Message from the Guest Editor

Dear Colleagues,

Nanoporous metals prepared by the dealloying (selective leaching) of a solid-solution alloy or compound represent an emerging class of materials. Nanoporous metal has a three-dimensional structure of randomly interpenetrating ligaments/nanopores, of which sizes can be tuned, from 5 nm to several tens of microns, by altering conditions. Nanoporous metals have several merits for application compared with other nanostructured materials; bicontinuous structure, tunable pore size, bulk form, good conductivity, and high structural stability. Therefore, nanoporous metal is an ideal 3D material to meet various applications, and the attractive versatile functionality such as catalysis, optical sensing, actuation or energy storage and conversion has been emerged. The understanding of the atomistic description of surface roughening and nanopore formation is also important to maximize the functionality.

This Special Issue focuses on recent advances of nanoporous metals by alloy corrosion from fundamental aspects to various applications. We welcome contributions from experimentalists, theorists, and computational scientists in this research field.

Author Benefits

Open Access: free for readers, with low publishing fees paid by authors or their institutions.

High visibility: indexed by the Science Citation Index Expanded (Web of Science) and other databases.

Rapid publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 21 days after submission; acceptance to publication is undertaken in 7 days (median values for papers published in this journal in 2016).