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Abstract: Online automated quality assessment is critical to determine a sensor’s fitness

for purpose in real-time applications. A Dynamic Bayesian Network (DBN) framework

is proposed to produce probabilistic quality assessments and represent the uncertainty

of sequentially correlated sensor readings. This is a novelframework to represent the

causes, quality state and observed effects of individual sensor errors without imposing any

constraints upon the physical deployment or measured phenomenon. It represents the casual

relationship between quality tests and combines them in a way to generate uncertainty

estimates of samples. The DBN was implemented for a particular marine deployment of

temperature and conductivity sensors in Hobart, Australia. The DBN was shown to offer a

substantial average improvement (34%) in replicating the error bars that were generated by

experts when compared to a fuzzy logic approach.

Keywords: online filtering; automated; quality assessment; sensors;dynamic

Bayesian networks

1. Introduction

Moore’s Law is primarily responsible for bringing to fruition the technical advances in sensor

development that have led to the explosion in scientific databeing generated each year [1]. Furthermore,
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the utilisation of digital technologies, in conjunction with the Internet, has altered the traditional role of

data stewardship. We are now moving into an age where data storage is distributed and data is publicly

accessible and annotated to promote re-use for a variety of purpose. Consequently, the explosion of

open data provides the opportunity to study the environmentat a higher spatiotemporal resolution than

was previously possible. Observation scale is only one of the critical aspects needed to advance our

understanding of the physical world. The integrity of theseobservations must also be assessed to ensure

that they are fit for purpose [1]; this becomes increasingly challenging as the size and heterogeneity

of data sets used in scientific studies continue to expand. Automated approaches to assess the quality

of data are important as the number of observations being generated make human based assessment

too unwieldily and costly [1,2]. Furthermore, automated procedures are essential to perform quality

assessments for real time applications that impose tight time constraints upon processing [3–5].

One of the issues that is critical to assessing the quality ofsensor data is contextual awareness. For

instance, context can provide a means to differentiate between a sensor fault and an unusual, real event in

the environment. In this case, exploiting our understanding of the sensed phenomenon and the structure

of associated events [6] or learning the spatiotemporal relationship between a sensor and its neighboring

sensors [7] can assist in resolving this ambiguity [5].

One of the weaknesses of automatic quality algorithms is that they do not utilise context as effectively

as a human expert [8]. Commonly, evidence streams (the quality tests) of automatic quality assessments

are independently processed and then combined into an assessment using logic based operators.

Furthermore, the tests associated with current approachesare commonly represented as deterministic

variables that do not represent the sources of uncertainty associated with each of the quality tests.

We propose a framework to address these two issues for onlineautomated assessment of sensor data.

The probabilistic framework is based upon the Bayesian networks (BN), a directed acyclic graph that

can explicitly model the dependencies between random variables, making its usage attractive to sensor

data fusion research [9–11]. Dynamic Bayesian Networks (DBN) have previously been proposed to

detect sensor reading outliers by identifying significant predictions errors made by Kalman and particle

models [4] or the Hidden Markov Model [7] based upon spatiotemporal redundancies. In contrast, our

proposed approach is not a prediction model but a framework to represent and combine the sources

of uncertainty associated with the data quality of a sensor.This framework can represent any set of

quality tests and assessment format. Context can be modeledby representing the causal relationship

between tests. Another novel aspect of this approach is the manner in which probabilistic assessments

are combined to produce a measure of sample uncertainty. This proposed quality measure is different

from previous work with BNs that calculate error bars for theposterior of each state query using a first

order Taylor expansion [12] or two independent sets of network parameters [13] to approximate the

variance of the posterior distribution. For quality control problems, error bar approaches can be used to

compute the uncertainty of each quality state query but do not provide an overall estimate of the sample

uncertainty. Our proposed approach provides an uncertainty estimate of each sample by combining the

weighted posterior probabilities of the quality states. Itis similar to the metric used with fuzzy logic

sets [14] where the proposed uncertainty measure was shown to reproduce the error bars generated by

an expert. This quality assessment framework was first proposed as a static BN that was best suited

to assessing the data quality of stochastic time series [15]. The observations of most phenomenon are
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sequentially correlated over short periods of time. Consequently, the original framework is reformulated

as a Dynamic Bayesian Network (DBN) [16] to provide online quality assessment of sensor readings that

are correlated across time. The framework was implemented by developing a separate DBN to assess

the data quality of each conductivity and temperature sensor deployed in the Derwent estuary in Hobart,

Australia. The quality assessments of the DBN were comparedto the equivalent static BN with respect

to three months of sensor data that was assessed by quality control experts. The sample uncertainty

measure of the DBN were then compared to a similar measure from the fuzzy logic approach [14] and

expert generated error bars.

2. Previous Work

Previous approaches to automate the quality assessment of sensor data can be broadly categorized

into two classes. The first class are anomaly detection methods; these approaches do not provide

explicit classification but perform the related task of detecting samples that deviate from expected

behavior [4,7,17–19] and then flagging these as outliers. These are considered bottom-up, statistical

approaches that are trained from historical data sets of thesensor. The second are classification

approaches that use prior knowledge to label the quality of sensor data [14,20–23]. Our proposed

DBN is a combination of both approaches. Networks are trained from historical data sets that can

be contextualized by encoding prior knowledge about sensoroperation and its measured phenomenon.

In Sections2.1 and2.2 we introduce anomaly detection and classification approaches, and specify the

potential advantages that the Bayesian framework offers over each approach individually.

2.1. Anomaly Detection

Anomaly detection methods are statistical approaches thatcan exploit historical distributions of sensor

behavior. In anomaly detection, models are typically used to predict the behavior of sensor readings

based upon their temporal correlation [17,24] or spatiotemporal correlation [4,7,18,19] with neighboring

sensors; samples with values that deviate significantly (usually defined by a threshold) from the predicted

value are flagged as outliers. The advantage of anomaly detection methods is that they have broad

application, given that the assessment procedure can be treated as a black box. This is also a weakness

when attempting to detect systematic errors. The detectionof systematic errors is assisted by having

some understanding of the sensor pathology and its measuredphenomenon [5]. Our framework can

address this issue by incorporating prior knowledge of the quality tests into the DBN.

Another issue with anomaly detection methods is that they rely upon assumptions of spatial, temporal

or spatiotemporal correlation that are not universally applicable to particular types of phenomenon [25].

Such correlation assumptions rely upon data following the same distribution. However, this does not

hold across all types of networks. For instance, it does not hold for networks comprised of acoustics or

thermal sensors with readings that attenuate with respect to the source distance [26]. More importantly,

the anomaly detection methods require sensors to be deployed at a sufficiently high spatial resolution to

adhere to the spatial correlation assumptions. Networks with a sufficiently high spatial density may be

financially, logistically or technically prohibitive to deploy in certain scenarios, meaning that alternate

quality assessment approaches may need to be considered. The proposed framework has more generic
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application than previous anomaly detection work, as any quality test or assessment format can be

incorporated into the framework. This is beneficial as it allows quality assessments to be tailored to

particular sensors based upon their physical location and function. Moreover, it allows assessments to

be fit to standard procedures for a particular domain. New quality tests can be added or removed from

an existing BN without requiring the entire network to be retrained.

2.2. Classification Based Assessments

Classification based assessment are top-down approaches that exploit knowledge of the sensed

phenomena in order to infer the quality state. Consequently, classification approaches have a far stronger

connection to their application domain; this is often achieved by establishing a series of rules. For

instance, a series of thresholds were obtained from scientists to form data quality rules for a soil moisture

network [21]. Knowledge of specific systems can also be used to validate sensors and detects faults

in engineered systems including the power system of aerospace vehicles [27], robotic vehicles [28]

and gas turbines [29]. A network is used to model the the overall system, in particular the functional

dependencies between the states of its sensors. Such systems model the uncertainty of sensor operation

but not the uncertainty associated with the system process given the narrow bounds of its behaviour.

Environmental process are far more complex to model given the variety of contributing factors and

fluctuation with location. To assess the data quality of environmental sensors, this process uncertainty

needs to be represented in the network. Consequently, our proposed framework models both the

process and operational uncertainties of each sensor individually. Given our current focus on marine

applications, the rest of this section is spent reviewing notable examples of automated quality procedures

for operational marine observation networks. The Argo floatproject has deployed over 3,000 profiling

floats throughout the world’s oceans and performed automated, real-time quality assessment of data as a

part of a more extensive Quality Assurance (QA) and Quality Control (QC) process. A set of automated

tests including spike, gradient, regional range, pressureincrease and density inversion have been applied

to the temperature, salinity and pressure series [22]. Koziana described the QA/QC framework and the

use of measurement range and gradient data checks as part of the U.S. Integrated Ocean Observing

System (IOOS) [30]. The National Reference Stations (NRS), part of the more extensive Integrated

Marine Observing System (IMOS), is a group of nine coastal monitoring stations distributed along

Australia’s coastline. An automated procedure for assessing the quality of temperature and salinity data

is currently being developed by deploying gradient, spike and climatologic distribution tests [23]. In each

of these quality assessment systems, “gold standards” (i.e., thresholds) are defined for each of the quality

tests in order to indicate whether the test has been passed. When a data sample fails a test, it is flagged

as “bad”. Such approaches fail to exploit the contextual relationship between different quality tests

and test uncertainty. The proposed BN framework explicitlymodels the causal relationships between

tests providing additional context to the quality assessment. Furthermore, the BN provides probabilistic

assessments that provide a natural way to represent the uncertainty associated with imperfections in the

quality tests. We argue that such an uncertainty measure provides a more valuable criteria than a discrete

data flag (such as “poor” and “good”) in order to assess a sample’s fitness for purpose.
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Timms [14] addressed this issue of sample uncertainty by utilizing fuzzy logic to represent the

uncertainties associated with each of the assessment tests. Assessments were generated by combining

tests to produce a continuous quality scale to estimate dataquality uncertainty. Although our framework

has been inspired by Timms’s approach to combine the test uncertainties, the use of a BN can potentially

provide the following benefits:

1. Network parameters are learnt via supervised training ofthe sensor data; the fuzzy functions in [14]

were parameterized with prior knowledge that may not be representative of a particular site;

2. The network parameters can be updated if assessments of some new sensor readings are obtained;

3. The dependencies between the quality tests can be explicitly encoded, whilst tests in the fuzzy

system are independent. This provides additional context and makes the fuzzy system more prone

to failure when particular evidence sources are unavailable.

This fuzzy system is compared to the Bayesian Network systems in Section7.3.

3. Bayesian Networks

A Bayesian Network (BN) is a model representing the joint probability of a process or problem

via a directed acyclic graph. The graph represents the jointprobability via a number of explanatory

random variables and their associated statistical relationships. In Figure1, the BN is a joint probability

distribution that is used to provide quality assessments oftemperature sensor data. The cause and

effect tests associated with the network are represented bya set of discrete and continuous variables

X = [xA, xB...xH ]. Each of the variables in the network are associated with a node (different shapes in

Figure1) representing the conditional probability distribution (CPD) of the variable that is conditioned

upon other variables with edges pointing towards it. The nodes that point towards a particular node are

known as its parents.

One of the basic properties of a BN is that it satisfies the local Markov property that states a node

is conditionally independent of non-descendant nodes in the network given its parents [31]. Using the

chain rule and this local Markov property, the joint probability of a BN p(X) can be represented as the

product of a number of conditional probability distributions:

p(X) = ΠH
i=Ap(xi|pai) (1)

where each node is represented by a probability distribution that is only conditioned upon its parent

pai nodesi.e., p(xi|pai). Whilst the original joint distributionp(X) of N discrete variables (each

with k values) exhibits a combinatorial explosion in the number ofpotential states (i.e., O(kN )), this

is significantly reduced in a BN by exploiting the conditional independence of the variables [32]. The

construction of a BN relies upon prior knowledge of the system being modeled. For instance, the network

designer must be able to determine which variables contribute to the system, how the variables should

be represented and which variables are conditionally dependent upon one another. Although automated

approaches to learn network structure have been developed [33,34], human based specification of the

network is likely to be more reliable for a well-understood problem such as data quality.
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Figure 1. A Bayesian network is a directed acyclic graph representingthe joint probability of

a problem. Each node in the network is associated with a conditional probability distribution

of a variable that is conditioned upon other variables with edges pointing towards it. This

particular network structure is used to assess the data quality of temperature and conductivity

sensors deployed in Sullivans Cove, Hobart with cause and observed evidence tests.

The causes of sensor degradation include the time since the sensor was calibrated (nodeA)

and the time since the sensor was cleaned (nodeB). NodeC was used to infer the latent

quality state. The observed evidence of the data quality wasthe seasonal difference

(nodeD), the gradient (nodeE), the difference between the sensor and hydrodynamic model

(nodeF) and the difference between equivalent sensors at alternate depths (nodeG). The

CPD of the network have been trained from observations of a temperature sensor deployed

at 1m in Sullivans Cove.

4. Bayesian Network Framework for Quality Assessment

The proposed framework for online, automated quality assessment of sensor data uses a BN to

represent the cause and effects of data quality in consecutive layers of the network. This framework

is shown in Figure2. The top layer of the network represents the observed causesof sensor data

quality. These variables can represent any number of causesof degradation in observations including

connection or hardware failure [8,21,35], clipping due to insufficient dynamic range in the analogueto

digital conversion [8], low battery levels [21,35], sensors with calibration drift [8,21] and sensors that

have been bio-fouled [36] in their deployed environment.
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Figure 2. The two time-slice structure of the Dynamic Bayesian Network used to perform

quality state inference for each incoming sample. The interface algorithm only requires the

node variables from the previous slice that are connected tothe current slice to be involved

in the quality state inference. This is known as the 1.5 DBN structure.

The middle layer of the network represents the latent quality state of the sensor. This quality state is

inferred from the cause and observed evidence variables above and below it in the network. The quality

states of the network depend upon the particular quality assessment scheme that has been adopted for the

application. The bottom layer of the network represents thesources of evidence used to infer the quality

of the current sample. The evidence observations for an assessed sensor are commonly the sources of

spatial, temporal and/or seasonal redundancy that can be used to detect contradictory behavior associated

with errors in the sensor readings.

4.1. Dynamic Network for Quality Assessment

Sensors quite often measure environmental phenomena that are correlated across time. For such

phenomena, there will be dependencies between the current quality state and the quality state at

previous time steps. The DBN framework shown in Figure2 adopts the simplest temporal model, a

first-order Markov model, where the dependencies between quality states are only modeled between

consecutive time steps. When each of the observed variablesis singly connected to the quality

state, the network can be considered to be a special variant of the Hidden Markov Model (HMM),

known as the Input-Output HMM [37]. The hidden state CPD of the standard HMM has static

state transition probabilities (i.e., p(qualityt|qualityt−1)), whilst the Input-Output HMM has state

transition probabilities with greater dynamics given thatthey are also dependent upon the causes of

data degradation (i.e., p(qualityt|qualityt−1, causest)).
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4.2. Online Quality Inference

Online quality inference of an incoming sample can be performed by filtering across a sequence of

past observed variables and quality states:

p(q(t)|E(1 : t), q(t− 1)) =
p(q(t)|q(t− 1)) · p(q(t)|E(t)) · p(q(t− 1)|E(1 : t− 1))

p(E(t)|E(1 : t− 1))
(2)

whereE(1 : t) represents the observed effect and cause variables of the DBN up to the current timet.

Filtering is performed with the interface algorithm [33] using the feed forward algorithm in the form of

Equation (2).

The interface algorithm performs a modified junction tree inference upon a 2 slice network comprised

of consecutive time slicest − 1 andt, given past time slices are independent of future time slices given

the current interface. Infact, only nodes in slicet − 1 with children in slicet need to be part of the

inference. This is known as a 1.5 slice DBN and is shown in Figure2.

The number of operations required to perform an inference for each time step is bounded between

O(KI+1) andO(KI+N) whereN is the number of hidden state variables in the current time slice,

I is the number of variables in the forward interface (number of variables with children in the next

time slice) andK is the number of states per hidden variable [33]. The complexity of this inference

would be computationally prohibitive in a network where thestate space was comprised of a significant

number of variables dependent upon the next time step. The interface algorithm was suitable for our

proposed framework as the quality inference in the current time step was only dependent upon the quality

state of the previous time step. If the framework was modifiedso that variables in the current time

slice had numerous parents in the previous time slice, the interface algorithm would be computationally

infeasible. Exact inference may still be possible, however, the frontier algorithm [33] would be a better

option. The minimal complexity of the frontier algorithm isO(NKN+1) per time step, and hence, it

is computationally feasible as long as the hidden state space remains low. If this is not the case, an

approximate inference engine might be necessary [33].

5. Tasmanian Marine Analysis Network (TasMAN)

The Tasmanian Marine Analysis Network (TasMAN) has been developed to assist with multi-use

management of estuaries and coastline in South-eastern Tasmania. TasMAN is an end to end system that

consists of a marine sensor network, a real-time information system and visualization tools. The system

is designed to monitor the Huon and Derwent estuaries and provide alerts and forecasts. The system

has also been developed as a low cost, relocatable solution for estuarine monitoring; the reuse of the

TasMAN platform has been demonstrated during its deployment in Sydney Harbour and the Brisbane

River [38].

The current network in Tasmania consists of fixed sensor nodes and mobile nodes including a small

AUV [ 39] and an autonomous catamaran. The fixed nodes consist of a string of temperature, conductivity

and pressure sensors that can operate as either a node withina wireless sensor network, or independently,

via 3G mobile telephony. These nodes have been designed to beinexpensive and flexible to interface
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with a variety of different sensors. Although sensors are a variable expense, sensors of low cost such as

the DS28EA00 temperature sensor, Odyssey conductivity sensor and SSI MediaSensor pressure sensor

have been used in the network [38]. The BN framework for quality assessment has been developed

to address some of the challenging requirements of assessing the quality of sensor data across a low

cost, wide area network such as TasMAN. The benefits for deploying this quality assessment framework

within TasMAN include:

1. Its flexibility and re-use. Different tests and sources ofevidence can be used to generate quality

assessments based upon the requirements of each sensor and the resources available at different

deployment locations.

2. Quality assessments can be generated upon recently deployed sensors. The ever growing nature

of our network in South Eastern Tasmania means assessments need to be generated during initial

deployment periods whilst statistics are still being generated. Bayesian approaches are beneficial

to regulate the network parameters when training data is limited and can be learnt sequentially to

enable the update of parameters when new data from the network is manually assessed.

3. Probability based assessments can be used to quantify theuncertainty of sensor measurements.

This is important given the quality of our sensors is relatively low in comparison to the expensive,

high precision sensors commonly used by scientists and physical modelers.

6. TasMAN Quality Assessment

A separate DBN was developed for each of the four EC-1500 temperature and conductivity sensors

fixed to a wharf in Sullivans Cove, Hobart (−42.886, 147.337) at 1 m and 10 m below chart datum. The

1.5 slice DBN (shown in Figure3) was used to perform a data quality inference upon a sensor.

6.1. Hidden Quality State

The quality states of this deployment are adopted from the flagging scheme used by the

Intergovernmental Oceanographic Commission (IOC) of UNESCO [40]. The flags are numerical codes

used to provide standard definitions of processing tasks anddata quality of each measured sample. There

are flags associated with particular processing tasks,i.e., if a quality assessment or interpolation was

performed. Four IOC flags shown in Table1 describe discrete levels of data quality that represent the

quality states of our network. The CPD of the hidden quality stateq(t) (in node C of Figure3) was

discrete and conditioned upon the observed causes of the data quality and the previous quality state

p(q(t)|q(t− 1), cl(t), cal(t)).

6.2. Causes

Two common causes of sensor degradation were incorporated into the DBN. The first variable was

related to sensor calibration. Sensors often exhibit systematic errors in measurement accuracy that can

be corrected for by performing a calibration. The calibration maps the sensor output to its expected

measurement acquired from an additional sensor of known accuracy. With time, however, there is a drift

in the accuracy of the calibration, which is related to the age and quality of the sensor. Consequently,
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sensors must be regularly calibrated according to the schedule outlined by the manufacturer. An

increase in the time since the sensor was last calibrated, particularly after exceeding the manufacturers

specification, was associated with additional uncertainty. Consequently, the number of days since the

sensor was last calibratedcal was represented as a multinomial distribution (node A in Figure3) with a

bi-monthly resolution for the temperature and conductivity based DBN.

Figure 3. The 1.5 DBN model used to assess the data quality of individual temperature

and conductivity sensors in Sullivans Cove, Hobart at 1 m and10 m. The causes of sensor

degradation in this model were the time since the sensor was calibrated in nodeA and the

time since the sensor was cleaned in nodeB. The latent states used to infer the data quality

in nodeC were defined by the IOC flagging standard. The observed evidence of data quality

was the seasonal difference in nodeD, the gradient in nodeE, the difference between the

sensor and hydrodynamic model in nodeF (only for sensors at 1 m) and in nodeG the

difference between equivalent sensors at alternate depths.

Table 1. The four quality states specified for the quality flag scheme of the Intergovernmental

Oceanographic Commission (IOC). These four discrete states are used to represent the

hidden quality state (node C in Figure3) of the Bayesian network implementation. Each

quality assessment involves performing an inference upon these quality states given the

observed cause and effect variables of the network. The quality state of code 3 “bad data

that is potentially correctable” was referred to as probably bad data in the experiment.

Quality Code Code Meaning

1 Good data

2 Probably good data

3 Bad data that are potentially correctable (Probably bad data)

4 Bad data
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The second variable was related to bio-fouling, which is themajor cause of sensor degradation in

shallow marine environments. Bio-fouling of sensors in shallow seawater can occur very rapidly and

lead to random fluctuations or offsets in data in less than twoweeks [36]. Bio-fouling has been found to

produce drifts in the type of conductivity sensors that wereused in Sullivans Cove [36]. A general rule

of bio-fouling drift is that, the longer it has been since thesensor was cleaned, the greater the uncertainty

associated with its measurements. Consequently, the number of days since the sensor was last cleanedcl

was represented as a multinomial distribution (node B in Figure3) with a monthly resolution for both the

temperature and conductivity based DBN. Figure4 is the CPD of the conductivity sensor at 1 m depth

with the quality states conditioned upon the time since the sensor was cleanedp(q(t)|cl(t)). The CPD

was trained with the data set specified in Section6.4. It can be seen there is a trend of the probabilities

associated with the “degraded” quality states increasing and the “good” quality class decreasing as the

time since the sensor was last cleaned extends.

Figure 4. The trained CPD of the quality state conditioned upon the time since the

conductivity sensor at 1 m was cleaned. The CPD was trained from the data set specified in

Section6.4and the labels 1–4 correspond to the quality states in Table1.
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6.3. Observed Evidence

Different sources of temporal and spatial redundancy were used to model sensor readings and train

the DBN. The DBN was then used to infer the quality state of theincoming sample. Two forms of

temporal redundancy were used to model the current temperature and conductivity readings: firstly, the

short-term correlation associated with samples acquired from the sensor’s recent past, and secondly, the

seasonal trends acquired from far longer historical records of the sensor. In addition, two forms of spatial

redundancy were used to model the current sample of each sensor. This included the gridded hind casts

from the Sparse Hydrodynamic Ocean Code (SHOC) model in Sullivans Cove [41] and the readings

from a co-situated sensor in Sullivans Cove at a different depth within the water column.
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6.3.1. Seasonal Range Test

The first test involved computing seasonal distributions for each of the four sensors. The absolute

differencexsd(t) between each sensor readingX(t) and its corresponding seasonal distribution was

then computed:

xsd(t) = |
X(t)− µs

σs

| (3)

where µs is the mean andσs is the standard deviation of the normal distribution of the season

s = [winter,spring,summer,autumn]. The CPD in nodeD was parameterized from the training data

set as a Gaussian distribution of the normalized seasonal difference conditioned upon the hidden quality

state and seasonp(xsd(t)|q(t), s(t)).

6.3.2. Short Term Temporal Evidence

The second test used a gradient filter to identify sudden changes in the readings between

consecutive samples:

xgr(t) = |
dX

dt
| = |

X(t)−X(t− 1)

∆t
| (4)

where∆t is the time between consecutive samples. Significant gradient values are often associated

with a salient change in the statistics of the measured phenomenon that are indicative of a change in its

behavior. The CPD of nodeE is a Gaussian distribution of the gradient conditioned uponthe four hidden

quality statesp(xgr(t)|q(t)). Spike detection is not incorporated within this suite of tests as it requires

the use of a future sample, and hence, introduces a one sampledelay into the data quality inference. Such

a delay may be tolerated in messaging systems as long as the sensor’s sampling rate is sufficiently high.

6.3.3. Evidence from Model Hindcasts

This third test exploits spatial redundancy by training thenetworks of the shallow sensors with

the differences between sensor readings and their corresponding model hindcasts in Sullivans Cove.

The model hindcasts were provided by the SHOC model that operates within the Derwent Estuary.

It produced three-dimensional distributions of temperature, salinity, current velocity, density, passive

tracers, mixing coefficients and sea level upon a grid that was non-uniform and curvilinear with grid

spacings of between approximately 200 m and 800 m [41]. Only the shallow pair of sensors in Sullivans

Cove (at depths of 1 m) included model hindcasts in their DBN.This is because the SHOC model

provided hindcasts at a depth of 1 m every 30 minutes whilst the hindcasts at a depth of 10 m were only

obtained every 12 hours. Consequently, the current model did not provide sufficient temporal resolution

to compare to the sensors at 10 m that were acquiring readingsevery 10 minutes.

The readings from the conductivity sensor were converted tosalinity [42] to enable direct comparison

with the salinity hindcasts from the SHOC model. It was important to note that model hindcasts and

sensor readings were not guaranteed to be sufficiently correlated to use as a quality test, particularly
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given the uncertainty involved in comparing these two data sources (the potential sources of uncertainty

are the model hindcast itself, the sensor reading conversion from conductivity to salinity and the spatial

uncertainty involved in comparing a sensor at a particular point to a grid cell with coarser resolution

between 200 m and 800 m). Consequently, a correlation analysis was performed upon the training set to

validate the relationship between the model and sensor prior to incorporating the test into the network. It

was found that the sensors and their corresponding SHOC hindcasts had Pearson correlation coefficients

of 0.76 and 0.69, respectively. Consequently, there was sufficient redundancy to incorporate this test

within the network given the test uncertainty could be represented by the DBN. A linear regression

model of the sensor data and corresponding SHOC hindcasts inSullivans Cove was computed from the

training data set as follows:

arg minβ,C ΣN
t=1xmr(t)

2 (5)

xmr(t) = |X(t)− X̂(t)|

X̂(t) = β ·M(t) + C

The CPD in nodeF was a Gaussian distribution of the absolute error between the model and sensor

xmr(t) conditioned upon the four quality statesp(xmr(t)|q(t)).

6.3.4. Evidence between Co-Situated Correlated Sensors

This test involved exploiting the spatial redundancy between pairs of co-situated sensors measuring

equivalent phenomenon at 1 m and 10 m in Sullivans Cove using the training set. To verify that pairs of

sensors were spatially correlated, a statistical analysiswas performed upon the training set. It was found

that the temperature and conductivity sensors were highly correlated at Sullivans Cove with Pearson

correlation coefficients of 0.97 and 0.92, respectively. Infact, the sensor observations at 1 m and 10 m

were often similar in value, indicating that Sullivans Covewas well mixed at these depths. It should be

noted that this test did not require the water column to be well mixed in order to exploit it for quality

assessment purposes; the test could also be used in a stratified water column if pairs of sensors were

situated on the same side of the pycnocline.

The relationship between pairs of sensors were modeled via linear regression similarly to

Equation (5), except that the hindcastM(t) was now replaced by a co-situated sensor. High errors

between the current assessed sensor and the regression forecast were indicative of potential faults in

sensor readings. However, the test did not resolve which sensor in the linear regression model was

erroneous. This can often be resolved by conditioning the regression errorxsr(t) upon the gradient

xgr(t) of the assessed sensor. Larger values ofxgr(t) represent sudden changes in sensor readings that

are responsible for the increased modeling errorsxsr(t). The gradient, however, cannot always be used

to resolve which of the sensors are associated with erroneous readings. One such example is during a

step change in the sensor’s readings in Figure5. At the point of step change, there is a sudden increase

in xgr(t). For the samples that proceed the change point, however, thexgr(t) will become relatively

small and fail to indicate which of the sensor’s is responsible for the increase inxsr(t). In this case, the

erroneous sensor can only be identified by keeping track of its past quality states. This is achieved by

conditioningxsr(t) upon the quality state of the previous sample. The CPD in nodeG was parameterized
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as a Gaussian distribution of the errorxsr(t) conditioned upon the current and previous quality states and

the gradient testp(xsr(t)|q(t), q(t− 1), xgr(t)).

Figure 5. A comparison of the corresponding readings from co-situated conductivity sensors

at 1 m (x1(t)) and 10 m (x2(t)). (i) The sensorx1(t) had a step change in its readings as

a result of an electronic fault; (ii) The difference test (xsr(t)) between the sensors could

identify the fault but can not resolve which of the sensors was responsible. Thexsr(t) test

was conditioned upon the gradient testxgr(t) shown in (iii) and previous class stateqt−1 to

infer x1(t) was erroneous.
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6.4. Network Training

Each of the four sensors had a DBN trained in a supervised manner using their own set of historical

measurements between 19 February 2008 and 8 November 2010 inSullivans Cove. The training set was

comprised of four blocks of sensor observations with 10 minutes sample intervals that were separated in

time (a total of 53,886 observations). Moreover, corresponding samples from the co-situated, equivalent

sensor at alternate depth and SHOC model hindcasts were used. The model hindcasts were interpolated

(with 3 times oversampling) to align the hindcasts with the time stamp of the sensors. The starting

date of each observation block occurred after sensors had been cleaned and re-calibrated ensuring the

CPD p(q(t)|q(t − 1), cl(t), cal(t)) captured periods of measurement reliability. The trainingsets were

quality assessed by two experts according to the IOC qualityscheme detailed in Table1. The experts had

3 years and 4 years experience in the quality assessment of physical observations from marine sensors

and had several years experience studying the hydrodynamicbehaviour of Sullivans Cove where the

sensors were situated. Models were trained and then tested using the Bayes Network Toolbox [43] in

Matlab. The toolbox was modified to incorporate the MAP estimates for the Gaussian and non-uniform

Dirichlet priors used in the models.
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6.4.1. Prior Distributions

One of the advantages of Bayesian Networks (BN) is that underthe assumption that the training

data is complete, the BN is modular and each CPD in the networkcan be trained independently. This

training can be performed with or without a prior belief distribution for each CPD. In our proposed

quality assessment network, the multinomial CPD of nodeC was provided with a prior distribution

to encapsulate our current understanding of the degradation of the EC-1500 sensor in shallow water.

Prior belief of the CPD in nodeE, the gradient conditioned upon the quality state, was also provided to

encode our understanding of realistic changes in temperature and conductivity observations over short

periods of time. The parameters of the two CPDs were learnt from the training setX as the maximum a

posteriori (MAP):

p(Θ|X)max = argmaxΘ

∏

t=1:N

∏

r=1:e

p(Xt|Θr) · p(Θr) (6)

wherep(Θ|X) was the posterior distribution of the parametersΘ of the CPD givene independent vectors

of its parental configurations andN training examples inXt. The prior distribution (p(Θ)) in nodeC

was encoded as a Dirichlet distribution, which is the conjugate of the multinomial distribution [34].

Consequently the MAP could be computed in closed form:

p(Θp(q(t)|cl(t),cal(t),q(t−1))|X)max =
Nz,r + τz,r − 1

Nr + τr − k
(7)

Nr =
∑

z=1:4

Nz,r and τr =
∑

z=1:4

τz,r and r = 1 : 288

whereNz,r is the number of training observations andτz,r is the Dirichlet hyper-parameter for thezth

state of sensor quality and therth parental configuration of the CPD. Equation (7) shows that larger

τz,r will have more influence upon the configuration. Consequently, τz,r were set to relatively large

values between 1 and 100 to ensure they had at least some influence upon learning based upon our past

experience of bio-fouling and drift during deployment of EC-1500 sensors. The prior distribution of

nodeE was normally distributed. This conjugate prior enabled theMAP to be computed in closed form:

p(Θp(xgr(t)|q(t))|X)max =
Nr · σo,r

Nr · σo,r + σx,r

· µx,r +
σo

Nr · σo,r + σo,r

· µo,r (8)

wherer = 1 : 4 are the parental configurations,µo,r, σo,r is the mean and standard deviation of the

prior distribution and (µx,r, σ2
x,r ) is the mean and standard deviation of thexgr(t) distribution. The prior

distributions were set toµo,r=1:4 = [0.05 0.3 0.7 4], σo,r=1:4 = [0.1 0.2 0.3 5] for the two temperature

networks andµo,r=1:4 = [250 1300 2300 4500], σo,r=1:4 = [150 600 1000 2000] for the two conductivity

networks. Prior distributions were non-informative for the remaining CPDs of the DBN, and hence,

these CPDs were parameterized by maximizing the likelihoodp(X|ΘN)max.
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6.5. Quality State Assessments

After the network was trained, the operational phase of quality assessment proceeded. As each

sensor reading streamed into the information system, a quality state inference was performed upon its

corresponding DBN:

p(q(t)|e(1 : t)) =
p(q(t), e(1 : t))∑4

r=1 p(qr(t), e(1 : t))
(9)

where p(q(t), e(1 : t)) =p(cal(t)) · p(cl(t)) · p(s(t)) · p(q(t)|q(t− 1), cal(t), cl(t))

· p(xsr(t)|q(t), q(t− 1), xgr(t)) · p(xgr(t)|q(t))

· p(xmr(t)|q(t)) · p(xsd(t)|q(t), s(t))

givene(1 : t) represent the observed causes, effects and states of the network to the current sample.

6.6. Generation of Uncertainty Measurements

Once probabilistic assessments of the IOC flags were obtained, they were then used to generate a

quantitative assessment of each measurement’s uncertainty. A continuous quality metric was generated

using a similar approach to the fuzzy set approach [14] with contributions from the posterior probabilities

as opposed to fuzzy memberships. These probabilistic estimates of the DBN quality states were mapped

to a continuous quality metriceb(t):

eb(t) =

4∑

r=1

wr · p(qr(t)|e(1 : t)) (10)

wherewr are the quality state weights for the conductivity and temperature sensors shown in Table2.

The weight (w1) associated with the the good flag was assigned with the values of the EC-1500 sensor

accuracy quoted by the manufacturer. The other weight values were based upon the empirical values

computed in [14] but modified to incorporate 4 quality states instead of 3 states.

Table 2. The weights used to generate error bars for each assessed data sample based upon

the posteriors of the quality states. The weightw1 corresponds to the sensor accuracies

specified by the manufacturer whilst the other values were based upon the empirical values

in [14] but modified to incorporate 4 classes as opposed to 3 classes.

Sensed Phenomenon w1 - Good w2 - Prob Good w3 - Prob Bad w4 - Bad

Conductivity 0.1 0.3 1.2 3

Temperature 0.2 1 4 8

7. Results and Discussion

Whilst the end goal of the proposed quality assessment system is to generate uncertainty measures

of samples, we first investigate the accuracy of the quality state assessments of the DBN. The DBN of
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each sensor was compared to its corresponding static BN using the same test and training data sets. The

structure of the static BN is shown for a shallow temperaturesensor in Sullivans Cove in Figure1. The

static BN exploits the same suite of cause and observed evidence variables that were described for the

DBN (Figure3) in Section6. The only difference between the networks being the co-situated sensor and

quality state nodes for the current sample of the DBN are dependent upon the previous sample’s quality

state. A test set was prepared for each sensor consisting of asegment of 19,375 observations sampled at

10 minute intervals between 1 September 2011 and 1 December 2011. This test set was separate from

the training set. Each test set was also comprised of the corresponding observations of the equivalent

sensor at an alternate depth and SHOC model hindcasts (for the shallow sensors).

7.1. Quality Assessment Metrics

A discrete quality metric of the DBN and static BN was obtained for each sample by computing

the distance between the quality state with maximum posterior probability and the expert selected

quality state. In addition, a continuous quality label (cq(t)) was computed from the quality state

posteriors of each network. The distance between the continuous label and corresponding manually

assessed quality label was used as a performance metric:

d(t) = |m(t)− cq(t)| (11)

cq(t) =

4∑

r=1

wr · p(qr(t)|e(1 : t))

wherewr = [1 2 3 4] is the weight vector composed of the quality states.

7.2. Quality Assessment Results

Figure 6 shows that the quality assessments generated by the DBN and static BN were in close

agreement with the expert based quality assessments for each of the four sensors. The average quality

assessment accuracy of the temperature sensors (Figure6(a),6(c)) was higher than the conductivity

sensors (Figure6(b),6(d)) with an improvement of 1.22%, 11.4%, 3.65% and 40% for the good, probably

good, bad but potentially correctable (to be referred to as probably bad from this point) and bad quality

states respectively. The average quality assessment accuracy for the good class of sensor data was 99.1%,

which was consistently higher than the remaining quality classes. The average assessment accuracy was

lowest for the probably bad class at 83.7 % although still relatively close to the average accuracy of the

probably good quality state of 84.6% and bad quality state of85.6%.

The lower assessment accuracy of the “degraded” quality states could be associated with the natural

imbalance in the training data set where the good quality state had far more examples to use in order

to learn the network than the “degraded” states. Furthermore, the “degraded” states had far greater

overlap between their boundaries. This is because experts found it easier to label the samples as good;

the difficulty in assessing with the IOC quality scheme was labeling “degraded” samples in a consistent

manner across an entire data seti.e., similar samples may be labeled as probably good in some instances

and probably bad in other instances.
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Figure 6. The automated quality assessments from two BN (static BN andDBN) compared

to expert quality assessments across the four sensors in Sullivans Cove, Hobart. The quality

state labels 1 to 4 define the quality states in Table1. There were two metrics used to compare

the assessment performance of the Bayesian networks. The first metric was the distance

between the quality state with maximum posterior probability and the quality state selected

by an expert. The second metric was the distance between the expert’s quality state and the

continuous quality label of the network defined in Equation (11). (a) Temperature Sensor

at 1 m; (b) Conductivity Sensor at 1 m; (c) Temperature Sensor at 10 m; (d) Conductivity

Sensor at 10 m.
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Whilst the static BN showed a slightly higher average quality assessment accuracy across the good

quality state of samples (0.22%), the DBN offered a statistically significant improvement (two sample

t-test atp = 0.05) in assessment performance for each of the “degraded”quality states. The DBN

offered an average improvement of 41%, 46.6% and 33.7% for the probably good, probably bad and

bad states respectively. The overall quality assessment accuracy of the DBN was still greater than the

static BN despite the heavy imbalance towards the good quality state in the training set, which was
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comprised of 96% of the observations. Whilst the DBN mislabeled an additional 123 samples from the

good state compared to the static BN, the DBN correctly labeled an additional 1,292 samples across all

three “degraded” quality states. The distance metric (defined in Equation (11)) mirrored the previous

improvement of the DBN with an average quality state distance that was 41%, 40% and 54.8% lower

than the static network across the same three “degraded” quality states. The improved quality assessment

of the DBN could be attributed to the greater consistency in labeling data segments with constant quality

states. One negative aspect of this labeling consistency was that the DBN tend to label the start and end

positions of erroneous segments with less accuracy than thestatic BN. This was one of the reasons why

the static BN offered a slightly higher assessment accuracythan the DBN for the good quality state. This

small drop in assessment accuracy, however, was outweighedby the DBN’s improvement in assessing

the segments of erroneous sensor readings. The DBN was shownto better replicate expert assessment

than the static BN across a series of segments with constant quality states in Figure7. In Figure8,

the quality assessments of the static BN tend to jump betweenthe good, probably good and probably

bad states more frequently than the DBN, which label homogeneous segments of data quality with

greater consistency.

Figure 7. The top time-series of each figure corresponds to a section ofsensor readings from

the conductivity sensor at 1 m that have been assessed by a human expert and automatically

flagged by the DBN. The four bottom series correspond to the posterior probabilities of the

(between 0–1) quality states of each sensor sample in the network. The arrows upon the

top time-series correspond to the points at which the expert’s assessment has changed to the

quality state specified.
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Figure 8. The top time-series of each figure corresponds to a section ofsensor readings from

the conductivity sensor at 1 m that have been assessed by a human expert and automatically

flagged by the static BN. The four bottom series correspond tothe posterior probabilities of

the (between 0–1) quality states of each sensor sample in thenetwork. The arrows upon the

top time-series correspond to the points at which the expert’s assessment has changed to the

quality state specified.

7.3. Uncertainty Measures

A 2,672 sample subsection of the test-set was manually assessed by one of the experts in order to

place error bars upon the sensor readings. This test-set wasidentical to the one used to evaluate the

quality assessment performance of the fuzzy logic system in[14]. The uncertainty measure of samples

were calculated from the quality state posteriors of the DBNand static BN using Equation (10). The

algorithm performance was measured by expressing the data uncertainty as a percentage of the manually

computed error bars. The test set percentages were presented as histogram tables for the temperature

(Table3) and conductivity sensors (Table4) to enable direct comparison with the results of the fuzzy

logic system reported in [14]. Most of the tests utilised in the fuzzy system [14] were identical to

Section6. One variation was the test associated with the difference between co-situated sensors. In the

fuzzy system this was formulated as the difference between sensor values as opposed to the difference

in the linear regression model in Section6.3.4. Furthermore, an additional test was utilized in the

shallow DBN at 1 m to model the difference between the sensor readings and SHOC model hindcasts

(Section6.3.3).
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Table 3. A comparison of uncertainty measures of the DBN (section6), static BN [15]

and fuzzy logic assessment systems [14] expressed as a histogram of the ratio of automatic

quality metrics and manual error bars across a test-set of 2,672 samples for the temperature

sensors in Sullivans Cove. (a) Temperature sensor situated at a depth of 1 m; (b) Temperature

sensor situated at a depth of 10 m.

Automatic EB / Manual EB
DBN static BN fuzzy logic

instances % instances % instances %

Above 300 % 13 0.5 16 0.6 13 0.5

200–300 % 57 2.1 55 2.1 166 6.2

150–200 % 36 1.4 117 4.4 119 4.5

66–150 % 2,488 93.1 2,374 88.9 2,131 79.8

50–66 % 42 1.6 56 2.1 108 4.0

33–50 % 28 1.0 36 1.4 92 3.4

Less than 33% 8 0.3 18 0.6 43 1.6

(a)

Automatic EB / Manual EB
DBN static BN fuzzy logic

instances % instances % instances %

Above 300 % 9 0.3 8 0.3 1 0.0

200–300 % 27 1.0 50 1.9 339 12.7

150–200 % 11 0.4 113 4.2 84 3.1

66–150 % 2,592 97.0 2421 90.6 2,224 83.2

50–66 % 24 0.9 52 1.95 9 0.3

33–50 % 6 0.2 14 0.5 7 0.3

Less than 33% 3 0.1 14 0.5 8 0.3

(b)

Table 4. A comparison of the uncertainty measures of the DBN (section6), static BN [15]

and fuzzy logic assessment systems [14] expressed as a histogram of the ratio between the

automatic quality metrics and manual error bars across a test-set of 2,672 samples for the

conductivity sensors in Sullivans Cove. (a) Conductivity sensor situated at a depth of 1 m;

(b) Conductivity sensor situated at a depth of 10 m.

Automatic EB / Manual EB
DBN static BN fuzzy logic

instances % instances % instances %

Above 300 % 0 0.0 14 0.5 157 5.9

200–300 % 154 5.8 112 4.2 140 5.2

150–200 % 226 8.5 139 5.2 138 5.2

66–150 % 2,054 76.9 1,802 67.4 993 37.2

50–66 % 131 4.9 268 10.0 342 12.8

33–50 % 86 3.2 204 7.6 365 13.7

Less than 33% 21 0.8 133 5.0 537 20.1

(a)
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Table 4. Cont.

Automatic EB / Manual EB
DBN static BN fuzzy logic

instances % instances % instances %

Above 300 % 92 3.4 91 3.4 265 9.9

200–300 % 18 0.7 94 3.5 170 6.4

150–200 % 27 1.1 116 4.3 99 3.7

66–150 % 2,151 80.5 2,208 82.6 980 36.7

50–66 % 128 4.8 83 3.1 336 12.6

33–50 % 123 4.6 62 2.3 268 10.0

Less than 33% 133 5.0 18 0.7 547 20.5

(b)

The results from Table4 indicate that the DBN produced data quality uncertainty measures that

fell within an acceptable range of performance (ratio of 66%–150%) for an average of 78.7% of the

conductivity test sets. The correspondence between the automatic uncertainty measure and manually

generated error bars was shown to be higher for the temperature sensors in Table3 achieving an

acceptable range of performance for an average of 95.1% of the test set. A comparison of the DBN

and static BN quality measures showed that the DBN offered a statistically significant improvement in

replicating the manual error bars in three of the four sensortest sets (two sample t-test atp = 0.05). This

improvement was a result of the higher overall quality assessment performance of the DBN as described

in Section7.1. It was discovered, however, that higher assessment accuracy did not guarantee closer

agreement with the error bars. The test-set associated withthe conductivity sensor at 10 m (Table4(b))

is one such example. Such outlier examples are the result of manual generation of error bars with a far

more stochastic process than the linear mapping of class posteriors.

A comparison of the DBN and fuzzy system shows that the automated uncertainty measure of the

DBN replicate the manual error bars with far greater accuracy than the fuzzy system. The DBN produced

an average improvement of 15% across both temperature sensors (Table3) and an average improvement

of 53% across both conductivity sensors (Table4). The main difference between the two systems was that

the fuzzy logic system was parameterized using prior knowledge exclusively, whilst the DBN system was

parameterized with prior knowledge and data sets representing the local context. The fuzzy logic system

relies upon a set of expert selected parameters that are potentially biased and may not be representative

of the local context.

8. Discussion

One of the underlying assumptions of automated quality assessment is that systems require historical

observations to either learn the normal behavior of the sensor (in outlier detection) or parameterize

specific tests. This is an issue for recently deployed sensors that have not built up a sufficient

observational history. In these cases, the only available option is to exploit prior knowledge. This

could take the form of an expert’s knowledge of the observed phenomena and/or an independent data set

that is representative of the deployment region. Such options are likely to introduce bias into the initial

assessment systems, and consequently, it is important thatsuch systems can be updated with the arrival
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of new data. This requires the new data to be manually assessed to update the DBN. Consequently, the

update cannot be conducted in real-time and the quantity of newly assessed samples must be limited, if

the approach is to remain practical. A strategy to select themost influential samples must be developed;

these could be samples with high classification uncertainty(i.e., samples at the boundary of multiple

classes) or samples that were assessed as erroneous. This will be addressed in future work.

Another critical issue in automatic quality assessment is that it is difficult to distinguish between

sensor errors and unusual events. This is of particular concern with a sparse distribution of sensors where

unusual events can potentially be flagged as bad data. In the case of environmental monitoring, it is often

these unusual events that are of particular interest. Therefore, although QA/QC can build confidence in

the data provided, we want to be sure that interesting eventsare not ignored, or filtered out, and that effort

is not wasted in servicing sensors that may appear to be faulty but are working correctly. An approach

has been developed to address this problem for TasMAN using an autonomous vehicle and real-time data

to provide the context to differentiate between an error andan event [44]. Sensors reporting bad data are

identified using automated quality control, which the vehicle can access with a publicly available web

service along with the real-time sensor readings. If the data is consistently flagged as bad and there are

no public sources of evidence to support an environmental event is occurring, the autonomous vehicle

visits the sensor nodes so that it might compare its onboard temperature and salinity sensors with those

of the sensor reporting data of uncertain quality. If there is then a significant difference between the

readings, a recommendation is made for the sensor to be servicedi.e., cleaned and/or calibrated.

9. Conclusions

A Bayesian Network (BN) based framework was proposed to provide automated quality assessments

of streamed sensor data. The framework models the causal relationship between variables of the quality

assessment process without being constrained by the restrictive assumptions that outlier detection or

classification approaches may place upon practical deployments. The original BN framework is modified

from treating each sample independently (the static BN) to exploiting the sequential correlation of

readings using a Dynamic Bayesian Network (DBN). A comparison of the DBN and static BN algorithms

implemented upon sensors in Sullivans Cove, Hobart indicate the DBN better replicates the quality

assessments provided by experts. In particular, the classification accuracy of the “degraded” quality

classes were superior as the DBN managed to classify segments of erroneous readings with greater

accuracy than the static BN. The posterior estimates of the quality states were mapped to a more

meaningful measure of sample uncertainty. The uncertaintymeasure was compared to a similar measure

derived using a fuzzy logic approach [14]. The BN approaches were shown to offer a substantial average

improvement of 15% and 53% in replicating the error bars of experts for the temperature and conductivity

sensors respectively.
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