Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = indoloquinoline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4058 KB  
Article
Molluscicidal and Larvicidal Potency of N-Heterocylic Analogs against Biomophalaria alexandrina Snails and Schistosoma mansoni Larval Stages
by Sherin K. Sheir, Elshaymaa I. Elmongy, Azza H. Mohamad, Gamalat Y. Osman, Shimaa E. Bendary, Abdullah A. S. Ahmed, Reem Binsuwaidan and Ibrahim El-Tantawy El-Sayed
Pharmaceutics 2023, 15(4), 1200; https://doi.org/10.3390/pharmaceutics15041200 - 10 Apr 2023
Cited by 4 | Viewed by 2631
Abstract
This work describes the synthesis of quinoline-based N--heterocyclic arenes and their biological evaluation as molluscicides against adult Biomophalaria alexandrina snails as well as larvicides against Schistosoma mansoni larvae (miracidia and cercariae). Molecular docking studies were demonstrated to investigate their affinity for cysteine [...] Read more.
This work describes the synthesis of quinoline-based N--heterocyclic arenes and their biological evaluation as molluscicides against adult Biomophalaria alexandrina snails as well as larvicides against Schistosoma mansoni larvae (miracidia and cercariae). Molecular docking studies were demonstrated to investigate their affinity for cysteine protease protein as an interesting target for antiparasitics. Compound AEAN showed the best docking results followed by APAN in comparison to the co-crystallized ligand D1R reflected by their binding affinities and RMSD values. The egg production, hatchability of B. alexandrina snails and ultrastructural topography of S. mansoni cercariae using SEM were assessed. Biological evaluations (hatchability and egg-laying capacity) revealed that the quinoline hydrochloride salt CAAQ was the most effective compound against adult B. alexandrina snails, whereas the indolo-quinoline derivative APAN had the most efficiency against miracidia, and the acridinyl derivative AEAA was the most effective against cercariae and caused 100% mortality. CAAQ and AEAA were found to modulate the biological responses of B. alexandrina snails with/without S. mansoni infection and larval stages that will affect S. mansoni infection. AEAA caused deleterious morphological effects on cercariae. CAAQ caused inhibition in the number of eggs/snail/week and reduced reproductive rate to 43.8% in all the experimental groups. CAAQ and AEAA can be recommended as an effective molluscicide of plant origin for the control program of schistosomiasis. Full article
(This article belongs to the Special Issue Recent Advances in Prevention and Treatment of Infectious Diseases)
Show Figures

Figure 1

20 pages, 6241 KB  
Article
Impact of Synthesized Indoloquinoline Analog to Isolates from Cryptolepis sanguinolenta on Tumor Growth Inhibition and Hepatotoxicity in Ehrlich Solid Tumor-Bearing Female Mice
by Amany E. Nofal, Elshaymaa I. Elmongy, Engy Abo Hassan, Ehab Tousson, Abdullah A. S. Ahmed, Ibrahim El Tantawy El Sayed, Reem Binsuwaidan and Manar Sakr
Cells 2023, 12(7), 1024; https://doi.org/10.3390/cells12071024 - 27 Mar 2023
Cited by 11 | Viewed by 2803
Abstract
The study evaluated the antitumor efficacy of APAN, “synthesized indoloquinoline analog derived from the parent neocryptolepine isolated from the roots of Cryptolepis sanguinolenta”, versus the chemotherapeutic drug etoposide (ETO) in Ehrlich solid tumor (EST)-bearing female mice as well as its protective effect [...] Read more.
The study evaluated the antitumor efficacy of APAN, “synthesized indoloquinoline analog derived from the parent neocryptolepine isolated from the roots of Cryptolepis sanguinolenta”, versus the chemotherapeutic drug etoposide (ETO) in Ehrlich solid tumor (EST)-bearing female mice as well as its protective effect against etoposide-triggered hepatic disorders. APAN showed an ameliorative activity against Ehrlich solid tumor and hepatic toxicity, and the greatest improvement was found in the combined treatment of APAN with ETO. The results indicated that EST altered the levels of tumor markers (AFP, CEA, and anti-dsDNA) and liver biomarker function (ALT, AST, ALP, ALB, and T. protein). Furthermore, EST elevated CD68 and anti-survivin proteins immuno-expressions in the solid tumor and liver tissue. Molecular docking studies were demonstrated to investigate their affinity for both TNF-α and topoisomerase II as target proteins, as etoposide is based on the inhibition of topoisomerase II, and TNF-α is quite highly expressed in the solid tumor and liver tissues of EST-bearing animals, which prompted the authors’ interest to explore APAN affinity to its binding site. Treatment of mice bearing EST with APAN and ETO nearly regularized serum levels of the altered parameters and ameliorated the impact of EST on the tissue structure of the liver better than that by treatment with each of them separately. Full article
(This article belongs to the Special Issue Natural Products in the Treatment of Cancer)
Show Figures

Figure 1

17 pages, 1625 KB  
Article
Indoloquinoline-Mediated Targeted Downregulation of KRAS through Selective Stabilization of the Mid-Promoter G-Quadruplex Structure
by Alexandra Maria Psaras, Rhianna K. Carty, Jared T. Miller, L. Nathan Tumey and Tracy A. Brooks
Genes 2022, 13(8), 1440; https://doi.org/10.3390/genes13081440 - 13 Aug 2022
Cited by 7 | Viewed by 2773
Abstract
KRAS is a well-validated anti-cancer therapeutic target, whose transcriptional downregulation has been demonstrated to be lethal to tumor cells with aberrant KRAS signaling. G-quadruplexes (G4s) are non-canonical nucleic acid structures that mediate central dogmatic events, such as DNA repair, telomere elongation, transcription and [...] Read more.
KRAS is a well-validated anti-cancer therapeutic target, whose transcriptional downregulation has been demonstrated to be lethal to tumor cells with aberrant KRAS signaling. G-quadruplexes (G4s) are non-canonical nucleic acid structures that mediate central dogmatic events, such as DNA repair, telomere elongation, transcription and splicing events. G4s are attractive drug targets, as they are more globular than B-DNA, enabling more selective gene interactions. Moreover, their genomic prevalence is increased in oncogenic promoters, their formation is increased in human cancers, and they can be modulated with small molecules or targeted nucleic acids. The putative formation of multiple G4s has been described in the literature, but compounds with selectivity among these structures have not yet been able to distinguish between the biological contribution of the predominant structures. Using cell free screening techniques, synthesis of novel indoloquinoline compounds and cellular models of KRAS-dependent cancer cells, we describe compounds that choose between KRAS promoter G4near and G4mid, correlate compound cytotoxic activity with KRAS regulation, and highlight G4mid as the lead molecular non-canonical structure for further targeting efforts. Full article
Show Figures

Figure 1

19 pages, 3790 KB  
Article
Synthesis of Indoloquinolines: An Intramolecular Cyclization Leading to Advanced Perophoramidine-Relevant Intermediates
by Craig A. Johnston, David B. Cordes, Tomas Lebl, Alexandra M. Z. Slawin and Nicholas J. Westwood
Molecules 2021, 26(19), 6039; https://doi.org/10.3390/molecules26196039 - 5 Oct 2021
Cited by 1 | Viewed by 2900
Abstract
The bioactive natural product perophoramidine has proved a challenging synthetic target. An alternative route to its indolo[2,3-b]quinolone core structure involving a N-chlorosuccinimde-mediated intramolecular cyclization reaction is reported. Attempts to progress towards the natural product are also discussed with an unexpected deep-seated rearrangement of [...] Read more.
The bioactive natural product perophoramidine has proved a challenging synthetic target. An alternative route to its indolo[2,3-b]quinolone core structure involving a N-chlorosuccinimde-mediated intramolecular cyclization reaction is reported. Attempts to progress towards the natural product are also discussed with an unexpected deep-seated rearrangement of the core structure occurring during an attempted iodoetherification reaction. X-ray crystallographic analysis provides important analytical confirmation of assigned structures. Full article
Show Figures

Figure 1

9 pages, 1450 KB  
Article
Synergy between Indoloquinolines and Ciprofloxacin: An Antibiofilm Strategy against Pseudomonas aeruginosa
by Emilie Charpentier, Ludovic Doudet, Ingrid Allart-Simon, Marius Colin, Sophie C. Gangloff, Stéphane Gérard and Fany Reffuveille
Antibiotics 2021, 10(10), 1205; https://doi.org/10.3390/antibiotics10101205 - 4 Oct 2021
Cited by 9 | Viewed by 3039
Abstract
Antibiotic treatments can participate in the formation of bacterial biofilm in case of under dosage. The interest of indoloquinoline scaffold for drug discovery incited us to study the preparation of new indolo [2,3-b]quinoline derivatives by a domino radical process. We tested [...] Read more.
Antibiotic treatments can participate in the formation of bacterial biofilm in case of under dosage. The interest of indoloquinoline scaffold for drug discovery incited us to study the preparation of new indolo [2,3-b]quinoline derivatives by a domino radical process. We tested the effect of two different “indoloquinoline” molecules (Indol-1 and Indol-2) without antimicrobial activity, in addition to ciprofloxacin, on biofilm formation thanks to crystal violet staining and enumeration of adhered bacteria. This association of ciprofloxacin and Indol-1 or Indol-2 attenuated the formation of biofilm up to almost 80% compared to ciprofloxacin alone, or even prevented the presence of adhered bacteria. In conclusion, these data prove that the association of non-antimicrobial molecules with an antibiotic can be a solution to fight against biofilm and antibiotic resistance emergence. Full article
(This article belongs to the Special Issue Strategies against Bacterial Biofilm Formation)
Show Figures

Figure 1

22 pages, 2497 KB  
Article
Synthesis and Evaluation of the Tetracyclic Ring-System of Isocryptolepine and Regioisomers for Antimalarial, Antiproliferative and Antimicrobial Activities
by Katja S. Håheim, Emil Lindbäck, Kah Ni Tan, Marte Albrigtsen, Ida T. Urdal Helgeland, Clémence Lauga, Théodora Matringe, Emily K. Kennedy, Jeanette H. Andersen, Vicky M. Avery and Magne O. Sydnes
Molecules 2021, 26(11), 3268; https://doi.org/10.3390/molecules26113268 - 30 May 2021
Cited by 15 | Viewed by 4340
Abstract
A series of novel quinoline-based tetracyclic ring-systems were synthesized and evaluated in vitro for their antiplasmodial, antiproliferative and antimicrobial activities. The novel hydroiodide salts 10 and 21 showed the most promising antiplasmodial inhibition, with compound 10 displaying higher selectivity than the employed standards. [...] Read more.
A series of novel quinoline-based tetracyclic ring-systems were synthesized and evaluated in vitro for their antiplasmodial, antiproliferative and antimicrobial activities. The novel hydroiodide salts 10 and 21 showed the most promising antiplasmodial inhibition, with compound 10 displaying higher selectivity than the employed standards. The antiproliferative assay revealed novel pyridophenanthridine 4b to be significantly more active against human prostate cancer (IC50 = 24 nM) than Puromycin (IC50 = 270 nM) and Doxorubicin (IC50 = 830 nM), which are used for clinical treatment. Pyridocarbazoles 9 was also moderately effective against all the employed cancer cell lines and moreover showed excellent biofilm inhibition (9a: MBIC = 100 µM; 9b: MBIC = 100 µM). Full article
(This article belongs to the Special Issue Total Synthesis of Natural Products)
Show Figures

Figure 1

21 pages, 2564 KB  
Article
In Vitro and In Vivo Antitumor Activity of Indolo[2,3-b] Quinolines, Natural Product Analogs from Neocryptolepine Alkaloid
by Najla Altwaijry, Samah El-Ghlban, Ibrahim E.-T. El Sayed, Mohamed El-Bahnsawye, Asmaa I. Bayomi, Rehab M. Samaka, Elkhabiry Shaban, Elshaymaa I. Elmongy, Thanaa A. El-Masry, Hytham M. A. Ahmed and Nashwah G. M. Attallah
Molecules 2021, 26(3), 754; https://doi.org/10.3390/molecules26030754 - 1 Feb 2021
Cited by 22 | Viewed by 5671
Abstract
Neocryptolepine (5-methyl-5H-indolo[2,3-b] quinoline) analogs were synthesized and evaluated in vitro and in vivo for their effect versus Ehrlich ascites carcinoma (EAC). The analogs showed stronger cytotoxic activity against EAC cells than the reference drug. The in vivo evaluation of the target compounds against [...] Read more.
Neocryptolepine (5-methyl-5H-indolo[2,3-b] quinoline) analogs were synthesized and evaluated in vitro and in vivo for their effect versus Ehrlich ascites carcinoma (EAC). The analogs showed stronger cytotoxic activity against EAC cells than the reference drug. The in vivo evaluation of the target compounds against EAC-induced solid tumor in the female albino Swiss mice revealed a remarkable decrease in the tumor volume (TV) and hepatic lipid peroxidation. A noticeable increase of both superoxide dismutase (SOD) and catalase (CAT) levels was reported (p < 0.001), which set-forth proof of their antioxidant effect. In addition, the in vitro antioxidant activity of the neocryptolepine analogs was screened out using the DPPH method and showed promising activities activity. The histopathological investigations affirmed that the tested analogs have a remarkable curative effect on solid tumors with minimal side-effect on the liver. The study also includes illustrated mechanism of the antitumor activity at the cell level by flow cytometry. The cell cycle analysis showed that the neocryptolepine analogs extensively increase the aggregation of tumor cells in three phases of the cell cycle (G0/G1, S and G2/M) with the emergence of a hypo-diploid DNA content peak (sub-G1) in the cell cycle experiments, which is a clear-cut for the apoptotic cell population. Furthermore, the immunological study manifested a significant elevation in splenic lymphocyte count (p < 0.001) with the elevation of the responsiveness of lymphocytes to phytohemagglutinin (PHA). These results indicate that these naturally-based neocryptolepine alkaloids exhibit marked antitumor activity in vivo and represent an important lead in the development of natural-based anticancer drugs. Full article
(This article belongs to the Collection Novel Approache of Anticancer Therapy)
Show Figures

Figure 1

14 pages, 1796 KB  
Article
A Label-Free Cellular Proteomics Approach to Decipher the Antifungal Action of DiMIQ, a Potent Indolo[2,3-b]Quinoline Agent, against Candida albicans Biofilms
by Robert Zarnowski, Anna Jaromin, Agnieszka Zagórska, Eddie G. Dominguez, Katarzyna Sidoryk, Jerzy Gubernator and David R. Andes
Int. J. Mol. Sci. 2021, 22(1), 108; https://doi.org/10.3390/ijms22010108 - 24 Dec 2020
Cited by 6 | Viewed by 3301
Abstract
Candida albicans forms extremely drug-resistant biofilms, which present a serious threat to public health globally. Biofilm-based infections are difficult to treat due to the lack of efficient antifungal therapeutics, resulting in an urgent demand for the development of novel antibiofilm strategies. In this [...] Read more.
Candida albicans forms extremely drug-resistant biofilms, which present a serious threat to public health globally. Biofilm-based infections are difficult to treat due to the lack of efficient antifungal therapeutics, resulting in an urgent demand for the development of novel antibiofilm strategies. In this study, the antibiofilm activity of DiMIQ (5,11-dimethyl-5H-indolo[2,3-b]quinoline) was evaluated against C. albicans biofilms. DiMIQ is a synthetic derivative of indoquinoline alkaloid neocryptolepine isolated from a medicinal African plant, Cryptolepis sanguinolenta. Antifungal activity of DiMIQ was determined using the XTT assay, followed by cell wall and extracellular matrix profiling and cellular proteomes. Here, we demonstrated that DiMIQ inhibited C. albicans biofilm formation and altered fungal cell walls and the extracellular matrix. Cellular proteomics revealed inhibitory action against numerous translation-involved ribosomal proteins, enzymes involved in general energy producing processes and select amino acid metabolic pathways including alanine, aspartate, glutamate, valine, leucine and isoleucine. DiMIQ also stimulated pathways of cellular oxidation, metabolism of carbohydrates, amino acids (glycine, serine, threonine, arginine, phenylalanine, tyrosine, tryptophan) and nucleic acids (aminoacyl-tRNA biosynthesis, RNA transport, nucleotide metabolism). Our findings suggest that DiMIQ inhibits C. albicans biofilms by arresting translation and multidirectional pathway reshaping of cellular metabolism. Overall, this agent may provide a potent alternative to treating biofilm-associated Candida infections. Full article
(This article belongs to the Special Issue Microbial Biofilms and Antibiofilm Agents)
Show Figures

Figure 1

12 pages, 2246 KB  
Review
Structural Modifications of Nature-Inspired Indoloquinolines: A Mini Review of Their Potential Antiproliferative Activity
by Ning Wang, Marta Świtalska, Li Wang, Elkhabiry Shaban, Md Imran Hossain, Ibrahim El Tantawy El Sayed, Joanna Wietrzyk and Tsutomu Inokuchi
Molecules 2019, 24(11), 2121; https://doi.org/10.3390/molecules24112121 - 5 Jun 2019
Cited by 37 | Viewed by 5190
Abstract
Cryptolepine, neocryptolepine and isocryptolepine are naturally occurring indoloquinoline alkaloids with various spectrum of biological properties. Structural modification is an extremely effective means to improve their bioactivities. This review enumerates several neocryptolepine and isocryptolepine analogues with potent antiproliferative activity against MV4-11 (leukemia), A549 (lung [...] Read more.
Cryptolepine, neocryptolepine and isocryptolepine are naturally occurring indoloquinoline alkaloids with various spectrum of biological properties. Structural modification is an extremely effective means to improve their bioactivities. This review enumerates several neocryptolepine and isocryptolepine analogues with potent antiproliferative activity against MV4-11 (leukemia), A549 (lung cancer), HCT116 (colon cancer) cell lines in vitro. Its activity towards normal mouse fibroblasts BALB/3T3 was also evaluated. Furthermore, structure activity relationships (SAR) are briefly discussed. The anticancer screening of neocryptolepine derivatives was performed in order to determine their cytotoxic and growth inhibitory activities across the JFCR39 cancer cell line panel. Full article
(This article belongs to the Special Issue Antitumoral Properties of Natural Products)
Show Figures

Graphical abstract

11 pages, 2342 KB  
Article
Synthesis and In Vitro Antiproliferative Activity of 11-Substituted Neocryptolepines with a Branched ω-Aminoalkylamino Chain
by Elkhabiry Shaban, Marta Świtalska, Li Wang, Ning Wang, Fan Xiu, Ikuya Hayashi, Tran Anh Ngoc, Sachie Nagae, Samah El-Ghlban, Shiho Shimoda, Ahmed Abdel Aleem El Gokha, Ibrahim El Tantawy El Sayed, Joanna Wietrzyk and Tsutomu Inokuchi
Molecules 2017, 22(11), 1954; https://doi.org/10.3390/molecules22111954 - 12 Nov 2017
Cited by 10 | Viewed by 5035
Abstract
Neocryptolepine, which is a kind of tetracyclic indoloquinoline alkaloid, exhibits the inhibition of topoisomerase II and shows antiproliferative activity. The present study describes the synthesis and antiproliferative evaluation of several neocryptolepine analogues carrying a branched, functionalized dibasic side chain at C11. These 2-substituted [...] Read more.
Neocryptolepine, which is a kind of tetracyclic indoloquinoline alkaloid, exhibits the inhibition of topoisomerase II and shows antiproliferative activity. The present study describes the synthesis and antiproliferative evaluation of several neocryptolepine analogues carrying a branched, functionalized dibasic side chain at C11. These 2-substituted 5-methyl-indolo[2,3-b]quinoline derivatives were prepared by nucleophilic aromatic substitution (SNAr) of 11-chloroneocryptolepines with appropriate 1,2- and 1,3-diamines. Some of the 11-(ω-aminoalkylamino) derivatives were further transformed into 11-ureido and thioureido analogues. Many of the prepared neocryptolepine derivatives showed submicromolar antiproliferative activity against the human leukemia MV4-11 cell line. Among them, 11-(3-amino-2-hydroxy)propylamino derivatives 2h and 2k were the most cytotoxic with a mean IC50 value of 0.042 μM and 0.057 μM against the MV4-11 cell line, 0.197 μM and 0.1988 μM against the A549 cell line, and 0.138 μM and 0.117 μM against the BALB/3T3 cell line, respectively. Full article
Show Figures

Figure 1

15 pages, 302 KB  
Article
Design, Synthesis, and Biological Evaluation of Artemisinin-Indoloquinoline Hybrids as Potent Antiproliferative Agents
by Li Wang, Marta Świtalska, Ning Wang, Zhen-Jun Du, Yuta Fukumoto, Nguyen Kim Diep, Ryo Kiguchi, Junzo Nokami, Joanna Wietrzyk and Tsutomu Inokuchi
Molecules 2014, 19(11), 19021-19035; https://doi.org/10.3390/molecules191119021 - 18 Nov 2014
Cited by 25 | Viewed by 10630
Abstract
A series of artemisinin-indoloquinoline hybrids were designed and synthesized in an attempt to develop potent and selective anti-tumor agents. Compounds 7a7f, 8 and 9 were prepared and characterized. Their antiproliferative activities against MV4-11, HCT-116, A549, and BALB/3T3 cell lines in [...] Read more.
A series of artemisinin-indoloquinoline hybrids were designed and synthesized in an attempt to develop potent and selective anti-tumor agents. Compounds 7a7f, 8 and 9 were prepared and characterized. Their antiproliferative activities against MV4-11, HCT-116, A549, and BALB/3T3 cell lines in vitro were tested. Nearly all of the tested compounds (79, except for compounds 7d and 7e against HCT-116) showed an increased antitumor activity against HCT-116 and A549 cell lines when compared to the dihydroartemisinin control. Especially for the artemisinin-indoloquinoline hybrid 8, with an 11-aminopropylamino-10H-indolo[3,2-b]quinoline substituent, the antiproliferative activity against the A549 cell line had improved more than ten times. The IC50 value of hybrid 8 against A549 cell lines was decreased to 1.328 ± 0.586 μM, while dihydroartemisin showed IC50 value of >20 µM in the same cell line. Thus, these results have proven that the strategy of introducing a planar basic fused aromatic moiety, such as the indoloquinoline skeleton, could improve the antiproliferative activity and selectivity towards cancer cell lines. Full article
Show Figures

Graphical abstract

8 pages, 314 KB  
Article
Convenient and Efficient Microwave-Assisted Synthesis of a Methyl Derivative of the Fused Indoloquinoline Alkaloid Cryptosanguinolentine
by Robert M. Gengan, Pitchai Pandian, Chandraprakash Kumarsamy and Palathurai S. Mohan
Molecules 2010, 15(5), 3171-3178; https://doi.org/10.3390/molecules15053171 - 29 Apr 2010
Cited by 14 | Viewed by 8331
Abstract
An efficient synthesis of a methyl derivative of the indoloquinoline alkaloid cryptosanguinolentine based on microwave-assisted reactions is described. The microwave-assisted synthesis of an intermediate 4-hydroxy-2-methylquinoline yielded 86% of the desired product and other intermediates prepared yielded high % of products in shorter reaction [...] Read more.
An efficient synthesis of a methyl derivative of the indoloquinoline alkaloid cryptosanguinolentine based on microwave-assisted reactions is described. The microwave-assisted synthesis of an intermediate 4-hydroxy-2-methylquinoline yielded 86% of the desired product and other intermediates prepared yielded high % of products in shorter reaction times, under optimum conditions, as compared to traditional methods. Full article
Show Figures

Graphical abstract

7 pages, 111 KB  
Article
Synthesis and Photochemical Cyclization of a Novel Enyne-Carbodiimide
by Michael Schmittel, David Rodríguez and Jens-Peter Steffen
Molecules 2000, 5(12), 1372-1378; https://doi.org/10.3390/51201372 - 20 Dec 2000
Cited by 13 | Viewed by 6643
Abstract
The triplet sensitized cyclization of enyne-carbodiimide 4 leads to efficient formation of indoloquinoline 5 with concomittant loss of a methyl group. The efficient loss of the methyl group was explained using AM1 semiempirical calculations. Full article
Show Figures

Figure 1

Back to TopTop