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Abstract: Online automated quality assessment is critical to detezrai sensor’s fitness
for purpose in real-time applications. A Dynamic Bayesiagtwbrk (DBN) framework
is proposed to produce probabilistic quality assessmemds rapresent the uncertainty
of sequentially correlated sensor readings. This is a ntraehework to represent the
causes, quality state and observed effects of individusaeerrors without imposing any
constraints upon the physical deployment or measured phenon. It represents the casual
relationship between quality tests and combines them in y twagenerate uncertainty
estimates of samples. The DBN was implemented for a paaticubrine deployment of
temperature and conductivity sensors in Hobart, Austrdltee DBN was shown to offer a
substantial average improvement (34%) in replicating therdars that were generated by
experts when compared to a fuzzy logic approach.
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1. Introduction

Moore’s Law is primarily responsible for bringing to frwoth the technical advances in sensor
development that have led to the explosion in scientific datag generated each yedaf.[Furthermore,
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the utilisation of digital technologies, in conjunctiontivithe Internet, has altered the traditional role of
data stewardship. We are now moving into an age where datgstes distributed and data is publicly
accessible and annotated to promote re-use for a varietyrpbpe. Consequently, the explosion of
open data provides the opportunity to study the environraeathigher spatiotemporal resolution than
was previously possible. Observation scale is only one efctitical aspects needed to advance our
understanding of the physical world. The integrity of thebservations must also be assessed to ensure
that they are fit for purposel], this becomes increasingly challenging as the size anerbgéneity

of data sets used in scientific studies continue to expandomated approaches to assess the quality
of data are important as the number of observations beingrgeed make human based assessment
too unwieldily and costly 1,2]. Furthermore, automated procedures are essential torpeiduality
assessments for real time applications that impose tigia tionstraints upon processirg}].

One of the issues that is critical to assessing the qualisenkor data is contextual awareness. For
instance, context can provide a means to differentiatedstva sensor fault and an unusual, real eventin
the environment. In this case, exploiting our understagadirthe sensed phenomenon and the structure
of associated event6][or learning the spatiotemporal relationship between aseand its neighboring
sensorsT] can assist in resolving this ambiguity][

One of the weaknesses of automatic quality algorithms tstieg do not utilise context as effectively
as a human exper8]. Commonly, evidence streams (the quality tests) of autmngaiality assessments
are independently processed and then combined into ansassess using logic based operators.
Furthermore, the tests associated with current approaafeesommonly represented as deterministic
variables that do not represent the sources of uncertasggcated with each of the quality tests.
We propose a framework to address these two issues for calittenated assessment of sensor data.
The probabilistic framework is based upon the Bayesian odsv(BN), a directed acyclic graph that
can explicitly model the dependencies between randomhiasamaking its usage attractive to sensor
data fusion researcl®f11]. Dynamic Bayesian Networks (DBN) have previously beenppsed to
detect sensor reading outliers by identifying significareidictions errors made by Kalman and particle
models #] or the Hidden Markov Modelq] based upon spatiotemporal redundancies. In contrast, our
proposed approach is not a prediction model but a framewmrepresent and combine the sources
of uncertainty associated with the data quality of a sen3tiis framework can represent any set of
quality tests and assessment format. Context can be moldglegpresenting the causal relationship
between tests. Another novel aspect of this approach is #rear in which probabilistic assessments
are combined to produce a measure of sample uncertaintg. pfoposed quality measure is different
from previous work with BNs that calculate error bars for gusterior of each state query using a first
order Taylor expansionlp] or two independent sets of network parametdrd fo approximate the
variance of the posterior distribution. For quality cohpmoblems, error bar approaches can be used to
compute the uncertainty of each quality state query but dpravide an overall estimate of the sample
uncertainty. Our proposed approach provides an unceytagtimate of each sample by combining the
weighted posterior probabilities of the quality statesislsimilar to the metric used with fuzzy logic
sets [L4] where the proposed uncertainty measure was shown to nepedtie error bars generated by
an expert. This quality assessment framework was first @@gas a static BN that was best suited
to assessing the data quality of stochastic time setigls [The observations of most phenomenon are
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sequentially correlated over short periods of time. Counsatly, the original framework is reformulated
as a Dynamic Bayesian Network (DBN)g] to provide online quality assessment of sensor readirags th
are correlated across time. The framework was implementetebeloping a separate DBN to assess
the data quality of each conductivity and temperature sathaloyed in the Derwent estuary in Hobart,
Australia. The quality assessments of the DBN were comparédte equivalent static BN with respect
to three months of sensor data that was assessed by qualiiplcexperts. The sample uncertainty
measure of the DBN were then compared to a similar measuretfie fuzzy logic approachf] and
expert generated error bars.

2. Previous Work

Previous approaches to automate the quality assessmeansdrsdata can be broadly categorized
into two classes. The first class are anomaly detection rdsthithese approaches do not provide
explicit classification but perform the related task of datey samples that deviate from expected
behavior §,7,17-19] and then flagging these as outliers. These are consideisoihbop, statistical
approaches that are trained from historical data sets ofsémsor. The second are classification
approaches that use prior knowledge to label the qualityeoser data J4,20-23]. Our proposed
DBN is a combination of both approaches. Networks are trhimem historical data sets that can
be contextualized by encoding prior knowledge about sepgeration and its measured phenomenon.
In Sections2.1 and2.2 we introduce anomaly detection and classification appescdcind specify the
potential advantages that the Bayesian framework offezs @ach approach individually.

2.1. Anomaly Detection

Anomaly detection methods are statistical approaches#metxploit historical distributions of sensor
behavior. In anomaly detection, models are typically usegredict the behavior of sensor readings
based upon their temporal correlatidr724] or spatiotemporal correlatiod[7,18,19] with neighboring
sensors; samples with values that deviate significantlyallysdefined by a threshold) from the predicted
value are flagged as outliers. The advantage of anomalytaetenethods is that they have broad
application, given that the assessment procedure candtedras a black box. This is also a weakness
when attempting to detect systematic errors. The detedifi@ystematic errors is assisted by having
some understanding of the sensor pathology and its meaphestbmenony]. Our framework can
address this issue by incorporating prior knowledge of ity tests into the DBN.

Another issue with anomaly detection methods is that thigyugon assumptions of spatial, temporal
or spatiotemporal correlation that are not universallyliapple to particular types of phenomen@b].
Such correlation assumptions rely upon data following #r@es distribution. However, this does not
hold across all types of networks. For instance, it does alat for networks comprised of acoustics or
thermal sensors with readings that attenuate with respebetsource distanc§]. More importantly,
the anomaly detection methods require sensors to be depédyesufficiently high spatial resolution to
adhere to the spatial correlation assumptions. Networkis avsufficiently high spatial density may be
financially, logistically or technically prohibitive to géoy in certain scenarios, meaning that alternate
quality assessment approaches may need to be consideregrdposed framework has more generic
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application than previous anomaly detection work, as amglityutest or assessment format can be
incorporated into the framework. This is beneficial as ibwh quality assessments to be tailored to
particular sensors based upon their physical location andtion. Moreover, it allows assessments to
be fit to standard procedures for a particular domain. Newitguasts can be added or removed from
an existing BN without requiring the entire network to beaeted.

2.2. Classification Based Assessments

Classification based assessment are top-down approaciesxploit knowledge of the sensed
phenomena in order to infer the quality state. Consequesidlgsification approaches have a far stronger
connection to their application domain; this is often aghde by establishing a series of rules. For
instance, a series of thresholds were obtained from sstemti form data quality rules for a soil moisture
network R1]. Knowledge of specific systems can also be used to validaisoss and detects faults
in engineered systems including the power system of aecespahicles 27], robotic vehicles 28]
and gas turbine2P]. A network is used to model the the overall system, in paticthe functional
dependencies between the states of its sensors. Such systaiel the uncertainty of sensor operation
but not the uncertainty associated with the system process ¢he narrow bounds of its behaviour.
Environmental process are far more complex to model givenviriety of contributing factors and
fluctuation with location. To assess the data quality of mmmental sensors, this process uncertainty
needs to be represented in the network. Consequently, apoged framework models both the
process and operational uncertainties of each sensoidodily. Given our current focus on marine
applications, the rest of this section is spent reviewingble examples of automated quality procedures
for operational marine observation networks. The Argo ffraject has deployed over 3,000 profiling
floats throughout the world’s oceans and performed autamegal-time quality assessment of data as a
part of a more extensive Quality Assurance (QA) and Qualdgt@®| (QC) process. A set of automated
tests including spike, gradient, regional range, presswrease and density inversion have been applied
to the temperature, salinity and pressure sef&p [Koziana described the QA/QC framework and the
use of measurement range and gradient data checks as phd Bf$. Integrated Ocean Observing
System (I00S) 30]. The National Reference Stations (NRS), part of the moteresive Integrated
Marine Observing System (IMOS), is a group of nine coastahitoang stations distributed along
Australia’s coastline. An automated procedure for asegsbie quality of temperature and salinity data
is currently being developed by deploying gradient, spikd@imatologic distribution test2p]. In each
of these quality assessment systems, “gold standards'tiresholds) are defined for each of the quality
tests in order to indicate whether the test has been passeen Wdata sample fails a test, it is flagged
as “bad”. Such approaches fail to exploit the contextuati@hship between different quality tests
and test uncertainty. The proposed BN framework explicitiydels the causal relationships between
tests providing additional context to the quality assesgnfeurthermore, the BN provides probabilistic
assessments that provide a natural way to represent theaintgassociated with imperfections in the
quality tests. We argue that such an uncertainty measuveesa more valuable criteria than a discrete
data flag (such as “poor” and “good”) in order to assess a sggiithess for purpose.
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Timms [14] addressed this issue of sample uncertainty by utilizinggyulogic to represent the
uncertainties associated with each of the assessment festessments were generated by combining
tests to produce a continuous quality scale to estimateqetiity uncertainty. Although our framework
has been inspired by Timms'’s approach to combine the testianaties, the use of a BN can potentially
provide the following benefits:

1. Network parameters are learnt via supervised trainitigeo$ensor data; the fuzzy functions 1]
were parameterized with prior knowledge that may not beasgntative of a particular site;

2. The network parameters can be updated if assessmentmefrs@w sensor readings are obtained;

3. The dependencies between the quality tests can be éypéoicoded, whilst tests in the fuzzy
system are independent. This provides additional contexti@akes the fuzzy system more prone
to failure when particular evidence sources are unavalabl

This fuzzy system is compared to the Bayesian Network syster8ections.3.

3. Bayesian Networks

A Bayesian Network (BN) is a model representing the jointhaduility of a process or problem
via a directed acyclic graph. The graph represents the pbability via a number of explanatory
random variables and their associated statistical relghips. In Figurel, the BN is a joint probability
distribution that is used to provide quality assessmentiewiperature sensor data. The cause and
effect tests associated with the network are representedd 4t of discrete and continuous variables
X = [z, xp...xy|. Each of the variables in the network are associated withde (different shapes in
Figurel) representing the conditional probability distributiddRD) of the variable that is conditioned
upon other variables with edges pointing towards it. Theasatiat point towards a particular node are
known as its parents.

One of the basic properties of a BN is that it satisfies thel IMzakov property that states a node
is conditionally independent of non-descendant nodesemg#twork given its parent8]]. Using the
chain rule and this local Markov property, the joint probigpiof a BN p(X') can be represented as the
product of a number of conditional probability distribut

p(X) = HfiAp(xi|paz‘) (1)

where each node is represented by a probability distributiat is only conditioned upon its parent
pa; nodesi.e., p(z;|pa;). Whilst the original joint distributiorp(X) of N discrete variables (each
with % values) exhibits a combinatorial explosion in the numbepaiential statesi.e., O%?")), this

is significantly reduced in a BN by exploiting the conditibmedependence of the variable3. The
construction of a BN relies upon prior knowledge of the sysbeing modeled. For instance, the network
designer must be able to determine which variables conéituuthe system, how the variables should
be represented and which variables are conditionally digr@rupon one another. Although automated
approaches to learn network structure have been devel@3&#], human based specification of the
network is likely to be more reliable for a well-understoadigem such as data quality.
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Figurel. A Bayesian network is a directed acyclic graph represerkiagoint probability of

a problem. Each node in the network is associated with a tondl probability distribution
of a variable that is conditioned upon other variables witges pointing towards it. This
particular network structure is used to assess the dataygoiiemperature and conductivity
sensors deployed in Sullivans Cove, Hobart with cause arskrobd evidence tests.
The causes of sensor degradation include the time sincetiseiswas calibrated (node
and the time since the sensor was cleaned (i2)dé&Node C was used to infer the latent
quality state. The observed evidence of the data quality thasseasonal difference
(nodeD), the gradient (nodE), the difference between the sensor and hydrodynamic model
(nodeF) and the difference between equivalent sensors at aleedegiths (nod&). The
CPD of the network have been trained from observations ofrgpégature sensor deployed
at 1m in Sullivans Cove.
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4. Bayesian Network Framework for Quality Assessment

The proposed framework for online, automated quality aseesat of sensor data uses a BN to
represent the cause and effects of data quality in consediatyers of the network. This framework
is shown in Figure2. The top layer of the network represents the observed canfsesnsor data
quality. These variables can represent any number of cafs#egradation in observations including
connection or hardware failur&,R1,35], clipping due to insufficient dynamic range in the analotue
digital conversion 8], low battery levels 21,35], sensors with calibration drifi3j21] and sensors that
have been bio-fouledp] in their deployed environment.
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Figure 2. The two time-slice structure of the Dynamic Bayesian Nelwased to perform
guality state inference for each incoming sample. The fiateralgorithm only requires the
node variables from the previous slice that are connectéuketaurrent slice to be involved
in the quality state inference. This is known as the 1.5 DBbicstire.

Causes of data
quality

Hidden quality
state

Nodes removed
to form 1.5 DBN

Observed
evidence of data
quality

time slice t-1 t

The middle layer of the network represents the latent qustéte of the sensor. This quality state is
inferred from the cause and observed evidence variablageaya below it in the network. The quality
states of the network depend upon the particular qualityssssent scheme that has been adopted for the
application. The bottom layer of the network representstheces of evidence used to infer the quality
of the current sample. The evidence observations for arsssgesensor are commonly the sources of
spatial, temporal and/or seasonal redundancy that carebdagetect contradictory behavior associated
with errors in the sensor readings.

4.1. Dynamic Network for Quality Assessment

Sensors quite often measure environmental phenomenarthabaelated across time. For such
phenomena, there will be dependencies between the curuatitygstate and the quality state at
previous time steps. The DBN framework shown in FigBradopts the simplest temporal model, a
first-order Markov model, where the dependencies betwealitgstates are only modeled between
consecutive time steps. When each of the observed variablesgly connected to the quality
state, the network can be considered to be a special varigheddidden Markov Model (HMM),
known as the Input-Output HMM3[7]. The hidden state CPD of the standard HMM has static
state transition probabilities.€., p(quality,|quality,_1)), whilst the Input-Output HMM has state
transition probabilities with greater dynamics given thiay are also dependent upon the causes of
data degradation.é., p(quality,|quality;_,, causes;)).
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4.2. Online Quality Inference

Online quality inference of an incoming sample can be peréat by filtering across a sequence of
past observed variables and quality states:

(¢@lg(t = 1)) - pla(®)|E®)) - plg(t = DIE - — 1))
p(E@)[E(:t—1))

pla()|E(1: 1), q(t — 1)) = £ 2)

whereE(1 : t) represents the observed effect and cause variables of theupBo the current time.
Filtering is performed with the interface algorithi33 using the feed forward algorithm in the form of
Equation R).

The interface algorithm performs a modified junction treieli@ence upon a 2 slice network comprised
of consecutive time slicels— 1 andt, given past time slices are independent of future time slgpeen
the current interface. Infact, only nodes in slice- 1 with children in slicet need to be part of the
inference. This is known as a 1.5 slice DBN and is shown infégu

The number of operations required to perform an inference#gh time step is bounded between
O(K'1) and O(K'*") where N is the number of hidden state variables in the current tiriee sl
I is the number of variables in the forward interface (numidevasiables with children in the next
time slice) andK is the number of states per hidden varial88]] The complexity of this inference
would be computationally prohibitive in a network where thate space was comprised of a significant
number of variables dependent upon the next time step. Tth&ane algorithm was suitable for our
proposed framework as the quality inference in the currerd step was only dependent upon the quality
state of the previous time step. If the framework was modifedhat variables in the current time
slice had numerous parents in the previous time slice, tieeface algorithm would be computationally
infeasible. Exact inference may still be possible, howeter frontier algorithm33] would be a better
option. The minimal complexity of the frontier algorithm @ N K~ ") per time step, and hence, it
is computationally feasible as long as the hidden stateespamoains low. If this is not the case, an
approximate inference engine might be neces<sz8y [

5. Tasmanian Marine Analysis Network (TasM AN)

The Tasmanian Marine Analysis Network (TasMAN) has beereldped to assist with multi-use
management of estuaries and coastline in South-eastemamn#s TasMAN is an end to end system that
consists of a marine sensor network, a real-time informatistem and visualization tools. The system
is designed to monitor the Huon and Derwent estuaries andd@@lerts and forecasts. The system
has also been developed as a low cost, relocatable solaticasfuarine monitoring; the reuse of the
TasMAN platform has been demonstrated during its deploynme8ydney Harbour and the Brisbane
River [39].

The current network in Tasmania consists of fixed sensorsiadd mobile nodes including a small
AUV [ 39] and an autonomous catamaran. The fixed nodes consist of@attemperature, conductivity
and pressure sensors that can operate as either a nodeawthigless sensor network, or independently,
via 3G mobile telephony. These nodes have been designedit@xgensive and flexible to interface
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with a variety of different sensors. Although sensors araraable expense, sensors of low cost such as
the DS28EAOQ00 temperature sensor, Odyssey conductivigosemd SSI MediaSensor pressure sensor
have been used in the networB8]. The BN framework for quality assessment has been devedlope
to address some of the challenging requirements of asgesnquality of sensor data across a low
cost, wide area network such as TasMAN. The benefits for gemdhis quality assessment framework
within TasMAN include:

1. Its flexibility and re-use. Different tests and sourcegwdtience can be used to generate quality
assessments based upon the requirements of each sensbeageddurces available at different
deployment locations.

2. Quality assessments can be generated upon recentlyyddmensors. The ever growing nature
of our network in South Eastern Tasmania means assessnesttsmbe generated during initial
deployment periods whilst statistics are still being gatest. Bayesian approaches are beneficial
to regulate the network parameters when training data isddrand can be learnt sequentially to
enable the update of parameters when new data from the reisymanually assessed.

3. Probability based assessments can be used to quantifintieetainty of sensor measurements.
This is important given the quality of our sensors is reldintow in comparison to the expensive,
high precision sensors commonly used by scientists andqaiysodelers.

6. TasM AN Quality Assessment

A separate DBN was developed for each of the four EC-1500 ¢emtyre and conductivity sensors
fixed to a wharf in Sullivans Cove, Hobar42.886, 147.337) at 1 m and 10 m below chart datum. The
1.5 slice DBN (shown in Figurd) was used to perform a data quality inference upon a sensor.

6.1. Hidden Quality State

The quality states of this deployment are adopted from thggitey scheme used by the
Intergovernmental Oceanographic Commission (I0C) of UNB340]. The flags are numerical codes
used to provide standard definitions of processing taskslaraiquality of each measured sample. There
are flags associated with particular processing tasks,if a quality assessment or interpolation was
performed. Four IOC flags shown in Taldelescribe discrete levels of data quality that represent the
quality states of our network. The CPD of the hidden qualites;(¢) (in node C of Figure3) was
discrete and conditioned upon the observed causes of thegdatity and the previous quality state

pla(t)lg(t — 1), cl(t), cal(t)).
6.2. Causes

Two common causes of sensor degradation were incorponatiedhie DBN. The first variable was
related to sensor calibration. Sensors often exhibit aystie errors in measurement accuracy that can
be corrected for by performing a calibration. The calitlmatmaps the sensor output to its expected
measurement acquired from an additional sensor of knowracg. With time, however, there is a drift
in the accuracy of the calibration, which is related to the agd quality of the sensor. Consequently,
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sensors must be regularly calibrated according to the sidbesltlined by the manufacturer. An
increase in the time since the sensor was last calibrateticydarly after exceeding the manufacturers
specification, was associated with additional uncertai@gnsequently, the number of days since the
sensor was last calibrated! was represented as a multinomial distribution (node A iuFe@@) with a
bi-monthly resolution for the temperature and condudtibiised DBN.

Figure 3. The 1.5 DBN model used to assess the data quality of indiViduaperature
and conductivity sensors in Sullivans Cove, Hobart at 1 mEhdh. The causes of sensor
degradation in this model were the time since the sensor aldgwated in nodeéA and the
time since the sensor was cleaned in nBd&he latent states used to infer the data quality
in nodeC were defined by the IOC flagging standard. The observed esedaidata quality
was the seasonal difference in nddethe gradient in nod&, the difference between the
sensor and hydrodynamic model in nodgonly for sensors at 1 m) and in nod the
difference between equivalent sensors at alternate depths

Observed
discrete

Hidden
discrete

Observed
continuous

o _

Previous time step (t-1)
Slice 1

Current time step (t) - Slice 2

Table 1. The four quality states specified for the quality flag schefitleelntergovernmental
Oceanographic Commission (IOC). These four discrete state used to represent the
hidden quality state (node C in Figu of the Bayesian network implementation. Each
guality assessment involves performing an inference upeset quality states given the
observed cause and effect variables of the network. Thetysthte of code 3 “bad data
that is potentially correctable” was referred to as propalald data in the experiment.

Quality Code Code Meaning

1 Good data

2 Probably good data

3 Bad data that are potentially correctable (Probably b&a)da
4 Bad data
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The second variable was related to bio-fouling, which isrfegor cause of sensor degradation in
shallow marine environments. Bio-fouling of sensors inlislaseawater can occur very rapidly and
lead to random fluctuations or offsets in data in less tharvteeks B6]. Bio-fouling has been found to
produce drifts in the type of conductivity sensors that wesed in Sullivans Cove8p]. A general rule
of bio-fouling drift is that, the longer it has been since leasor was cleaned, the greater the uncertainty
associated with its measurements. Consequently, the mohfays since the sensor was last clearied
was represented as a multinomial distribution (node B imf&d) with a monthly resolution for both the
temperature and conductivity based DBN. Figdris the CPD of the conductivity sensor at 1 m depth
with the quality states conditioned upon the time since #reser was cleanea ¢(¢)|cl(t)). The CPD
was trained with the data set specified in Sec6ah It can be seen there is a trend of the probabilities
associated with the “degraded” quality states increasimgthe “good” quality class decreasing as the
time since the sensor was last cleaned extends.

Figure 4. The trained CPD of the quality state conditioned upon thestsmce the
conductivity sensor at 1 m was cleaned. The CPD was traimoea fine data set specified in
Section6.4 and the labels 1-4 correspond to the quality states in Table

100
80
60

40

Probability (%)

Quiality 4 > 4 6 8
State Time since sensor was cleaned (months)

6.3. Observed Evidence

Different sources of temporal and spatial redundancy weegl tio model sensor readings and train
the DBN. The DBN was then used to infer the quality state ofittteming sample. Two forms of
temporal redundancy were used to model the current temperahd conductivity readings: firstly, the
short-term correlation associated with samples acquiad the sensor’s recent past, and secondly, the
seasonal trends acquired from far longer historical recofthe sensor. In addition, two forms of spatial
redundancy were used to model the current sample of eacbrsaiss included the gridded hind casts
from the Sparse Hydrodynamic Ocean Code (SHOC) model inv8oH Cove 41] and the readings
from a co-situated sensor in Sullivans Cove at a differeptideithin the water column.
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6.3.1. Seasonal Range Test

The first test involved computing seasonal distributionsefach of the four sensors. The absolute
differencex,(t) between each sensor readifgt) and its corresponding seasonal distribution was
then computed:

zsa(t) = |—

| (3)

where 1, is the mean andr, is the standard deviation of the normal distribution of tleason

s = [winter,spring,summer,autumn]. The CPD in nobBewas parameterized from the training data
set as a Gaussian distribution of the normalized seasdifedafice conditioned upon the hidden quality
state and seasqiizq(t)|q(t), s(t)).

6.3.2. Short Term Temporal Evidence

The second test used a gradient filter to identify sudden gdwann the readings between
consecutive samples:

| (4)

rr(t) = |2 = KX

At

where At is the time between consecutive samples. Significant grageues are often associated
with a salient change in the statistics of the measured phenon that are indicative of a change in its
behavior. The CPD of nodg is a Gaussian distribution of the gradient conditioned uperfour hidden
quality state(x,,(t)|q(t)). Spike detection is not incorporated within this suite sit$eas it requires
the use of a future sample, and hence, introduces a one sdelgjento the data quality inference. Such
a delay may be tolerated in messaging systems as long as@’sesampling rate is sufficiently high.

6.3.3. Evidence from Model Hindcasts

This third test exploits spatial redundancy by training tlfeworks of the shallow sensors with
the differences between sensor readings and their comdsmp model hindcasts in Sullivans Cove.
The model hindcasts were provided by the SHOC model thatatgemwithin the Derwent Estuary.
It produced three-dimensional distributions of tempa®tsalinity, current velocity, density, passive
tracers, mixing coefficients and sea level upon a grid tha ma@n-uniform and curvilinear with grid
spacings of between approximately 200 m and 80@th [Only the shallow pair of sensors in Sullivans
Cove (at depths of 1 m) included model hindcasts in their DBNis is because the SHOC model
provided hindcasts at a depth of 1 m every 30 minutes whiéshthdcasts at a depth of 10 m were only
obtained every 12 hours. Consequently, the current modeiati provide sufficient temporal resolution
to compare to the sensors at 10 m that were acquiring readusgg 10 minutes.

The readings from the conductivity sensor were convertadliaity [42] to enable direct comparison
with the salinity hindcasts from the SHOC model. It was imgant to note that model hindcasts and
sensor readings were not guaranteed to be sufficientlylatedeto use as a quality test, particularly
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given the uncertainty involved in comparing these two dataces (the potential sources of uncertainty
are the model hindcast itself, the sensor reading convefsaon conductivity to salinity and the spatial
uncertainty involved in comparing a sensor at a particutantpto a grid cell with coarser resolution
between 200 m and 800 m). Consequently, a correlation asalgs performed upon the training set to
validate the relationship between the model and sensartprincorporating the test into the network. It
was found that the sensors and their corresponding SHOCémtglhad Pearson correlation coefficients
of 0.76 and 0.69, respectively. Consequently, there wagwurft redundancy to incorporate this test
within the network given the test uncertainty could be repreed by the DBN. A linear regression
model of the sensor data and corresponding SHOC hindcaStdlimans Cove was computed from the
training data set as follows:

arg ming c Efllxm,«(t)Q (5)
Tor(t) = |X(t) = X (1)
X({t) = B-M@t)+C

The CPD in nodd” was a Gaussian distribution of the absolute error betweemibdel and sensor
Tm(t) conditioned upon the four quality statese,,.,.(t)|q(t)).

6.3.4. Evidence between Co-Situated Correlated Sensors

This test involved exploiting the spatial redundancy bemvpairs of co-situated sensors measuring
equivalent phenomenon at 1 m and 10 m in Sullivans Cove ukmgaining set. To verify that pairs of
sensors were spatially correlated, a statistical analyassperformed upon the training set. It was found
that the temperature and conductivity sensors were highisetated at Sullivans Cove with Pearson
correlation coefficients of 0.97 and 0.92, respectivelyfalrt, the sensor observations at 1 m and 10 m
were often similar in value, indicating that Sullivans Cavas well mixed at these depths. It should be
noted that this test did not require the water column to bé meled in order to exploit it for quality
assessment purposes; the test could also be used in aedratédter column if pairs of sensors were
situated on the same side of the pycnocline.

The relationship between pairs of sensors were modeled imiarl regression similarly to
Equation B), except that the hindcast/(¢) was now replaced by a co-situated sensor. High errors
between the current assessed sensor and the regressicastonere indicative of potential faults in
sensor readings. However, the test did not resolve whichosan the linear regression model was
erroneous. This can often be resolved by conditioning tlyeession errorr,,(¢) upon the gradient
x4 (t) of the assessed sensor. Larger values,oft) represent sudden changes in sensor readings that
are responsible for the increased modeling eriQr§&). The gradient, however, cannot always be used
to resolve which of the sensors are associated with erreaneadings. One such example is during a
step change in the sensor’s readings in FigurAt the point of step change, there is a sudden increase
in z,(t). For the samples that proceed the change point, however, tkg will become relatively
small and falil to indicate which of the sensor’s is respolesior the increase in,.(¢). In this case, the
erroneous sensor can only be identified by keeping tracksqfast quality states. This is achieved by
conditioningz,, (t) upon the quality state of the previous sample. The CPD in abde@s parameterized
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as a Gaussian distribution of the errgy(¢) conditioned upon the current and previous quality statds an
the gradient tegi(z. (t)|¢(t), q(t — 1), x4, (1)).

Figure5. A comparison of the corresponding readings from co-sitllataductivity sensors
at 1 m @ (t)) and 10 m £,(¢)). (i) The sensor; (t) had a step change in its readings as
a result of an electronic fault; (i) The difference test,(¢)) between the sensors could
identify the fault but can not resolve which of the sensors vesponsible. The,,. () test
was conditioned upon the gradient tegt(¢) shown in (iii) and previous class staje ; to
infer x,(¢) was erroneous.
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6.4. Network Training

Each of the four sensors had a DBN trained in a supervised enarsng their own set of historical
measurements between 19 February 2008 and 8 November 28u0ivans Cove. The training set was
comprised of four blocks of sensor observations with 10 te@sgample intervals that were separated in
time (a total of 53,886 observations). Moreover, corresfiagsamples from the co-situated, equivalent
sensor at alternate depth and SHOC model hindcasts wereTiseanodel hindcasts were interpolated
(with 3 times oversampling) to align the hindcasts with timeet stamp of the sensors. The starting
date of each observation block occurred after sensors hexd ddleaned and re-calibrated ensuring the
CPDp(q(t)|q(t — 1),cl(t), cal(t)) captured periods of measurement reliability. The trairéats were
guality assessed by two experts according to the IOC quadligme detailed in Table The experts had
3 years and 4 years experience in the quality assessmenysitphobservations from marine sensors
and had several years experience studying the hydrodynaehiaviour of Sullivans Cove where the
sensors were situated. Models were trained and then testeg tihe Bayes Network ToolboXJ] in
Matlab. The toolbox was modified to incorporate the MAP eates for the Gaussian and non-uniform
Dirichlet priors used in the models.
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6.4.1. Prior Distributions

One of the advantages of Bayesian Networks (BN) is that utifteassumption that the training
data is complete, the BN is modular and each CPD in the netaamkbe trained independently. This
training can be performed with or without a prior belief distition for each CPD. In our proposed
quality assessment network, the multinomial CPD of nédevas provided with a prior distribution
to encapsulate our current understanding of the degradafithe EC-1500 sensor in shallow water.
Prior belief of the CPD in nodé, the gradient conditioned upon the quality state, was aigeiged to
encode our understanding of realistic changes in temperand conductivity observations over short
periods of time. The parameters of the two CPDs were leaont the training seX as the maximum a
posteriori (MAP):

p(@|X)maz = argmare H H p(Xt|@7‘) . p(@r) (6)

t=1:N r=1:e

wherep(©|X) was the posterior distribution of the parametersf the CPD givere independent vectors
of its parental configurations and training examples inX,;. The prior distribution £(©)) in nodeC
was encoded as a Dirichlet distribution, which is the coafagof the multinomial distribution3d].
Consequently the MAP could be computed in closed form:

Nz,r + Tz,r —1
P(Opqwlei(t).cat(t).q(t-1))| X )maz = Ntk (7)
N, = > N, andr, =) 7., andr=1:288
z=1:4 z=1:4

where IV, ,. is the number of training observations ang is the Dirichlet hyper-parameter for thé"
state of sensor quality and th€ parental configuration of the CPD. Equatiof) 6hows that larger
7., Will have more influence upon the configuration. Conseqyentl, were set to relatively large
values between 1 and 100 to ensure they had at least somengdlupon learning based upon our past
experience of bio-fouling and drift during deployment of #6800 sensors. The prior distribution of
nodeFE was normally distributed. This conjugate prior enabled\#e® to be computed in closed form:

Nr *Ooyr Oo

* Mo +
Nr 'Uo,r+ax,r Nr 'Uo,r+ao,r

p(@p(xgr(t)\q(t)) |X)max = * Ho,r (8)

wherer = 1 : 4 are the parental configurations, .., o, is the mean and standard deviation of the
prior distribution and ..., o2 ,. ) is the mean and standard deviation of thg(t) distribution. The prior
distributions were set tp,,,—1.4 = [0.05 0.3 0.7 4], 0, ,-1.4 = [0.1 0.2 0.3 5] for the two temperature
networks ands, .4 = [250 1300 2300 4500}, 0, ,—1.4 = [150 600 1000 2000] for the two conductivity
networks. Prior distributions were non-informative foetremaining CPDs of the DBN, and hence,
these CPDs were parameterized by maximizing the likelindod © y).,q.-
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6.5. Quality State Assessments

After the network was trained, the operational phase ofityjuaksessment proceeded. As each
sensor reading streamed into the information system, atyséhte inference was performed upon its
corresponding DBN:

| pla(t),e(1: 1)
POl ) =t @), o1 - 0)
where p(g(t), ¢(1 - £)) =p(eal(t)) - p(el(t)) - p(s(8)) - la(la(t — 1), cal(t), l(1))
D190, alt = 1), 2, (1)) - (e (B)la(2))
e (D]a(t)) - plaa®la(t), 5(2)

givene(1 : t) represent the observed causes, effects and states of tharkéd the current sample.

(9)
-plx
-plz

6.6. Generation of Uncertainty Measurements

Once probabilistic assessments of the 10C flags were olatathey were then used to generate a
guantitative assessment of each measurement’s uncegrtAisbntinuous quality metric was generated
using a similar approach to the fuzzy set approddhyith contributions from the posterior probabilities
as opposed to fuzzy memberships. These probabilistic astgwf the DBN quality states were mapped
to a continuous quality metrig():

Z wy - pge(t)]e(1: 1)) (10)

wherew, are the quality state weights for the conductivity and terapge sensors shown in Talfze
The weight {v;) associated with the the good flag was assigned with the salihe EC-1500 sensor
accuracy quoted by the manufacturer. The other weight sakexe based upon the empirical values
computed in 14] but modified to incorporate 4 quality states instead of 8sta

Table 2. The weights used to generate error bars for each assesseshdagple based upon
the posteriors of the quality states. The weight corresponds to the sensor accuracies
specified by the manufacturer whilst the other values wesedapon the empirical values
in [14] but modified to incorporate 4 classes as opposed to 3 classes

Sensed Phenomenon  w; - Good w, - Prob Good ws;-ProbBad w,-Bad

Conductivity 0.1 0.3 1.2 3
Temperature 0.2 1 4 8

7. Results and Discussion

Whilst the end goal of the proposed quality assessmentrayistéo generate uncertainty measures
of samples, we first investigate the accuracy of the qualdtesassessments of the DBN. The DBN of
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each sensor was compared to its corresponding static By tis#rsame test and training data sets. The
structure of the static BN is shown for a shallow temperasemsor in Sullivans Cove in Figufle The
static BN exploits the same suite of cause and observedreadeariables that were described for the
DBN (Figure3) in Section6. The only difference between the networks being the cattisensor and
quality state nodes for the current sample of the DBN are rldgra@ upon the previous sample’s quality
state. A test set was prepared for each sensor consistingegimaent of 19,375 observations sampled at
10 minute intervals between 1 September 2011 and 1 Decerfiiér T his test set was separate from
the training set. Each test set was also comprised of thesmonding observations of the equivalent
sensor at an alternate depth and SHOC model hindcasts éfshdillow sensors).

7.1. Quality Assessment Metrics

A discrete quality metric of the DBN and static BN was obtairier each sample by computing
the distance between the quality state with maximum pastgniobability and the expert selected
quality state. In addition, a continuous quality labef(()) was computed from the quality state
posteriors of each network. The distance between the aanislabel and corresponding manually
assessed quality label was used as a performance metric:

d(t) = [m(t) — cq(t)] (11)

4
cq(t) =Y we - plgr(t)]e(1 : 1))
r=1
wherew, = [1 2 3 4] is the weight vector composed of the quality states.

7.2. Quality Assessment Results

Figure 6 shows that the quality assessments generated by the DBNtaiici BN were in close
agreement with the expert based quality assessments foroé#lce four sensors. The average quality
assessment accuracy of the temperature sensors (Fogaye(c)) was higher than the conductivity
sensors (Figuré(b),6(d)) with an improvement of 1.22%, 11.4%, 3.65% and 40% for thedgprobably
good, bad but potentially correctable (to be referred torabably bad from this point) and bad quality
states respectively. The average quality assessmensagdor the good class of sensor data was 99.1%,
which was consistently higher than the remaining quali@gses. The average assessment accuracy was
lowest for the probably bad class at 83.7 % although stidltretly close to the average accuracy of the
probably good quality state of 84.6% and bad quality sta&bd$%.

The lower assessment accuracy of the “degraded” qualitysstauld be associated with the natural
imbalance in the training data set where the good quality $tad far more examples to use in order
to learn the network than the “degraded” states. Furthesmibre “degraded” states had far greater
overlap between their boundaries. This is because expantslfit easier to label the samples as good,;
the difficulty in assessing with the IOC quality scheme waelimg “degraded” samples in a consistent
manner across an entire dataiset similar samples may be labeled as probably good in sontenioss
and probably bad in other instances.
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Figure 6. The automated quality assessments from two BN (static BND#N) compared

to expert quality assessments across the four sensorslive8alCove, Hobart. The quality
state labels 1 to 4 define the quality states in TAblEhere were two metrics used to compare
the assessment performance of the Bayesian networks. Bhentric was the distance
between the quality state with maximum posterior probgband the quality state selected
by an expert. The second metric was the distance betweexpleet’s quality state and the
continuous quality label of the network defined in Equatitbh)( (a) Temperature Sensor
at 1 m; @) Conductivity Sensor at 1 mg) Temperature Sensor at 10 naf) (Conductivity
Sensor at 10 m.
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Whilst the static BN showed a slightly higher average qualgésessment accuracy across the good
quality state of samples (0.22%), the DBN offered a staadlyf significant improvement (two sample
t-test atp = 0.05) in assessment performance for each of the “degragleality states. The DBN
offered an average improvement of 41%, 46.6% and 33.7% ®pthbably good, probably bad and
bad states respectively. The overall quality assessmentaxy of the DBN was still greater than the
static BN despite the heavy imbalance towards the good tgusthte in the training set, which was
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comprised of 96% of the observations. Whilst the DBN mislatt@n additional 123 samples from the
good state compared to the static BN, the DBN correctly Edah additional 1,292 samples across all
three “degraded” quality states. The distance metric (ddfin Equation 11)) mirrored the previous
improvement of the DBN with an average quality state distathat was 41%, 40% and 54.8% lower
than the static network across the same three “degradedtyggstates. The improved quality assessment
of the DBN could be attributed to the greater consistencglieling data segments with constant quality
states. One negative aspect of this labeling consistensyived the DBN tend to label the start and end
positions of erroneous segments with less accuracy thastatie BN. This was one of the reasons why
the static BN offered a slightly higher assessment accuteasythe DBN for the good quality state. This
small drop in assessment accuracy, however, was outwelgh#dte DBN’s improvement in assessing
the segments of erroneous sensor readings. The DBN was ghdvetter replicate expert assessment
than the static BN across a series of segments with consteatitygstates in Figur&. In Figure8,

the quality assessments of the static BN tend to jump betweegood, probably good and probably
bad states more frequently than the DBN, which label homeges segments of data quality with
greater consistency.

Figure7. The top time-series of each figure corresponds to a sectisensior readings from
the conductivity sensor at 1 m that have been assessed byanhaxpert and automatically
flagged by the DBN. The four bottom series correspond to tiségpior probabilities of the
(between 0-1) quality states of each sensor sample in tleoriet The arrows upon the
top time-series correspond to the points at which the esmssessment has changed to the
quality state specified.
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Figure8. The top time-series of each figure corresponds to a sectisensor readings from
the conductivity sensor at 1 m that have been assessed byantexpert and automatically
flagged by the static BN. The four bottom series corresporidegosterior probabilities of
the (between 0-1) quality states of each sensor sample metiark. The arrows upon the
top time-series correspond to the points at which the esmssessment has changed to the
quality state specified.

(0] 2 4 6 8 10
= 4 (10 x p,S}Cm ' I Prob. ' I ' |
= rot Good
5 { b
2 °r Prob

rob.
S
1) Good Good Good
2 =
o
5]
m
R
5]
m
o
e
o
-
o
o
(O]
o
=
o
-
o
S
(&)
1 " 1 " 1 " 1 1 1

©

0 2 4 6 10

Time (hours)

7.3. Uncertainty Measures

A 2,672 sample subsection of the test-set was manually ses$dxy one of the experts in order to
place error bars upon the sensor readings. This test-seidemscal to the one used to evaluate the
quality assessment performance of the fuzzy logic systefbdjy The uncertainty measure of samples
were calculated from the quality state posteriors of the Ddsid static BN using Equatiorl@). The
algorithm performance was measured by expressing the da&atainty as a percentage of the manually
computed error bars. The test set percentages were présentestogram tables for the temperature
(Table 3) and conductivity sensors (Tab#@ to enable direct comparison with the results of the fuzzy
logic system reported inlf]. Most of the tests utilised in the fuzzy syste] were identical to
Section6. One variation was the test associated with the differeet@den co-situated sensors. In the
fuzzy system this was formulated as the difference betweas® values as opposed to the difference
in the linear regression model in SectiétB8.4 Furthermore, an additional test was utilized in the
shallow DBN at 1 m to model the difference between the seresamtings and SHOC model hindcasts
(Section6.3.3.
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Table 3. A comparison of uncertainty measures of the DBN (sec@pnstatic BN [L5]

and fuzzy logic assessment systerid expressed as a histogram of the ratio of automatic
guality metrics and manual error bars across a test-se6@2%amples for the temperature
sensors in Sullivans Covea)(Temperature sensor situated at a depth of IonT€émperature
sensor situated at a depth of 10 m.

) DBN static BN fuzzy logic
AutomaticEB / Manual EB . . .
instances % instances % instances %
Above 300 % 13 0.5 16 0.6 13 0.5
200-300 % 57 2.1 55 2.1 166 6.2
150-200 % 36 14 117 4.4 119 4.5
66—150 % 2,488 93.1 2,374 88.9 2,131 79.8
50-66 % 42 1.6 56 2.1 108 4.0
33-50 % 28 1.0 36 1.4 92 34
Less than 33% 8 0.3 18 0.6 43 1.6
(@)
. DBN static BN fuzzy logic
AutomaticEB / Manual EB . . .
instances % instances % instances %
Above 300 % 9 0.3 8 0.3 1 0.0
200-300 % 27 1.0 50 1.9 339 12.7
150-200 % 11 0.4 113 4.2 84 3.1
66—-150 % 2,592 97.0 2421 90.6 2,224 83.2
50-66 % 24 0.9 52 1.95 9 0.3
33-50 % 6 0.2 14 0.5 7 0.3
Less than 33% 3 0.1 14 0.5 8 0.3
(b)

Table 4. A comparison of the uncertainty measures of the DBN (se@)pstatic BN [L5]

and fuzzy logic assessment systerhd] [expressed as a histogram of the ratio between the
automatic quality metrics and manual error bars acrosstaséeof 2,672 samples for the
conductivity sensors in Sullivans Cove) Conductivity sensor situated at a depth of 1 m;
(b) Conductivity sensor situated at a depth of 10 m.

. DBN static BN fuzzy logic
AutomaticEB / Manual EB . . .
instances % instances % instances %
Above 300 % 0 0.0 14 0.5 157 5.9
200-300 % 154 5.8 112 4.2 140 5.2
150-200 % 226 8.5 139 5.2 138 5.2
66—-150 % 2,054 76.9 1,802 67.4 993 37.2
50-66 % 131 4.9 268 10.0 342 12.8
33-50 % 86 3.2 204 7.6 365 13.7
Less than 33% 21 0.8 133 5.0 537 20.1

(@)
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Table4. Cont

DBN static BN fuzzy logic

Automatic EB/Manual EB . ) .
instances % instances % instances %

Above 300 % 92 3.4 91 3.4 265 9.9
200-300 % 18 0.7 94 3.5 170 6.4
150-200 % 27 1.1 116 4.3 99 3.7
66—150 % 2,151 80.5 2,208 82.6 980 36.7

50-66 % 128 4.8 83 3.1 336 12.6
33-50 % 123 4.6 62 2.3 268 10.0
Less than 33% 133 5.0 18 0.7 547 20.5
(b)

The results from Tabld indicate that the DBN produced data quality uncertainty sness that
fell within an acceptable range of performance (ratio of 68%0%) for an average of 78.7% of the
conductivity test sets. The correspondence between tloenatic uncertainty measure and manually
generated error bars was shown to be higher for the temperaansors in Tabl@ achieving an
acceptable range of performance for an average of 95.1%eadtet set. A comparison of the DBN
and static BN quality measures showed that the DBN offerddtasscally significant improvement in
replicating the manual error bars in three of the four setesirsets (two sample t-test@at 0.05). This
improvement was a result of the higher overall quality assesnt performance of the DBN as described
in Section7.1 It was discovered, however, that higher assessment agcdrd not guarantee closer
agreement with the error bars. The test-set associatedh@tbonductivity sensor at 10 m (Taliéb))
is one such example. Such outlier examples are the resulantiad generation of error bars with a far
more stochastic process than the linear mapping of classnpws.

A comparison of the DBN and fuzzy system shows that the auinancertainty measure of the
DBN replicate the manual error bars with far greater acgutfa@an the fuzzy system. The DBN produced
an average improvement of 15% across both temperaturers€iiable3) and an average improvement
of 53% across both conductivity sensors (Tab)leThe main difference between the two systems was that
the fuzzy logic system was parameterized using prior kndgéeexclusively, whilst the DBN system was
parameterized with prior knowledge and data sets reprieggthie local context. The fuzzy logic system
relies upon a set of expert selected parameters that aretjadifebiased and may not be representative
of the local context.

8. Discussion

One of the underlying assumptions of automated qualitysassent is that systems require historical
observations to either learn the normal behavior of the aefis outlier detection) or parameterize
specific tests. This is an issue for recently deployed sengwt have not built up a sufficient
observational history. In these cases, the only availapt®w is to exploit prior knowledge. This
could take the form of an expert’s knowledge of the obseryehpmena and/or an independent data set
that is representative of the deployment region. Such pptave likely to introduce bias into the initial
assessment systems, and consequently, it is importardgublatsystems can be updated with the arrival
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of new data. This requires the new data to be manually ass&ssgpdate the DBN. Consequently, the
update cannot be conducted in real-time and the quantitgwfynassessed samples must be limited, if
the approach is to remain practical. A strategy to selecirtbst influential samples must be developed;
these could be samples with high classification uncertgirgy, samples at the boundary of multiple

classes) or samples that were assessed as erroneous. Thesaddressed in future work.

Another critical issue in automatic quality assessmenha it is difficult to distinguish between
sensor errors and unusual events. This is of particularerarnith a sparse distribution of sensors where
unusual events can potentially be flagged as bad data. Im#esof environmental monitoring, it is often
these unusual events that are of particular interest. Tdrerealthough QA/QC can build confidence in
the data provided, we want to be sure that interesting eeeatsot ignored, or filtered out, and that effort
is not wasted in servicing sensors that may appear to beyfauttare working correctly. An approach
has been developed to address this problem for TasMAN usiagt@®nomous vehicle and real-time data
to provide the context to differentiate between an erroramdvent44]. Sensors reporting bad data are
identified using automated quality control, which the véhizan access with a publicly available web
service along with the real-time sensor readings. If tha datonsistently flagged as bad and there are
no public sources of evidence to support an environmentaitag occurring, the autonomous vehicle
visits the sensor nodes so that it might compare its onbeangerature and salinity sensors with those
of the sensor reporting data of uncertain quality. If theréhien a significant difference between the
readings, a recommendation is made for the sensor to be&sdiw., cleaned and/or calibrated.

9. Conclusions

A Bayesian Network (BN) based framework was proposed toigeoautomated quality assessments
of streamed sensor data. The framework models the cauatbredhip between variables of the quality
assessment process without being constrained by thectestrassumptions that outlier detection or
classification approaches may place upon practical degaysn The original BN framework is modified
from treating each sample independently (the static BN)xjulagting the sequential correlation of
readings using a Dynamic Bayesian Network (DBN). A commaref the DBN and static BN algorithms
implemented upon sensors in Sullivans Cove, Hobart inelita¢ DBN better replicates the quality
assessments provided by experts. In particular, the Gtzg&n accuracy of the “degraded” quality
classes were superior as the DBN managed to classify segroketroneous readings with greater
accuracy than the static BN. The posterior estimates of tradity states were mapped to a more
meaningful measure of sample uncertainty. The uncertaneigsure was compared to a similar measure
derived using a fuzzy logic approact¥]. The BN approaches were shown to offer a substantial agerag
improvement of 15% and 53% in replicating the error bars peets for the temperature and conductivity
sensors respectively.
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