Water resources managers and engineers often need to balance conflicting objectives such as hazard mitigation (floods, droughts), socio-economic use (hydropower, navigation, leisure), and environmental protection (conservation or restoration of ecosystem functions). They are faced with problems occurring all along the river axis, from the glacier upstream in the watershed, to the lake or ocean at its downstream end. Water resources and environmental fluid mechanics become ever more multidisciplinary, and the development of tools for design or objective decision-making requires insight in processes occurring where water, sediment and biota meet. New measurement technologies and state-of-the-art experimental investigations in the field and in the laboratory are key to enhancing insight.

The present Special Issue particularly welcomes contributions that: (i) focus on eco-hydro-morphological processes; (ii) focus on the relation between processes occurring at different locations along the river axis and in the downstream lake or ocean or at different spatial scales; (iii) focus on experimental studies in the field and in the laboratory.
Message from the Editor-in-Chief

The relevance of water in human development and sustaining life, fuels general and scholarly interest in the world’s water resources. A better understanding of all aspects of water and its relation to food supply, energy production, human health, and the functioning of ecosystems is key in managing this precious resource in a sustainable, efficient and equitable manner. *Water* invites authors to provide innovative original full articles, critical reviews and timely short communications. We ensure a critical review process and a quick turnaround between submission and final decision.

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the *Science Citation Index Expanded* (Web of Science), Ei Compendex and other databases.

CiteScore 2017 (Scopus): 2.29, which equals rank 37/191 (Q1) in the category 'Water Science and Technology' and 43/199 (Q1) in 'Aquatic Science'.

Contact us

Water
MDPI, St. Alban-Anlage 66
4052 Basel, Switzerland
Tel: +41 61 683 77 34
Fax: +41 61 302 89 18
www.mdpi.com
mdpi.com/journal/water
water@mdpi.com
@Water_MDPI