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Abstract: This work discusses a novel approach to image acquisition which improves the 

robustness of captured data required for 3D range measurements. By applying a  

pseudo-random code modulation to sequential acquisition of projected patterns the impact 

of environmental factors such as ambient light and mutual interference is significantly 

reduced. The proposed concept has been proven with an experimental range sensor based 

on the laser triangulation principle. The proposed design can potentially enhance the use of 

this principle to a variety of outdoor applications, such as autonomous vehicles, 

pedestrians’ safety, collision avoidance, and many other tasks, where robust real-time 

distance detection in real world environment is crucial. 
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1. Introduction 

Over the recent years, significant research effort has been spent to introduce the third dimension to 

computer imaging. In customer electronics, these efforts have already led to creation of new products, 

new markets and opportunities: gesture control is becoming a “must have” feature of forthcoming 

home entertainment systems, revealing the new concepts of human-to-machine interfaces (HMI) [1–3]. 

For the industry, medicine, security and even archeology 3D vision systems are already there: surface 
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quality control, non-invasive reconstruction of cultural heritage, reverse engineering, surveillance and 

face recognition systems—all of these applications utilize 3D imaging sensors or range sensors [4].  

As well as conventional cameras, range sensors are equipped with a light-sensitive element—either 

a standard or a specially designed CMOS or CCD sensor [5–7], but whereas classical cameras produce 

images or bitmaps representing the light intensity distribution over the scene, this class of devices 

produces range maps—a digital representation of the scene surface based on information about the 

distances from the sensor to the objects of the scene.  

Several techniques have been proposed for range measurement [8–16]. They may be categorized in two 

main categories: active and passive. Passive methods, such as stereo-vision [17] and shape-from-focus [18], 

do not use any special source of electromagnetic radiation for extracting the range information, while 

active range sensors illuminate the scene with some type of structured light in visible or infra-red 

spectrum with further reconstruction of 3D structure of the scene by measuring the temporal or spatial 

distribution of the reflected signal (time-of-flight [19], interferometry [20]). 

Miniaturization and increasing performance of CPU-s, plenty of cost-efficient and powerful 

systems-on-chip (SoC-s) and embedded platforms, intensive evolution of CMOS sensors make 

forthcoming computer vision systems promising for solving a variety of simultaneous localization and 

mapping (SLAM)-related tasks for robotics and autonomous vehicles. But there are still some 

challenges which should be solved before we can rely on these systems in real world environment. For 

outdoor scenarios, ambient light and attenuation of the transmitted signal due to the atmospheric 

effects cause problems in most of the existing techniques of range measurement [21]. Furthermore, in 

case when several active sensors scan the same area simultaneously, they may experience mutual 

interference problems.  

In this paper we propose the solution which solves these problems—modulated acquisition of 

projected patterns. Reflected from the scene as a spatial distortion map, such patterns are utilized as 

robust raw data for further 3D reconstruction of the scene in real time. The discussed solution does not 

represent another pattern-based 3D scanning method; instead we are focusing on the robustness of data 

acquisition in order to improve the input for numerous existing range measurement approaches. The 

desired robustness is not achieved by any kind of spatial encoding like pattern, shape or color as 

suggested in some of the previous studies [22–24], but by signal encoding in the time domain. 

The paper is organized as follows: in Sections 2 and 3 the physical principle and the concept of the 

proposed solution are discussed. The outline of the design is given in Section 4. In Sections 5 and 6 the 

proposed performance evaluation methodology is discussed. In Section 7 the proof of feasibility is 

demonstrated for the proposed approach. Finally, the concluding remarks and further work are given in 

Section 8. 

2. Laser Triangulation Principle  

The active triangulation system (ATRIS) 3D imaging approach developed in our group is based on 

laser triangulation [25], one of the most well known optical range measurement approaches. Its 

schematics are depicted in Figure 1. 

In this scenario, a laser strip is projected onto a measurement object. The reflected light falls onto a 

receiving element (sensor). The point O(x,y,z) belonging to the projection at the object’s surface is 
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reflected at position P(v,u) on the sensor’s plane depending on the distance to the object and the angle 

α between the base line and the plane of the projected light. The base line connects the optical center of 

the lens and the laser source. Given the lens’ focal length f and the length of the base line b, the 

coordinates of the original point O(x,y,z) can be calculated by the Equation (1):  
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Figure 1. Laser triangulation principle. 

 

The above algorithm is then repeated for all points of the reflected profile, while the laser strip  

is scanned across the object. In this way a dense range map representing a shape of the object  

can be acquired. 

This method of range measurement is appropriate for indoor applications such as profilometry or 

surface quality control. It is affordable since it does not require any expensive high-frequency circuitry 

needed for time-of-flight; it is relatively robust since it is not based on quantification of accumulated 

charge, i.e., brightness of pixel. Instead, it relies on identifying the coordinates of the brightest pixels. 

However, in circumstances of intricate ambient light it is rather tricky to distinguish the pixels 

illuminated by the laser from those illuminated by the external light sources. 

It is obvious that ambient light can always be overpowered by the laser, although this is strongly 

undesirable because of high energy consumption and eye-safety concerns. In order to improve the 

robustness of the captured data, the concept of modulated laser triangulation has been introduced  

in [26] by our research group, where we have proposed several possible designs of range detectors 

utilizing the sequential frame acquisition controlled by random binary sequences. In this paper we are 
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demonstrating appropriate binary sequences which guarantee the immunity to environmental factors 

and propose the methodology for evaluation of the system performance. 

In order to accelerate the acquisition of raw data required for 3D reconstruction, a multi-line pattern 

or another complex pattern can be projected onto a scene. Its reflection is then acquired as a spatial 

distortion map in a single snapshot instead of scanning the scene by a single line step-by-step. This 

improvement coupled with modulated acquisition of spatial distortion maps makes the laser 

triangulation method promising for outdoors applications, such as collision avoidance, autonomous 

navigation, etc. 

3. The Concept of Modulated Acquisition of Projected Patterns 

The performance of the proposed system mainly depends on the ability to capture a sharp and 

accurate image of the projected pattern. The better the contrast between the projected pattern and 

background; less time will be required to detect the projected pattern in the snapshot. Missing parts of 

the pattern or excess lines not belonging to the projected pattern can lead to erroneous results in the 

range map. 

The problem of distinguishing the projected pattern from the background and interfering projections 

at the sensor’s view area appears to be very similar to the general receiving problem [27] in multiuser 

communication systems, where multiple transmitter-receiver pairs communicate simultaneously over 

the same channel. Each receiver in such system should be able to filter out the data addressed to it 

individually from the observed signal containing data sent to other users. 

In the direct sequence spread spectrum (DSSS) scheme, the problem of user separation at the 

receiver side is solved by multiplying the data stream transmitted to a certain user by the  

pseudo-random periodic sequence of {−1;1} known as signature or spreading code. The frequency of 

this periodic signal is much higher than the frequency of the original data stream. Thus, the energy of 

the original signal becomes spread across the whole band of transmitted noise-like signal; hence the 

name of this technique is spectrum spreading. To reconstruct the original data, the receiver multiplies 

the observed noise-like signal by the personal signature, which yields in raising the level of original 

data constituent above the noise and the interfering signals. This effect of signal-to-noise ratio (SNR) 

improvement is known as processing gain. Signals addressed to other users are modulated with 

different signatures; they produce no processing gain at the given receiver and can be easily suppressed 

along with the channel noise. This is the essence of code division multiple access (CDMA) 

communications [28]. As shown in recent research results [29–31], the performance (user capacity, bit 

error rate, SNR) of CDMA systems is mainly determined by the correlation properties of spreading codes.  

In the following sections we show that a similar effect of “selective perception” is also achievable 

with imaging. By applying the technique of direct sequence modulation to sequential image 

acquisition while illuminating the scene with the source of light modulated by the same sequence, we 

can capture only the reflection of the modulated illumination pattern without the influence of other 

sources of illumination. The captured reflection carries the information about the spatial distortion of 

the projected pattern needed for range measurement. The interfering projections as well as general 

(background) illumination are eliminated from the acquired image due to the nature of CDMA system. 
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4. Experimental Setup 

An attractive solution for implementing an imaging system described in Section 3 is the dual-output 

or gated CMOS sensor [32,33]. Each pixel of such sensor has a single photodiode with duplicated 

charge storage and readout circuitry. Storages can be switched at the stage of integration by the 

external modulation signal of considerably high frequency, which can be simultaneously used as a 

laser strobe. Using this technique, we could have two separate images captured during the same 

exposure time: one with enabled laser and another with disabled laser. At the readout phase, one image 

is subtracted from another, resulting in image containing only the difference induced by the laser 

illumination. Currently, the only disadvantage of this approach is poor availability of gated sensors.  

To prove the concept of modulated acquisition, we have built our experimental setup (Figure 2) 

around a fast Velociraptor (Optomotive mechatronics Ltd, Ljubljana, Slovenia) industrial camera [34] 

based on high-speed conventional commercially available non-gated CMOS sensor CMOSIS CMV2000 

and FPGA processing core. Instead of performing “in-pixel” demodulation, the demodulation logic has 

been programmed in FPGA: conditional adder and modulation register were introduced at the data 

path from the sensor to RAM.  

The camera makes series of snapshots at high frame rate (up to 600 fps) with short exposure time. 

Each time a snapshot is taken the laser is turned ON or OFF according to the control (highest) bit of 

pseudo-random binary sequence c   {0;1} of length N being cyclically shifted in modulation register. 

Through the full cycle of the sequence (frame time), each pixel of the currently captured image  

(sub-frame) is conditionally added to the cumulative sum of corresponding pixels of the previously 

captured sub-frames. If the control bit is 1 (laser is enabled) the pixel value is added to the sum, 

otherwise (if laser is disabled) it is subtracted respectively.  

Figure 2. Experimental setup: (a) hardware implementation and (b) block scheme. 

  

(a) (b) 
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5. Signal and Noise Evaluation 

As defined above, each frame in our ATRIS 3D system is built of cumulative per-pixel sum of N 

sub-frames taken with positive or negative signs according to the control bit of the modulation 

sequence. Unlike in communication systems where a receiver extracts the transmitted signal from the 

observed noise-like temporal signal, in our case “signal” and “background noise” are two spatially 

combined groups of pixels. To build the range map, we must find the coordinates of “signal” pixels in 

captured images.  

In the following we evaluate the intensity of the “signal” pixel in comparison to all the rest 

(background) pixels regarding the applied modulation scheme. As depicted in Figure 3, for the 

“signal” group of pixels a constant background intensity b is present through the whole frame 

integration cycle, while the laser illumination intensity l is added to the resulting pixels intensity IS 

only when c(t) = 1 (Figure 3a). For the “background noise” group only the background intensity b is 

present through the integration cycle of the resulting pixel intensity IB (Figure 3b). Let us analyze the 

resulting intensity for the both groups of pixels according to the methodology known from CDMA 

communications.  

Figure 3. Background noise suppression: pixel intensity through the frame cycle for 

(a) illuminated and (b) background pixels. 

  

(a) (b) 

5.1. Background Pixels 

Before proceeding with the analysis, consider the following transform v(i) of the original 

modulation sequence c:  
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Than the resulting intensity of the background pixels IB can be formalized as follows:  
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Obviously, for the balanced sequence c (the number of zeros is equal to the number of 1-s) the 

mean background light intensity    is completely eliminated. The resulting intensity will hold only 

some uncompensated remainder δ of the background light deviations Δbi tending to zero when these 

fluctuations are relatively slow in comparison to sensor’s frame rate. 



Sensors 2013, 13 11075 

 

 

5.2. Illuminated Pixels 

Now we shall estimate the intensity of illuminated pixels IS. We can assume that the laser intensity l 

is constant for all the positive chips of modulation sequence (c(i) = 1). Then the resulting intensity of 

illuminated pixels is the following:  

δ+
lN

=vlc+b+b=I
N

=i

iiiS
2

)Δ(
1

0




 (4) 

As in Equation (3); the constant constituent is eliminated and only the sum of l coinciding with the 

positive chips of v remains. Again; the uncompensated remainder of background light deviations tends 

to zero in circumstances of the constant or slowly changing intensity of the external illumination. 

Hence; using balanced sequence c the resulting pixels intensity equals to l multiplied by the number of 

ones in modulation sequence (N/2) plus the influence of uncompensated background light δ.  

5.3. System Characteristics in Terms of CDMA Performance 

Now we can characterize our system in terms of processing gain (Equation (5)) and SNR (Equation (6)):  
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From the above analysis we can expect how the demodulated image will look like: bright image of 

the intersections of the projected pattern with the object’s surface against the completely black 

background—exactly what we expect from the spatial distortion map. A projected pattern will be 

perceived much brighter than it would appear without modulation. High contrast with the black 

background makes the detection of projected pattern quite simple.  

For static scenes, high SNR is expected since δ tends to zero. For dynamic scenes, some “gray 

trails” left by the edges of moving objects could be noticed. We can suppress these artifacts by setting 

the threshold while detecting the projected lines. Increasing the sensor’s frame rate will also lead to 

noise reduction since the integrated frame will accumulate fewer deviations. 

6. Mutual Interference Compensation 

As mentioned in Section 2, immunity to mutual interference is one of the key features of CDMA 

systems. This immunity is determined by the cross-correlation properties of spreading codes. In 

telecommunication systems, a number of known families of spreading codes exist, each solving a 

specific task of separating signals in common channels. Orthogonal Walsh-Hadamard codes [35] are 

widely used for synchronous CDMA systems, such as downlink of CDMA2000, where a single 

transmitter (a base station) takes care of phase synchronization of the transmitted signals. 

Unfortunately, not all of them preserve orthogonality when shifted against each other. Other known 

families of codes are Gold codes [36] and m-sequences [37]. They are appropriate when synchronicity 
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between the multiple transmitters cannot be established (uplinks, CW-radars). In this case at least the 

deterministic signal to interference ratio (SIR) should be guaranteed for all the users of the system.  

The “receiver” and “transmitter” of our system are synchronized by design, since the sensor and the 

laser are integral parts of the same unit. However, we cannot synchronize multiple range-finder units 

which may appear operating on the same place. At any moment an interfering projection may appear at 

the given sensor’s view area, and we should be able to filter it.  

A similar problem has been studied in [38], where several sensors are connected into a network. 

These sensors “wake-up” and transmit the captured data asynchronously. In order to avoid MAI 

(multiple access interference), the authors proposed a set of cyclic orthogonal codes for spreading. 

These codes were derived from Walsh-Hadamard matrix of size N × N, where N = 2
k
. As found from 

observations, the rows of such matrix can be combined into some finite number of non-unique sets of  

k + 1 rows which preserve mutual orthogonality at any phase shift. Taken as spreading codes, they can 

safely accommodate k + 1 users of asynchronous CDMA system.  

Similarly, we can find appropriate subsets of codes meeting the requirement determined by our 

design: we need zero periodic correlation of given user’s modulation sequence with another user’s 

sequence represented in original unipolar form, as it is used to strobe the laser. For further analysis, we 

consider that interfering devices are identical, i.e., having the same intensity of laser illumination l, the 

same exposure time and the same length of modulation sequence N. Then the above criteria could be 

formalized as follows:  

  τ=uv=R τ+i

N

=i

iuv 


0,
1

0

, 
 

(7) 

where v is a given user’s modulation sequence in bipolar form {−1;+1}, u is an interfering user’s 

modulation sequence in unipolar form {0;1} and τ is a cyclical phase shift. Considering u and v as 

continuous periodic functions having the same period T and delay τ between each other, the above 

criteria could also be presented like this:  

  τ=dttutv=R

T

uv  0,)()(
0

, 

 
(8) 

Since our design is limited to a maximal sequence length of 32 bits, we searched the  

Walsh-Hadamard matrices of size from 4 × 4 to 32 × 32 with the quite simple algorithm and have 

found some regularity in distribution of rows fulfilling the criteria (7). We have also found that from a 

N = 2
k
 size matrix one can choose only k rows meeting our requirement. The first row is never selected 

since it contains only +1-s. The second row is always selected because it contains the repeated pattern 

of {−1;+1} which can be combined with any other. Then the 3rd or 4th row can be selected. After that 

for each k from 3 to given size of matrix 2
k
 one additional row could be chosen from the range of  

[2
k
 − 2

k
/2 + 1, 2

k
] in combination with previously selected rows. 

For example, to obtain a desired set of cyclic orthogonal codes with length 8, one can select only 

three rows in possible combinations like 2, 3, 5; 2, 4, 7; 2, 4, 8, etc. (Table 1).  
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Table 1. Cyclic Orthogonal Codes selection table.  

Desired sequence length (N) 4 8 16 32 

Number of codes in a set (k) 2 3 4 5 

Possible code sets (row indexes) 2, r2   [3,4] 
2, r2, r3    

[5, …, 8] 

2, r2, r3, r4    

[9, …, 16] 

2, r2, r3, r4, r5    

[17, …, 32] 

Now let us introduce the interfering illumination to Equation (3) of the background noise expressed 

as a continuous periodic signal:  

    ,0)())()((
0

δ+=dttvtultb=I

T

MAIMAI

 
(9) 

With properly selected code sets, the interfering illumination lMAI is completely suppressed at any 

delay τ according to Equation (8). Background noise b(t) is eliminated as well, since Walsh-Hadamard 

codes are balanced. Graphical representation of mutual interference compensation is depicted in Figure 4. 

Figure 4. Mutual interference suppression: interference pixels intensity through the frame 

cycle for a pair of (a) phase-shifted non-cyclic orthogonal codes and (b) cyclic 

orthogonal codes. 

  

(a) (b) 

It can be seen that in case when u and c are cyclic orthogonal, the interfering illumination intensity 

IMAI has been eliminated. 

7. Experimental Results and Discussion 

We have tested our setup in several scenarios, involving strong jamming, direct sunlight and mutual 

interference. For 16-bit long modulation sequence and sensor’s frame rate of 480 fps we have achieved 

a stable live view of reflected patterns at 30 fps. The snapshots in the following figures were taken in 

plain and demodulated live view modes. The scene was illuminated using modulable 650 nm LED laser 

combined with a DOE (diffractive optical element) projecting a pattern of parallel horizontal lines.  

As it can be seen from the captured snapshots in Figures 5–11, our experimental ATRIS system 

demonstrates good results in closed environment and proves the feasibility of the suggested approach 

to compensation of the environmental factors outdoors. Even if laser projection is completely  

non-noticeable by the naked eye and much weaker than the interfering projection or environmental 

illumination, the modulation sequence can raise the level of signal pixels in the acquired distortion 
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map. The proposed sets of cyclic orthogonal codes used as modulation sequences compensate the 

mutual interference as well as background noise and continuous-wave deliberations. 

Figure 5. Background noise suppression: (a) plain image; (b) demodulated image. 

  

(a) (b) 

Figure 6. Interference suppression: Strong continuous laser line interference. (a) Plane 

image; (b) demodulated image. 

  

(a) (b) 

Figure 7. Background noise suppression: sunlight falling from the window. 

(a) Plane image; (b) demodulated image. 

  

(a) (b) 
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Figure 8. Interference suppression: interference of two identical devices having non-cyclic 

orthogonal modulation codes. (a) Plane image; (b) demodulated image. 

  

(a) (b) 

Figure 9. Interference suppression: interference of two identical devices with cyclic 

orthogonal modulation codes. (a) Plane image; (b) demodulated image. 

  

(a) (b) 

Figure 10. Background noise suppression: medium sunlight suppression outdoors.  

(a,c) Plane image, (b,d) demodulated image. 

  

(a) (b) 
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Figure 10. Cont. 

  

(c) (d) 

Figure 11. Background noised suppression: strong sunlight suppression outdoors. 

(a,c) Plane image, (b,d) demodulated image. 

  

(a) (b) 

  

(c) (d) 

At the present state the described system setup has the following limitations caused by the sensor’s 

characteristics, the setup design and its implementation: 
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1. The system’s maximal frame rate is limited by the maximal sensor frame rate divided by N. Thus, 

when a longer modulation sequence is required, the frame rate degrades. This limitation can be 

eliminated by implementing a gated CMOS sensor capable of performing “in-pixel” demodulation. 

2. The laser is triggered directly by the electronic shutter of the sensor and the duration of 

emission is limited by the sensor’s exposure time. The low dynamic range of the sensor 

demands a reduction of the exposure time when capturing highly illuminated scenes. Since the 

laser power remains the same, the emitted laser energy is reduced proportionally to the reduced 

exposure time, so at durations of 0.01–0.02 ms the captured laser intensity level l becomes 

comparable to δ, which yields in increased background noise according to Equation (6). This 

limitation is especially noticeable with strong sunlight and reflecting surfaces, as shown in 

Figure 11(d).  

3. The number of cyclic orthogonal codes of length N = 2
k
 is limited by k. Overrunning this limit 

leads to the “frame collisions” effect demonstrated in Figure 8(b). 

Since the discussed parameters are tightly correlated and directly affect the system’s performance, 

future work will be aimed at finding an appropriate technique for adjusting them to dynamically 

changing scene conditions. 

8. Conclusions and Future Work 

Robust acquisition of spatial distortion maps represents the first step towards building a real-time 

ATRIS 3D vision system. An innovative approach to acquisition of projected patterns has been 

proposed and its performance evaluation has been presented in the paper. By introducing cyclic 

orthogonal codes as modulation sequences for sequential frame acquisition, the proposed computer 

vision system becomes robust to the environmental factors such as background noise, deliberate 

jamming and mutual interference of similar systems. The approach guarantees collision-free 

functionality for a limited number of users, which satisfies the requirements for multiple sensors 

operating in the same area. The system robustness to background light and co-located systems, its 

sensitivity and its dynamic properties can be adapted to application requirements by adjusting the 

length of the modulation sequence. The experimental setup of the system with 32-bit long sequence 

demonstrates the system’s excellent performance in indoor environment and proves the suggested 

concept for outdoors scenes in direct sunlight. 

In order to further improve the proposed approach and adapt it to a particular operating environment 

and system requirements, further work will mainly focus on finding the most appropriate pseudo 

random modulation sequences for a particular application. The length of the pseudorandom sequence 

is strongly correlated to the dynamic properties of the system, i.e., the number of frames per second 

and the system robustness. The next challenge is in automatic adjustment of the system parameters to 

time-varying environment, i.e., external illumination and number of interferers. This challenge 

includes methods for environment detection, quantitative evaluation of image quality and methods for 

adaption of the sequence length in order to find a tradeoff between the required frame rate and 

satisfying processing gain. In some applications a high density of proactive sensors in an area is 

expected, for example in automotive applications, where the number of users may exceed the number 

of available orthogonal pseudorandom sequences, which results in high mutual interference. Thus, an 
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efficient technique should be found to decrease the mutual interference between systems. Among 

methods the pseudo random sequence hopping is a promising one, which has to be looked at. Finally, 

the introduction of the proposed approach to other proactive range detection methods can be studied. 
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