Message from the Guest Editors

Dear Colleagues,

Global water cycle dynamics involve energy and matter exchange among the atmosphere, hydrosphere, cryosphere, and biosphere. Remote sensing has the unique advantage of continuously acquiring complex water cycle information in time and space. The methods and sensors used to observe and predict the fluxes, storage, and movement of water across a range of space–time scales by integrating advanced remote sensing technology and numerical water models into a theory–data–application, end-to-end framework. Specifically, this Special Issue includes topics such as:

1. New remote sensing-based monitoring theory and methods to observe hydrologic components;
2. Remote sensing big data and data analytics for gaining a better and comprehensive understanding and mapping of water distribution and variability;
3. Remote sensing data-enabled global and regional hydrological applications and water resources management.

Prof. Yang Hong
Prof. Hongjie Xie
Dr. Wei Wan
Dr. Emad Hasan
Guest Editors

Author Benefits

Open Access: free for readers, with article processing charges (APC) paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science), *EI Compendex*, *Inspec (IET)* and other databases.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 29 days after submission; acceptance to publication is undertaken in 4 days (median values for papers published in this journal in first half of 2017).