Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Stephanie Oberfrank

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4655 KiB  
Article
Utilisation of Quartz Crystal Microbalance Sensors with Dissipation (QCM-D) for a Clauss Fibrinogen Assay in Comparison with Common Coagulation Reference Methods
by Stephanie Oberfrank, Hartmut Drechsel, Stefan Sinn, Hinnak Northoff and Frank K. Gehring
Sensors 2016, 16(3), 282; https://doi.org/10.3390/s16030282 - 24 Feb 2016
Cited by 20 | Viewed by 11448
Abstract
The determination of fibrinogen levels is one of the most important coagulation measurements in medicine. It plays a crucial part in diagnostic and therapeutic decisions, often associated with time-critical conditions. The commonly used measurement is the Clauss fibrinogen assay (CFA) where plasma is [...] Read more.
The determination of fibrinogen levels is one of the most important coagulation measurements in medicine. It plays a crucial part in diagnostic and therapeutic decisions, often associated with time-critical conditions. The commonly used measurement is the Clauss fibrinogen assay (CFA) where plasma is activated by thrombin reagent and which is conducted by mechanical/turbidimetric devices. As quartz crystal microbalance sensors with dissipation (QCM-D) based devices have a small footprint, can be operated easily and allow measurements independently from sample transportation time, laboratory location, availability and opening hours, they offer a great opportunity to complement laboratory CFA measurements. Therefore, the objective of the work was to (1) transfer the CFA to the QCM-D method; (2) develop an easy, time- and cost-effective procedure and (3) compare the results with references. Different sensor coatings (donor’s own plasma; gold surface) and different QCM-D parameters (frequency signal shift; its calculated turning point; dissipation signal shift) were sampled. The results demonstrate the suitability for a QCM-D-based CFA in physiological fibrinogen ranges. Results were obtained in less than 1 min and in very good agreement with a standardized reference (Merlin coagulometer). The results provide a good basis for further investigation and pave the way to a possible application of QCM-D in clinical and non-clinical routine in the medical field. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

Back to TopTop