Message from the Guest Editors

Early flood warning systems with different lead times are promising countermeasures against flood. A collaborative assessment from multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the impacts of flood hazards beneficially contributes to model integrity and the precision of flood forecasting. Computing technologies, coupled with big-data mining, have boosted data-driven applications, among which Machine Learning (ML) technology bearing flexibility and scalability in pattern extraction has modernized not only scientific thinking but also predictive applications.

In the context of flood hazard mitigation, methodologically-oriented countermeasures may involve forecasting on reservoir or river flow, tropical cyclone track, and flooding at different lead times and/or scales through modern technologies such as, but not limited to, MLs, big-data mining, multiple data aggregation/ensembling, and model ensembling. Analyses of impacts, risks, uncertainty, vulnerability, resilience and scenarios coupled with policy-oriented suggestions will give insight into flood hazard mitigation. A GIS for visual presentation of inundation is also helpful in decision-making.
The relevance of water in human development and sustaining life, fuels general and scholarly interest in the world’s water resources. A better understanding of all aspects of water and its relation to food supply, energy production, human health, and the functioning of ecosystems is key in managing this precious resource in a sustainable, efficient and equitable manner. *Water* invites authors to provide innovative original full articles, critical reviews and timely short communications. We ensure a critical review process and a quick turnaround between submission and final decision.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the *Science Citation Index Expanded* (Web of Science), Ei Compendex and other databases.

CiteScore 2017 (Scopus): **2.29**, which equals rank 37/191 (Q1) in the category 'Water Science and Technology' and 43/199 (Q1) in 'Aquatic Science'.