Special Issue "First-Principles Approaches to Metals, Alloys, and Metallic Compounds"

A special issue of Metals (ISSN 2075-4701).

Deadline for manuscript submissions: 28 February 2018

Special Issue Editor

Guest Editor
Prof. Dr. Richard Dronskowski

Chair of Solid-State and Quantum Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
Website | E-Mail
Interests: synthetic solid-state chemistry; solid-state quantum chemistry; chemical bonding; nitrogen-containing materials; magnetic intermetallics; metastable solids; phase-change materials; ab initio thermochemistry; neutron diffraction

Special Issue Information

Dear Colleagues,

At the beginning of the 21st century, electronic-structure theory has matured to a degree that allows for accurate phase prediction and computational characterization of various kinds of materials; in particular, elemental metals adopting whatever allotropic structure, various intermetallic compounds, and other complex metal-rich phases. Hence, fundamental theoretical progress has been made and is rapidly continuing in both physics and chemistry. From a more applied, engineering-like perspective, there is an urgent need for novel metallic structural materials, such as advanced steels, for future challenges arising in both mechanical and civil engineering as well as energy production and conversion. While it is clear that different microstructural features influence the macroscopic behavior, modern techniques for simulation and modeling of metals and intermetallic phases at the atomic scale may enormously accelerate and guide the entire development process. In particular, atomistic understanding is a key issue because it allows for the generation of (spin-dependent) structural models of crystalline phases and the calculation of enthalpies and other free energies as a function of pressure and temperature. In combination with evolutionary algorithms and advanced thermochemical and phase-field approaches, these methods provide a solid ground for a novel methodological approach to the physics, chemistry, and engineering of metals and metal-rich materials. Furthermore, fundamental insights obtained in this manner may be incorporated, either as input parameters or key assumptions, into larger scale models, whether purely theoretical or computational, rendering atomistic simulations essential for the development of multiscale approaches. Thus, this Special Issue focusing on first-principles approaches to metals, alloys, and metallic compounds tries to follow that train of thought, and it also aims at allowing for a wider perspective on metallic materials, to be studied by physicists, chemists and materials scientists, as well as engineers.

Prof. Dr. Richard Dronskowski
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal compounds
  • intermetallic alloys
  • advanced steels
  • electronic structure
  • density-functional theory
  • first-principles calculations
  • materials simulations
  • chemical bonding
  • phase prediction
  • free energies
  • mechanical properties

Published Papers (3 papers)

View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Open AccessArticle First-Principles Investigation of Structural, Electronic and Elastic Properties of HfX (X = Os, Ir and Pt) Compounds
Metals 2017, 7(8), 317; doi:10.3390/met7080317
Received: 12 July 2017 / Revised: 9 August 2017 / Accepted: 10 August 2017 / Published: 18 August 2017
PDF Full-text (1897 KB) | HTML Full-text | XML Full-text
Abstract
The structural, electronic and elastic properties of B2 structure Hafnium compounds were investigated by means of first-principles calculations based on the density functional theory within generalized gradient approximation (GGA) and local density approximation (LDA) methods. Both GGA and LDA methods can make acceptable
[...] Read more.
The structural, electronic and elastic properties of B2 structure Hafnium compounds were investigated by means of first-principles calculations based on the density functional theory within generalized gradient approximation (GGA) and local density approximation (LDA) methods. Both GGA and LDA methods can make acceptable optimized lattice parameters in comparison with experimental parameters. Therefore, both GGA and LDA methods are used to predict the electronic and elastic properties of B2 HfX (X = Os, Ir and Pt) compounds. Initially, the calculated formation enthalpies have confirmed the order of thermodynamic stability as HfPt > HfIr > HfOs. Secondly, the electronic structures are analyzed to explain the bonding characters and stabilities in these compounds. Furthermore, the calculated elastic properties and elastic anisotropic behaviors are ordered and analyzed in these compounds. The calculated bulk moduli are in the reduced order of HfOs > HfIr > HfPt, which has exhibited the linear relationship with electron densities. Finally, the anisotropy of acoustic velocities, Debye temperatures and thermal conductivities are obtained and discussed. Full article
(This article belongs to the Special Issue First-Principles Approaches to Metals, Alloys, and Metallic Compounds)
Figures

Figure 1

Open AccessArticle Transition of the Interface between Iron and Carbide Precipitate From Coherent to Semi-Coherent
Metals 2017, 7(7), 277; doi:10.3390/met7070277
Received: 5 May 2017 / Revised: 10 July 2017 / Accepted: 14 July 2017 / Published: 19 July 2017
PDF Full-text (886 KB) | HTML Full-text | XML Full-text
Abstract
There are some precipitates that undergo transition from a coherent to semi-coherent state during growth. An example of such a precipitate in steel is carbide with a NaCl-type structure, such as TiC and NbC. The interface energy between carbide precipitate and iron is
[...] Read more.
There are some precipitates that undergo transition from a coherent to semi-coherent state during growth. An example of such a precipitate in steel is carbide with a NaCl-type structure, such as TiC and NbC. The interface energy between carbide precipitate and iron is obtained via large-scale first-principles electronic structure calculation. The strain energy is estimated by structure optimization of the iron matrix with virtual carbide precipitate using the empirical potential. The transition of the interface from a coherent to semi-coherent state was examined by comparing the interface and strain energies between the coherent and semi-coherent interfaces. The sizes where both the precipitates undergo this transition are smaller than those of the interfaces with minimum misfit. The estimated transition diameter of TiC is in agreement with the experimentally obtained value. Full article
(This article belongs to the Special Issue First-Principles Approaches to Metals, Alloys, and Metallic Compounds)
Figures

Figure 1

Open AccessFeature PaperArticle The Role of κ-Carbides as Hydrogen Traps in High-Mn Steels
Metals 2017, 7(7), 264; doi:10.3390/met7070264
Received: 13 June 2017 / Revised: 30 June 2017 / Accepted: 3 July 2017 / Published: 11 July 2017
PDF Full-text (3409 KB) | HTML Full-text | XML Full-text
Abstract
Since the addition of Al to high-Mn steels is known to reduce their sensitivity to hydrogen-induced delayed fracture, we investigate possible trapping effects connected to the presence of Al in the grain interior employing density-functional theory (DFT). The role of Al-based precipitates is
[...] Read more.
Since the addition of Al to high-Mn steels is known to reduce their sensitivity to hydrogen-induced delayed fracture, we investigate possible trapping effects connected to the presence of Al in the grain interior employing density-functional theory (DFT). The role of Al-based precipitates is also investigated to understand the relevance of short-range ordering effects. So-called E21-Fe3AlC κ-carbides are frequently observed in Fe-Mn-Al-C alloys. Since H tends to occupy the same positions as C in these precipitates, the interaction and competition between both interstitials is also investigated via DFT-based simulations. While the individual H–H/C–H chemical interactions are generally repulsive, the tendency of interstitials to increase the lattice parameter can yield a net increase of the trapping capability. An increased Mn content is shown to enhance H trapping due to attractive short-range interactions. Favorable short-range ordering is expected to occur at the interface between an Fe matrix and the E21-Fe3AlC κ-carbides, which is identified as a particularly attractive trapping site for H. At the same time, accumulation of H at sites of this type is observed to yield decohesion of this interface, thereby promoting fracture formation. The interplay of these effects, evident in the trapping energies at various locations and dependent on the H concentration, can be expressed mathematically, resulting in a term that describes the hydrogen embrittlement. Full article
(This article belongs to the Special Issue First-Principles Approaches to Metals, Alloys, and Metallic Compounds)
Figures

Figure 1

Journal Contact

MDPI AG
Metals Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Special Issue Edit a special issue Review for Metals
logo
loading...
Back to Top