Marine Natural Product Discovery: Innovative Strategies and Future Trends

A special issue of Marine Drugs (ISSN 1660-3397).

Deadline for manuscript submissions: closed (31 January 2017) | Viewed by 48623

Special Issue Editor

Special Issue Information

Dear Colleagues,

In the pursuit of new bioactive natural products, the demand to rapidly identify compounds present, in ever decreasing amounts, in complex crude extracts, has become a limiting factor. You are invited to contribute to this Special Issue, the focus of which is the implementation, development and future trends arising from the use of innovative strategies to discover new bioactive marine natural products.

Dr. Sylvia Urban
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine natural products
  • chemical profiling
  • dereplication
  • extraction methodologies
  • hyphenated technologies
  • bioactivity
  • bio-discovery

Related Special Issue

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

1612 KiB  
Article
Bioactive Potential of Marine Macroalgae from the Central Red Sea (Saudi Arabia) Assessed by High-Throughput Imaging-Based Phenotypic Profiling
by Stephan Kremb, Constanze Müller, Philippe Schmitt-Kopplin and Christian R. Voolstra
Mar. Drugs 2017, 15(3), 80; https://doi.org/10.3390/md15030080 - 20 Mar 2017
Cited by 17 | Viewed by 6345
Abstract
Marine algae represent an important source of novel natural products. While their bioactive potential has been studied to some extent, limited information is available on marine algae from the Red Sea. This study aimed at the broad discovery of new bioactivities from a [...] Read more.
Marine algae represent an important source of novel natural products. While their bioactive potential has been studied to some extent, limited information is available on marine algae from the Red Sea. This study aimed at the broad discovery of new bioactivities from a collection of twelve macroalgal species from the Central Red Sea. We used imaging-based High-Content Screening (HCS) with a diverse spectrum of cellular markers for detailed cytological profiling of fractionated algal extracts. The cytological profiles for 3 out of 60 algal fractions clustered closely to reference inhibitors and showed strong inhibitory activities on the HIV-1 reverse transcriptase in a single-enzyme biochemical assay, validating the suggested biological target. Subsequent chemical profiling of the active fractions of two brown algal species by ultra-high resolution mass spectrometry (FT-ICR-MS) revealed possible candidate molecules. A database query of these molecules led us to groups of compounds with structural similarities, which are suggested to be responsible for the observed activity. Our work demonstrates the versatility and power of cytological profiling for the bioprospecting of unknown biological resources and highlights Red Sea algae as a source of bioactives that may serve as a starting point for further studies. Full article
Show Figures

Figure 1

761 KiB  
Article
Sterols from Thai Marine Sponge Petrosia (Strongylophora) sp. and Their Cytotoxicity
by Phanruethai Pailee, Chulabhorn Mahidol, Somsak Ruchirawat and Vilailak Prachyawarakorn
Mar. Drugs 2017, 15(3), 54; https://doi.org/10.3390/md15030054 - 23 Feb 2017
Cited by 12 | Viewed by 5348
Abstract
Eight new sterols (15 and 1113), together with eight known compounds (610 and 1416) were isolated from marine sponge Petrosia sp. The structures of these compounds were elucidated on the basis [...] Read more.
Eight new sterols (15 and 1113), together with eight known compounds (610 and 1416) were isolated from marine sponge Petrosia sp. The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis. The cytotoxicity of some compounds against a panel of human cancer cell lines is also reported. Full article
Show Figures

Figure 1

5393 KiB  
Article
Time Course Exo-Metabolomic Profiling in the Green Marine Macroalga Ulva (Chlorophyta) for Identification of Growth Phase-Dependent Biomarkers
by Taghreed Alsufyani, Anne Weiss and Thomas Wichard
Mar. Drugs 2017, 15(1), 14; https://doi.org/10.3390/md15010014 - 10 Jan 2017
Cited by 36 | Viewed by 7369
Abstract
The marine green macroalga Ulva (Chlorophyta) lives in a mutualistic symbiosis with bacteria that influence growth, development, and morphogenesis. We surveyed changes in Ulva’s chemosphere, which was defined as a space where organisms interact with each other via compounds, such as infochemicals, [...] Read more.
The marine green macroalga Ulva (Chlorophyta) lives in a mutualistic symbiosis with bacteria that influence growth, development, and morphogenesis. We surveyed changes in Ulva’s chemosphere, which was defined as a space where organisms interact with each other via compounds, such as infochemicals, nutrients, morphogens, and defense compounds. Thereby, Ulva mutabilis cooperates with bacteria, in particular, Roseovarius sp. strain MS2 and Maribacter sp. strain MS6 (formerly identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6). Without this accompanying microbial flora, U. mutabilis forms only callus-like colonies. However, upon addition of the two bacteria species, in effect forming a tripartite community, morphogenesis can be completely restored. Under this strictly standardized condition, bioactive and eco-physiologically-relevant marine natural products can be discovered. Solid phase extracted waterborne metabolites were analyzed using a metabolomics platform, facilitating gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) analysis, combined with the necessary acquisition of biological metadata. Multivariate statistics of the GC-MS and LC-MS data revealed strong differences between Ulva’s growth phases, as well as between the axenic Ulva cultures and the tripartite community. Waterborne biomarkers, including glycerol, were identified as potential indicators for algal carbon source and bacterial-algal interactions. Furthermore, it was demonstrated that U. mutabilis releases glycerol that can be utilized for growth by Roseovarius sp. MS2. Full article
Show Figures

Figure 1

527 KiB  
Article
The Potential Exploitation of the Mediterranean Invasive Alga Caulerpa cylindracea: Can the Invasion Be Transformed into a Gain?
by Loredana Stabili, Simonetta Fraschetti, Maria Immacolata Acquaviva, Rosa Anna Cavallo, Sandra Angelica De Pascali, Francesco Paolo Fanizzi, Carmela Gerardi, Marcella Narracci and Lucia Rizzo
Mar. Drugs 2016, 14(11), 210; https://doi.org/10.3390/md14110210 - 15 Nov 2016
Cited by 22 | Viewed by 6446
Abstract
Recently, there is a growing interest towards the development of strategies for invasive seaweed control and exploitation as source of secondary metabolites. Here, we investigated the potential of exploitation in biotechnology and recycling options in eradication programs of the lipidic extract of the [...] Read more.
Recently, there is a growing interest towards the development of strategies for invasive seaweed control and exploitation as source of secondary metabolites. Here, we investigated the potential of exploitation in biotechnology and recycling options in eradication programs of the lipidic extract of the Mediterranean invasive seaweed Caulerpa cylindracea (Chlorophyta). The chemical characterization was carried out by means of multinuclear and multidimensional NMR spectroscopy. The fatty acid profile of C. cylindracea assessed the presence of several types of molecules known for antioxidant activity such as carotenoids, chlorophylls, pheophytins, and sterols. The NMR spectroscopy showed also the characteristic signals of saturated, unsaturated, and free fatty acids as well as other metabolites including the biopolymer polyhydroxybutyrate. The lipidic extract exerted an antioxidant activity corresponding to 552.14 ± 69.13 mmol Trolox equivalent/g (ORAC) and to 70.3 ± 2.67 mmol Trolox equivalent/g (TEAC). The extract showed an antibacterial activity against several Vibrio species, suggesting its potential use in the control of diseases in mariculture. Our results show that C. cylindracea, representing a critical hazard in coastal areas, could be transformed into a gain supporting specific management actions to reduce the effects of human pressures. Full article
Show Figures

Figure 1

1596 KiB  
Article
Dichotocejpins A–C: New Diketopiperazines from a Deep-Sea-Derived Fungus Dichotomomyces cejpii FS110
by Zhen Fan, Zhang-Hua Sun, Zhong Liu, Yu-Chan Chen, Hong-Xin Liu, Hao-Hua Li and Wei-Min Zhang
Mar. Drugs 2016, 14(9), 164; https://doi.org/10.3390/md14090164 - 09 Sep 2016
Cited by 39 | Viewed by 6102
Abstract
Three new diketopiperazines, dichotocejpins A–C (13), together with eight known analogues (411), were isolated from the culture of the deep-sea sediment derived fungus Dichotomomyces cejpii FS110. Their structures, including absolute configurations, were elucidated by a [...] Read more.
Three new diketopiperazines, dichotocejpins A–C (13), together with eight known analogues (411), were isolated from the culture of the deep-sea sediment derived fungus Dichotomomyces cejpii FS110. Their structures, including absolute configurations, were elucidated by a combination of HRESIMS, NMR, X-ray crystallography, and ECD calculations. Compounds 46, 1011 showed significant cytotoxic activities against MCF-7, NCI-H460, HepG-2, and SF-268 tumor cell lines. Compound 1 exhibited excellent inhibitory activity against α-glucosidase with an IC50 of 138 μM. Full article
Show Figures

Figure 1

Review

Jump to: Research

1424 KiB  
Review
From Marine Venoms to Drugs: Efficiently Supported by a Combination of Transcriptomics and Proteomics
by Bing Xie, Yu Huang, Kate Baumann, Bryan Grieg Fry and Qiong Shi
Mar. Drugs 2017, 15(4), 103; https://doi.org/10.3390/md15040103 - 30 Mar 2017
Cited by 27 | Viewed by 5931
Abstract
The potential of marine natural products to become new drugs is vast; however, research is still in its infancy. The chemical and biological diversity of marine toxins is immeasurable and as such an extraordinary resource for the discovery of new drugs. With the [...] Read more.
The potential of marine natural products to become new drugs is vast; however, research is still in its infancy. The chemical and biological diversity of marine toxins is immeasurable and as such an extraordinary resource for the discovery of new drugs. With the rapid development of next-generation sequencing (NGS) and liquid chromatography–tandem mass spectrometry (LC-MS/MS), it has been much easier and faster to identify more toxins and predict their functions with bioinformatics pipelines, which pave the way for novel drug developments. Here we provide an overview of related bioinformatics pipelines that have been supported by a combination of transcriptomics and proteomics for identification and function prediction of novel marine toxins. Full article
Show Figures

Graphical abstract

2640 KiB  
Review
Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors
by Kumar Saurav, Valeria Costantino, Vittorio Venturi and Laura Steindler
Mar. Drugs 2017, 15(3), 53; https://doi.org/10.3390/md15030053 - 23 Feb 2017
Cited by 72 | Viewed by 10267
Abstract
Marine natural products with antibiotic activity have been a rich source of drug discovery; however, the emergence of antibiotic-resistant bacterial strains has turned attention towards the discovery of alternative innovative strategies to combat pathogens. In many pathogenic bacteria, the expression of virulence factors [...] Read more.
Marine natural products with antibiotic activity have been a rich source of drug discovery; however, the emergence of antibiotic-resistant bacterial strains has turned attention towards the discovery of alternative innovative strategies to combat pathogens. In many pathogenic bacteria, the expression of virulence factors is under the regulation of quorum sensing (QS). QS inhibitors (QSIs) present a promising alternative or potential synergistic treatment since they disrupt the signaling pathway used for intra- and interspecies coordination of expression of virulence factors. This review covers the set of molecules showing QSI activity that were isolated from marine organisms, including plants (algae), animals (sponges, cnidarians, and bryozoans), and microorganisms (bacteria, fungi, and cyanobacteria). The compounds found and the methods used for their isolation are the emphasis of this review. Full article
Show Figures

Figure 1

Back to TopTop