E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Temperature-Responsive Polymers"

A special issue of Materials (ISSN 1996-1944).

Deadline for manuscript submissions: 30 April 2018

Special Issue Editor

Guest Editor
Prof. Dr. Annabelle Bertin

Federal Institute for Materials Research and Testing (BAM), Department 6.0 Materials Protection and Surface Technologies, Research Group “PolyNanotechBiomed”, Unter den Eichen 87, 12205 Berlin, Germany
Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
Website | E-Mail
Interests: Upper Critical Solution Temperature (UCST)-type polymers

Special Issue Information

Dear Colleagues,

The physical properties of smart polymeric materials change according to environmental factors, such as temperature, pH, light, electric or magnetic fields. Among this group of smart polymeric materials, thermoresponsive polymers’ ability to change their physical properties, in response to changes to the surrounding temperature, render them one of the most interesting materials, as temperature is an easily accessible and controllable parameter, and is also of great relevance in biomedical applications. This is especially the case in areas such as temperature-triggered drug delivery, diagnostics, tissue engineering, bio-separation, sensory applications, and thermally switchable optical devices.

Thermoresponsive polymers can exhibit a lower critical solution temperature (LCST) and/or an upper critical solution temperature (UCST): They phase separate from solution upon heating (LCST) or cooling (UCST), respectively. Depending on the targeted application, one or the other type of phase transition behavior may be preferred. The types of solvents in which this phase transition can take place range from pure water to water/alcohol mixtures or even organic solvents. In mixtures of solvents, co-solvency or co-non solvency effects can come into play. Moreover, thermoresponsive polymers are not limited to their simplest macromolecular architectures as linear homopolymers in solution, and can also be used as three-dimensional networks in the form of gels at various scales (nano, micro, macro), as copolymers to build self-assembled architectures or grafted on macroscopic surfaces, and also on nanomaterials.

Prof. Dr. Annabelle Bertin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


  • Thermoresponsive polymers, gels, nanomaterials and surfaces
  • LCST polymers
  • UCST polymers
  • Co-solvency, co-nonsolvency
  • Temperature-triggered biomedical and materials science applications

Published Papers (1 paper)

View options order results:
result details:
Displaying articles 1-1
Export citation of selected articles as:


Open AccessArticle Post-Modified Polypeptides with UCST-Type Behavior for Control of Cell Attachment in Physiological Conditions
Materials 2018, 11(1), 95; doi:10.3390/ma11010095
Received: 29 November 2017 / Revised: 31 December 2017 / Accepted: 5 January 2018 / Published: 9 January 2018
PDF Full-text (3599 KB) | HTML Full-text | XML Full-text | Supplementary Files
Upper Critical Solution Temperature (UCST)-type thermally responsive polypeptides (TRPs) with phase transition temperatures around 37 °C in phosphate-buffered saline (PBS) buffer (pH 7.4, 100 mM) were prepared from poly(l-ornithine) hydrobromide and coated on non-tissue culture-treated plastic plates (nTCP). Cell adhesion was
[...] Read more.
Upper Critical Solution Temperature (UCST)-type thermally responsive polypeptides (TRPs) with phase transition temperatures around 37 °C in phosphate-buffered saline (PBS) buffer (pH 7.4, 100 mM) were prepared from poly(l-ornithine) hydrobromide and coated on non-tissue culture-treated plastic plates (nTCP). Cell adhesion was observed at temperatures above the phase transition temperature of the coating polymer (39 °C), while cell release was triggered when the culture temperature was switched to 37 °C. Approximately 65% of the attached cells were released from the surface within 6 h after changing the temperature, and more than 96% of the released cells were viable. Water contact angle measurements performed at 39 and 37 °C demonstrated that the surface hydrophobicity of the new TRP coatings changed in response to applied temperature. The cell attachment varied with the presence of serum in the media, suggesting that the TRP coatings mediated cell attachment and release as the underlying polymer surface changed conformation and consequently the display of adsorbed protein. These new TRP coatings provide an additional means to mediate cell attachment for application in cell-based tissue regeneration and therapies. Full article
(This article belongs to the Special Issue Temperature-Responsive Polymers)

Back to Top