MDPI Contact

MDPI AG
St. Alban-Anlage 66,
4052 Basel, Switzerland
Support contact
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18

For more contact information, see here.

Advanced Search

You can use * to search for partial matches.

Search Results

2 articles matched your search query. Search Parameters:
Authors = Mansour Alhoshan

Matches by word:

MANSOUR (68) , ALHOSHAN (2)

View options
order results:
result details:
results per page:
Articles per page View Sort by
Displaying article 1-50 on page 1 of 1.
Export citation of selected articles as:
Open AccessArticle Optimization of Synthesis Parameters for Mesoporous Shell Formation on Magnetic Nanocores and Their Application as Nanocarriers for Docetaxel Cancer Drug
Int. J. Mol. Sci. 2013, 14(6), 11496-11509; doi:10.3390/ijms140611496
Received: 16 February 2013 / Revised: 3 May 2013 / Accepted: 15 May 2013 / Published: 30 May 2013
Cited by 11 | Viewed by 2777 | PDF Full-text (1183 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this work, Fe3O4@SiO2 nanoparticles were coated with mesoporous silica shell by SN+I pathway by using anionic surfactant (S) and co-structure directing agent (N+). The role of co-structure directing
[...] Read more.
In this work, Fe3O4@SiO2 nanoparticles were coated with mesoporous silica shell by SN+I pathway by using anionic surfactant (S) and co-structure directing agent (N+). The role of co-structure directing agent (CSDA) is to assist the electrostatic interaction between negatively charged silica layers and the negatively charged surfactant molecules. Prior to the mesoporous shell formation step, magnetic cores were coated with a dense silica layer to prevent iron oxide cores from leaching into the mother system under any acidic circumstances. However, it was found that both dense and mesoporous coating parameters affect the textural properties of the produced mesoporous silica shell (i.e., surface area, pore volume and shell thickness). The synthesized Fe3O4@SiO2@m-SiO2 (MCMSS) nanoparticles have been characterized by low-angle X-ray diffraction, transmission electron microscopy (TEM), and N2 adsorption-desorption analysis, and magnetic properties. The synthesized particles had dense and mesoporous silica shells of 8–37 nm and 26–50 nm, respectively. Furthermore, MCMSS possessed surface area of ca. 259–621 m2·g1, and pore volume of ca. 0.216–0.443 cc·g1. MCMSS showed docetaxcel cancer drug storage capacity of 25–33 w/w% and possessed control release from their mesochannels which suggest them as proper nanocarriers for docetaxcel molecules. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles 2013)
Open AccessReview Prospects of Nanotechnology in Clinical Immunodiagnostics
Sensors 2010, 10(7), 6535-6581; doi:10.3390/s100706535
Received: 30 May 2010 / Revised: 12 June 2010 / Published: 7 July 2010
Cited by 21 | Viewed by 8679 | PDF Full-text (748 KB) | HTML Full-text | XML Full-text
Abstract
Nanostructured materials are promising compounds that offer new opportunities as sensing platforms for the detection of biomolecules. Having micrometer-scale length and nanometer-scale diameters, nanomaterials can be manipulated with current nanofabrication methods, as well as self-assembly techniques, to fabricate nanoscale bio-sensing devices. Nanostructured materials
[...] Read more.
Nanostructured materials are promising compounds that offer new opportunities as sensing platforms for the detection of biomolecules. Having micrometer-scale length and nanometer-scale diameters, nanomaterials can be manipulated with current nanofabrication methods, as well as self-assembly techniques, to fabricate nanoscale bio-sensing devices. Nanostructured materials possess extraordinary physical, mechanical, electrical, thermal and multifunctional properties. Such unique properties advocate their use as biomimetic membranes to immobilize and modify biomolecules on the surface of nanoparticles. Alignment, uniform dispersion, selective growth and diameter control are general parameters which play critical roles in the successful integration of nanostructures for the fabrication of bioelectronic sensing devices. In this review, we focus on different types and aspects of nanomaterials, including their synthesis, properties, conjugation with biomolecules and their application in the construction of immunosensing devices. Some key results from each cited article are summarized by relating the concept and mechanism behind each sensor, experimental conditions and the behavior of the sensor under different conditions, etc. The variety of nanomaterial-based bioelectronic devices exhibiting novel functions proves the unique properties of nanomaterials in such sensing devices, which will surely continue to expand in the future. Such nanomaterial based devices are expected to have a major impact in clinical immunodiagnostics, environmental monitoring, security surveillance and for ensuring food safety. Full article
(This article belongs to the Special Issue Immunosensors)
Figures

Years

Subjects

Refine Subjects

Journals

Refine Journals

Article Types

Refine Types

Countries

Refine Countries
Back to Top