results in long-lasting back and forth changes in the shape and size 

of the foreground and background regions. Therefore, the region growth of CA can proceed in both 

directions. The growth/competition does not stop until all the criteria are satisfied. This method can 

effectively deal with the blurry and glow scattering regions created by the stains on the lens, which 

enables the foreground region to grow across the stain boundaries through competition in order to 

identify a more complete overflow region. 

 

Figure 2. Example of seed point setup. The figure on the left shows the originally observed 

image, and the figure on the right shows the set positions of seed points, including both the 

river water part in the foreground and the surrounding environment (i.e., embankment and 

the sky) in the background. The seed points include two sections: The water region (indicated 

by red arrows) and the background section to be removed (indicated by the blue arrows). 
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The pseudo code of the GrowCut CA evolution pattern is described as follows: 

% For each cell in an image	 
for 	⋁௣ ∈  ݌

 % Copy previous state  
 ݈௣௧ାଵ = 	 ݈௣௧ ; 
௣௧ାଵߠ  =  ;௣௧ߠ	
 % Neighbors try to attack current cell 
 for 	⋁௤ ∈ ܰሺ݌ሻ 
  if 	݃ ቀฮܥറ௣ − റ௤ฮଶቁܥ ∙ ௤௧ߠ >  ௣௧ߠ
   ݈௣௧ାଵ = 	 ݈௤௧  

௣௧ାଵߠ  = ݃ ቀฮܥറ௣ − റ௤ฮଶቁܥ ∙   ௤௧ߠ

 end if 

 end for 

end for 

where P represents the pixels in the entire image, which can have two or more dimensions;  

p denotes the currently executed pixel; q indicates the remaining pixels to be processed; L refers to the 

label of the current pixel, representing foreground, background, or not processed (zero); θ denotes the 

intensity of the current pixel, with an initial value of zero; N(p) represents the neighboring pixels of the 

current pixel; and Cp and Cq indicate the eigenvectors of this pixel. The initial Cp and Cq values are 

composed of the intensities in the three channels of its RGB color. In order to simplify the calculation 

and speed up the image segmentation to achieve the near real-time requirement of the system, the 

JPEG images used in this study are converted to grayscale prior to the segmentation process. In 

particular, the original JPEG image with the RGB color model is converted to the HSV color model. 

Then, only the V value is taken as the grayscale intensity. Thus, the original three-channel processing 

is simplified into a single channel. 

Foreground and background labels are first allocated to the seed points of the input images 

following the traditional region growth method. Then, the abovementioned CA algorithm collects 

pixels that satisfy the criteria via a region competition, in order to form a larger independent region. As 

a result, the foreground and the background compete with each other and either grow or decline. This 

segmentation process proceeds until no more pixels can be labeled. In this scheme, the traditional region 

growth method is employed to allocate labels for a few seed point pixels before the adoption of the CA 

algorithm for region competing growth. Hence, it is called the GrowCut method, which indicates that it 

takes advantage of both the region growth method and the CA segmentation competition. As shown in 

Figure 3b, the foreground, i.e., the river body that we want to detect, has its seed points represented by 

black plus signs, while the background, i.e., the environment objects to be removed, such as the land, 

road bridges, and the sky, are denoted by yellow “x” marks. The preset flood warning points are 

represented by green “*” marks. The eventually identified flood region based on the above algorithm is 

used for determining the flood risk together with these warning points. 
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(a) (b) 

Figure 3. Example of flood region detection. Figure (a) shows the detection result for the 

river water region, indicated by the red boundary. In Figure (b), the white area denotes the 

flood region, foreground seed points are represented by black plus signs (+), background 

seed points are represented by yellow “x” symbols, and the user preset warning points are 

represented by green asterisk symbols (*). In this example, none of the preset warning 

points are intruded by water; therefore, the risk is 0%. 

2.3. Flood Risk Detection 

Flood risk detection and warning are included in the image-processing module to detect the risk 

level of the flood region and determine whether a warning should be generated on the basis of the risk 

level. Assuming that the flood is an invasion object and the entire field of view is the our surveillance 

view, the overlap proportion of the detected overflow region and the preset warning points are used as 

the standards of risk estimation. For example, if there are five preset warning points and four of them 

are invaded, or included in the overflow region, then the risk is 80%. Figure 3 shows a real example of 

the IFA system detecting a floodwater region. Figure 3a shows the detected water region, which is 

indicated by the red boundary; in Figure 3b, the white area represents the identified water region, the 

foreground seed points are represented by black plus signs (+), background seed points are represented 

by yellow “x” signs, and the user preset warning points are represented by green asterisk symbols (*). 

The flood risk detection and the warning thresholds are calculated as follows:  

(a) ܣ௝ ⋃ܴ௪௔௧௘௥, where ܣ௝ denotes an alarm point (j = 1,2,…,k) and ܴ௪௔௧௘௥ represents the water 

region of interest. 
(b) Risk = ൣ൫ܣ௝ ⋃ܴ௪௔௧௘௥ ݇⁄ ൯൧ × ሺ%ሻ 
(c) If Risk > 80%, warning. 

where ܣ௝  denotes the priori preset warning position point, which is set by technicians from the 

responsible unit according to specific views in different locations; j = 1:k represents the number of 

warning points, with the maximum value of k suggested to be 5 to 10. Rwater refers to the identified 

overflow region in the image calculated by the proposed algorithm. The overflow region is shown as 
the white area in Figure 3b, while the background is shown in black. The portion of ܣ௝ included in ܴ௪௔௧௘௥  is the current flood risk level. In other words, Risk is the percentage of alarm points 

overlapping with the water region. When the risk level is above 80%, the first warning should be sent. 
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These warning can be superimposed on the Taiwan topographic map of the hydrological monitoring 

network. As shown in Figure 6 (Section 3. Test Case), the surveillance video and location information 

of the place with an extra high-risk level can directly pop up on the webpage. In the meantime, these 

locations are displayed in a striking red color on the map, in order for the monitoring staff to easily see 

the overflow situations in each region. This information can also be sent to the general public or other 

relevant people through cellphone apps, texts, or emails. 

2.4. Influence of Atmospheric Conditions 

At this point, we have implemented the operational tools within a cyberinfrastructure platform, the 

image-based flood alarm (IFA) system, to monitoring the near real-time flooding level on the video 

streaming of remote cameras. What remains is the influence of atmospheric conditions that affect the 

image processing results. Severe atmospheric conditions exert complex visual effects for outdoor 

imaging, such as fog and raindrop stains. For the fog, the rainstorm involves suspended particles, mist, 

raindrops, raindrop streaks, and heavy rain spray; they add a non-uniform fuzzy mask between the 

scene and the camera render images extremely unclear. On the other hand, raindrop stains tend to 

adhere to the lens of cameras that refracts and reflects the light to generating shape and intensity 

changes in recorded images. These conditions considerably weaken the image quality of cameras and 

the outcomes of subsequent image processing. In proposed system, GrowCut exhibited superior 

resistance to rain stains, but yielded segmentation failure in the period of dense fog and the nighttime. 

3. Test Case 

The proposed flood detection system was tested using a real outdoor surveillance video case. The 

proposed video processing module and flood risk detection method were adopted in this test case to 

identify the flooding area and analyze the flood risk. The remote surveillance video used in this experiment 

was taken from 12:11 to 5:50 p.m. on 19 September 2010, when Typhoon Fanapi passed by. It was the 

peak rainfall period during Typhoon Fanapi, so the video recorded the sudden flood overflow caused 

by the heavy rainfall within a short time, at the Chongde Bridge section of the Erhjen River basin in the 

Tianliao district of Kaohsiung. The outdoor surveillance video system transferred the on-site real-time 

video back to the host computer via the Internet, and provided online monitoring, video archiving, and 

automatic video analysis for the water resource departments. On the host computer, screenshots were 

taken at 1-min intervals from all the surveillance video streams returned from the on-site cameras for a 

further analysis. The 1-min interval was set because the flood area usually does not change dramatically 

within 1 min and thus, the detection can still be considered a near real-time flood overflow detection with 

the 1-min delay. Moreover, the computational load and storage costs could be significantly reduced in 

this way. This real-life case covered a time period of about 6 h. A total of 350 images were therefore 

extracted for the experiment, and each of these JPEG images has a resolution of 352 × 288 pixels. 

Some of the tested images are shown in Figure 4, including those of the piers and the deck of the 

Chongde Bridge on the right side and the Erhjen River and its two banks in the center. Starting from 

around noon, the river water level quickly increased because of the heavy rainfall. The water level 

reached its peak between 3:00 p.m. and 4:00 p.m., which was close to the road on the top of the bridge. 
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Figure 4. Video screenshots from the water-level detection test. This figure has four  

best-quality images showing representative overflow changes. From top-left to bottom-right, 

the acquisition time of the four images is 12:44, 13:25, 15:08, and 16:45, respectively. The 

content of the experiment is the real video of Typhoon Fanapi taken on 19 September 2010, 

from 12:00 to 18:00 in the afternoon. The experimental images were captured every 1 min 

during this period, with a total of 350 images. 

The proposed image-processing module can continuously perform segmentation for the input flood 

video stream by using the foreground and background seed points, and keep complete records of the 

flood region variations over time. The detected results for the flood objects will subsequently be used 

for the flood risk analysis. It has been experimentally proven that there is no stringent requirement on 

an accurate selection of seed points, which is in good agreement with the previous theoretical 

assumption. For example, the foreground seed points only need to be placed in the possible flooding 

area instead of the background. Therefore, the same flood detection result can be achieved without a 

100% precise setting of seed point locations. The same is true for the background seed points. 

However, note that the background seed points have to be placed in locations that are unlikely to be 

reached by the flood when the water level increases. The algorithm used in this study only treats the 

seed points as the starting point of the initial image labeling and the final segmentation result after the 

iterative CA competition process is not restricted by the location of initial seed point but depends on 

the overall properties of the foreground and the background instead. However, the outward growth of 

the foreground may be slightly weakened if the background seed points are too close to the foreground 

seed points in practical cases, which will result in a withdrawal of the foreground boundary near the 

background seed points. Therefore, the use of prior tests or experience to set up the seed points will be 

helpful in obtaining a better and more complete segmentation of the flood area. 

All the real-life images were processed by the image-processing module to detect the flood object 

area. The flood detection results of this practical case are shown in Figure 5. In Figure 5, the grayscale 
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images in the left column are transformed from the input images, with red boundaries indicating the 

identified flood objects. Images in the right column are the corresponding flood intrusion analysis 

results. In the right-hand side images, white regions represent the flood objects, equivalent to the flood 

areas inside the red boundaries in the left-hand side image, and the black parts are background areas. In 

addition, foreground seed points are represented by black (+) marks, background seed points are 

represented by yellow (x) marks, and preset warning points are represented by green (*) signs. The preset 

warning points invaded by the flood objects are represented by red (*) signs. Figure 5 only shows the 

images at five different time points, from Figure 5a–e, 12:44, 13:25, 15:08, 16:15, and 17:39, respectively. 

Using the flood risk detection method introduced in Section 2.3, we can estimate the risk level by using 

the portion of preset warning points covered by the flood objects. In addition, the preset warning 

threshold of the system for the first warning is 80%, in order to avoid unnecessary repeated warnings. 

Figure 5 shows the detection results and flood risk levels at five different time points. In Figure 5g, only 

one warning point is covered by flood, so the flood risk is 10%. However, in Figure 5h,j, four of the five 

preset warning points are covered by flood, so the flood risk is 80% at these times. The flood risk levels 

in Figure 5f–j at five time points are 0%, 20%, 80%, 100%, and 80%, respectively. A real-life flood 

event that resulted from a typhoon was used in this test for system validation. All of the surveillance 

images with an interval of 1 min were processed by the IFA system to detect the water level and analyze 

the flood risk. Each image at a particular time point was segmented to identify the flood object. The flood 

risk was then calculated on the basis of the number of warning points being invaded by the flood object. 

(a) (b) (c) (d) (e) 

 
(f) (g) (h) (i) (j) 

Figure 5. Test results of a real-life case. Figures (a) to (e) show the foreground seed points 

(+), the background seed points (x), and the preset warning points in green (*) marks in the 

processed binary images. In these binary images, the white segments indicate the detected 

water area, while the black segments show the background objects (e.g., ground, the sky, 

and bridge) to be deleted. Figures (f) to (j) show the flooding area detected from the input 

video, indicated by the red boundary. 

With the automated image processing method, a large number of remote surveillance videos at 

various locations can be simultaneously monitored for a flood warning service. This can be combined 

with river monitoring images and city traffic surveillance images to perform large-scale near real-time 
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flood detection and obtain information about the overflow area. Warnings are subsequently sent to the 

relevant staff on duty and online disaster prevention monitoring systems if the risk levels of the rivers or 

the other sections are higher than the threshold values. An automated, quick, and easy flood warning 

service can be provided to replace the manned monitoring. Figure 6 shows a combination of the 

proposed image processing system and the existing flood monitoring screen. Locations with high-risk 

levels automatically show up on the flood monitoring platform. Surveillance videos and identified flood 

events at high-risk locations automatically pop up on the interface or get circulated to specific staff in 

other ways. 

 

Figure 6. Online user interface. Appearance of the hydrological monitoring and flood risk 

warning system in operation. If any monitoring station reaches a risk level of 80%, the 

video from the on-site camera directly pops up on the interface, with a red outline 

indicating the near real-time detected flooding area. 

4. Conclusions 

The main purpose of this study was to improve the traditional surveillance image-based water level 

analysis and its relevant techniques for the detection of floods, overflow, and inundation. Traditional  

image-based techniques have been restricted by a number of disadvantages, such as the location choice of 

the ruler setup, the lack of a large field of view covering sufficient geographic information, the precise 

calibration between the camera and the ruler, the maintenance requirement for maintaining the fixed 

calibration status, and the scale conversion from the image size to the real-world size. This study 

proposes the use of the object intrusion principle to monitor a flood or inundation event and analyze the 

corresponding risk level. It has been proven by using a practical test case that the proposed methodology 
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can correctly detect the changes in flood overflow and estimate the near real-time flood risk levels on the 

basis of the degree of flood intrusion. 

Traditionally, when a remote surveillance video is used for detecting the water level, the primary 

principle is to obtain the overlapped position of the water surface and the height on the ruler [23,26] or the 

relative distance between the water surface and the graphical ruler [21,25]. The image is first processed to 

get the water surface position. Then, the real-world water surface height can be obtained using the relative 

geometric relationship between the water surface and the ruler. This method can deal with a small field of 

view and is capable of getting data for the water surface height, as stated above; however, it still has many 

restrictions. The intrusion monitoring method proposed in this study has been playing a vital role in the 

world of video surveillance. Intrusion monitoring can be used for monitoring intrusive activities in a 

given space [56–58]. Therefore, it can be used for directly monitoring flooding events or inundation 

regions, without the need of converting the image water surface height to the real-world scale. 

As expected, the practical test case revealed that the outdoor image-based application is influenced 

by weather conditions and atmospheric visibilities. In particular, during heavy rainfall or night time, 

camera lenses that rely only on visible light are more easily affected by atmospheric visibility, which is 

consistent with our previous study [37]. In addition, one limitation of the proposed method is that it 

cannot directly obtain the height data for the absolute water level but can determine the scale of the 

flood on the basis of the preset warning points in the image. Therefore, it is not suitable for a 

quantitative recording of the water level. Moreover, the setup of the warning points in the surveillance 

image depends on the decision of the professional staff. Different positions of warning points will 

slightly affect the consequent calculations of the risk levels. However, the advantage of this system is 

that it avoids the complex work required by the previous image-based water-level estimation 

techniques. For example, it does not require the preset of the ruler for measuring the water level or the 

use of an existing bridge pier or riverbank as the carrier for the ruler. As a result, it is more flexible in 

location selection for flood detection and does not need the post-processing work to convert the water 

surface height from the image scale to the real-world scale. The proposed flood intrusion detection system 

has a considerably lower image quality requirement than the traditional boundary identification  

between the water surface and the ruler, and has a relatively high tolerance for the noise caused by bad 

weather conditions. It also has a lower maintenance requirement for calibrating and maintaining the  

region-of-interest position of the camera. Since there is no need to limit the field of view of the camera on 

the region of interest of the ruler, the camera can cover a larger range of in-situ visible geographic 

information for visual verification. Eventually all the measured data can be easily confirmed by visual 

verification. All these advantages make up for the shortcoming of obtaining only the water level height 

information from previous image-based methods. Therefore, this proposed method has a relatively high 

robustness in outdoor flood detection and warning applications. 

This study proves that the video surveillance theory can be used for providing an unattended flood 

detection and warning service. In addition, this automated detection system can perform a near real-time 

analysis on a large number of remote surveillance videos at the same time and provide an automated, 

quick, and convenient flood warning service. Similarly, it can be widely used in urban inundation 

detection. Combined with the currently existing traffic and security surveillance videos, it can be employed 

to automatically monitor the overflow of a city’s inner river or the inundation of streets, which will help 

citizens stay away from the inundation regions and reduce the hazards brought about by urban inundation. 
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