Special Issue

Urban Water Cycle Modelling and Management

Message from the Guest Editors

Many major cities of the world face challenges arising from growing and urbanizing populations, a changing climate, and an increase in the frequency of extreme weather events. Existing centralized water services, operating at, or close to, full capacity, are not sufficient to cope with the associated increase in water demand. Replacing the entire centralized infrastructure is very difficult within the existing environmental and economic constraints. Water services can be provided through the integration of decentralized and centralized systems, referring to as hybrid water supply systems.

The premise of hybrid water supply systems is that the provision of alternative water sources at local scales can extend the capacity of existing centralized water supply infrastructure. However, it is important to recognize the challenges associated with diversification of water source portfolios. Undertaking the diversification of water sources implies a detailed understanding and capacity to analyze the performance of the entire water cycle. This Special Issue invites papers that deal with comprehensive modelling of urban water cycle and its management as a dynamic system.

Author Benefits

Open Access: free for readers, with publishing fees paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), Ei Compendex and other databases.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 29 days after submission; acceptance to publication is undertaken in 7 days (median values for papers published in this journal in 2016).