E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Threat Identification and Defence for Internet-of-Things"

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Internet of Things".

Deadline for manuscript submissions: 15 November 2018

Special Issue Editors

Guest Editor
Dr. Weizhi Meng

Technical University of Denmark, Denmark
Website | E-Mail
Interests: Cyber Security; Malware and Vulnerability Analysis; Intrusion Detection; Biometric Authentication and Security; Trust Computation
Guest Editor
Dr. Man Ho Au

Hong Kong Polytechnic University, Hong Kong, China
Website | E-Mail
Interests: Information security; Applied Cryptography; Accountable Anonymity and Blockchain
Guest Editor
Dr. Chunhua Su

Division of Computer Science, University of Aizu, Aizu-Wakamatsu, Fukushima Pref. 965-8580, Japan
Website | E-Mail
Interests: cryptography; IoT security and privacy; privacy-preserving technologies
Guest Editor
Prof. Kouichi Sakurai

Kyushu University, Japan
Website | E-Mail
Interests: Internet-of-Things; Threat identification; Sensor networks; Security mechanism design; Privacy issues; Trust management

Special Issue Information

Dear Colleagues,

The Internet of Things (IoT) is the network of physical devices and various kinds of embedded software, which enable different Internet-connected objects to exchange data. However, the Internet-enabled devices also bring many new challenges. For example, the fundamental security weakness of IoT is that it increases the number of devices behind a network firewall. In addition, many companies may not update their devices very often, which means that an IoT device that was safe at first will become unsafe if hackers discover new threats and vulnerabilities. As a result, how to protect IoT from various threats is a challenging task.

This Special Issue focuses on all IoT security issues, especially threat detection and defense, and aims to publish recent research studies for IoT development that discuss novel ways in securing IoT security, privacy and trust.

In particular, the topics of interest include, but are not limited to:

  • Secure network architecture for IoT
  • Trust management of IoT
  • Secure data storage and segregation
  • Secure cloud storage and computation for IoT
  • Availability, recovery and auditing for IoT
  • Secure and energy efficient management for IoT
  • IoT cyber crime
  • Denial-of-service attacks for IoT
  • IoT security and privacy- IoT forensic techniques
  • Usable security and privacy for IoT
  • Intrusion detection and prevention for IoT
  • Cyber intelligence techniques for IoT

Dr. Weizhi Meng
Dr. Man Ho Au
Dr. Chunhua Su
Prof. Kouichi Sakurai
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (2 papers)

View options order results:
result details:
Displaying articles 1-2
Export citation of selected articles as:

Research

Open AccessArticle Centralized Duplicate Removal Video Storage System with Privacy Preservation in IoT
Sensors 2018, 18(6), 1814; https://doi.org/10.3390/s18061814
Received: 30 April 2018 / Revised: 28 May 2018 / Accepted: 1 June 2018 / Published: 4 June 2018
PDF Full-text (1308 KB) | HTML Full-text | XML Full-text
Abstract
In recent years, the Internet of Things (IoT) has found wide application and attracted much attention. Since most of the end-terminals in IoT have limited capabilities for storage and computing, it has become a trend to outsource the data from local to cloud
[...] Read more.
In recent years, the Internet of Things (IoT) has found wide application and attracted much attention. Since most of the end-terminals in IoT have limited capabilities for storage and computing, it has become a trend to outsource the data from local to cloud computing. To further reduce the communication bandwidth and storage space, data deduplication has been widely adopted to eliminate the redundant data. However, since data collected in IoT are sensitive and closely related to users’ personal information, the privacy protection of users’ information becomes a challenge. As the channels, like the wireless channels between the terminals and the cloud servers in IoT, are public and the cloud servers are not fully trusted, data have to be encrypted before being uploaded to the cloud. However, encryption makes the performance of deduplication by the cloud server difficult because the ciphertext will be different even if the underlying plaintext is identical. In this paper, we build a centralized privacy-preserving duplicate removal storage system, which supports both file-level and block-level deduplication. In order to avoid the leakage of statistical information of data, Intel Software Guard Extensions (SGX) technology is utilized to protect the deduplication process on the cloud server. The results of the experimental analysis demonstrate that the new scheme can significantly improve the deduplication efficiency and enhance the security. It is envisioned that the duplicated removal system with privacy preservation will be of great use in the centralized storage environment of IoT. Full article
(This article belongs to the Special Issue Threat Identification and Defence for Internet-of-Things)
Figures

Figure 1

Open AccessArticle An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks
Sensors 2018, 18(5), 1663; https://doi.org/10.3390/s18051663
Received: 15 April 2018 / Revised: 18 May 2018 / Accepted: 19 May 2018 / Published: 22 May 2018
PDF Full-text (788 KB) | HTML Full-text | XML Full-text
Abstract
With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people’s lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a
[...] Read more.
With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people’s lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a quantum computer attack. In order to protect user privacy and guarantee trustworthy of big data, we propose a new identity-based blind signature scheme based on number theorem research unit lattice, this scheme mainly uses a rejection sampling theorem instead of constructing a trapdoor. Meanwhile, this scheme does not depend on complex public key infrastructure and can resist quantum computer attack. Then we design an e-payment protocol using the proposed scheme. Furthermore, we prove our scheme is secure in the random oracle, and satisfies confidentiality, integrity, and non-repudiation. Finally, we demonstrate that the proposed scheme outperforms the other traditional existing identity-based blind signature schemes in signing speed and verification speed, outperforms the other lattice-based blind signature in signing speed, verification speed, and signing secret key size. Full article
(This article belongs to the Special Issue Threat Identification and Defence for Internet-of-Things)
Figures

Figure 1

Back to Top