MDPI Contact

MDPI AG
St. Alban-Anlage 66,
4052 Basel, Switzerland
Support contact
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18

For more contact information, see here.

Advanced Search

You can use * to search for partial matches.

Search Results

3 articles matched your search query. Search Parameters:
Authors = Anees Ansari

Matches by word:

ANEES (10) , ANSARI (59)

View options
order results:
result details:
results per page:
Articles per page View Sort by
Displaying article 1-50 on page 1 of 1.
Export citation of selected articles as:
Open AccessReview DNA-Based Nanobiosensors as an Emerging Platform for Detection of Disease
Sensors 2015, 15(6), 14539-14568; doi:10.3390/s150614539
Received: 16 April 2015 / Revised: 19 May 2015 / Accepted: 22 May 2015 / Published: 19 June 2015
Cited by 16 | Viewed by 2257 | PDF Full-text (1484 KB) | HTML Full-text | XML Full-text
Abstract
Detection of disease at an early stage is one of the biggest challenges in medicine. Different disciplines of science are working together in this regard. The goal of nanodiagnostics is to provide more accurate tools for earlier diagnosis, to reduce cost and to
[...] Read more.
Detection of disease at an early stage is one of the biggest challenges in medicine. Different disciplines of science are working together in this regard. The goal of nanodiagnostics is to provide more accurate tools for earlier diagnosis, to reduce cost and to simplify healthcare delivery of effective and personalized medicine, especially with regard to chronic diseases (e.g., diabetes and cardiovascular diseases) that have high healthcare costs. Up-to-date results suggest that DNA-based nanobiosensors could be used effectively to provide simple, fast, cost-effective, sensitive and specific detection of some genetic, cancer, and infectious diseases. In addition, they could potentially be used as a platform to detect immunodeficiency, and neurological and other diseases. This review examines different types of DNA-based nanobiosensors, the basic principles upon which they are based and their advantages and potential in diagnosis of acute and chronic diseases. We discuss recent trends and applications of new strategies for DNA-based nanobiosensors, and emphasize the challenges in translating basic research to the clinical laboratory. Full article
(This article belongs to the Section Biosensors)
Open AccessArticle Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer
Materials 2013, 6(10), 4361-4374; doi:10.3390/ma6104361
Received: 8 August 2013 / Revised: 9 September 2013 / Accepted: 22 September 2013 / Published: 30 September 2013
Cited by 13 | Viewed by 2771 | PDF Full-text (744 KB) | HTML Full-text | XML Full-text
Abstract
In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized
[...] Read more.
In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices. Full article
Figures

Figure 1

Open AccessArticle Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles
Materials 2013, 6(8), 3584-3597; doi:10.3390/ma6083584
Received: 22 July 2013 / Revised: 24 July 2013 / Accepted: 8 August 2013 / Published: 19 August 2013
Cited by 35 | Viewed by 3138 | PDF Full-text (1673 KB) | HTML Full-text | XML Full-text
Abstract
Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of
[...] Read more.
Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role. Full article
(This article belongs to the Section Biomaterials)
Figures

Figure 1

Years

Subjects

Refine Subjects

Journals

Refine Journals

Article Types

Refine Types

Countries

Refine Countries
Back to Top