- Article
Development of a Simulation Computational Model for Hole Detection and Generation of Robot Tool Movement for Fitting Mold Preparation Nozzles
- Martin Pollák and
- Karol Goryl
This article focuses on the design, development and optimization of a mechanical system with the aim of increasing the efficiency of the production process. The article describes the issues involved in the production of molds used for EPS (Expanded Polystyrene) and EPP (Expanded Polypropylene) materials, specifically the assembly of mold nozzles. Currently, the assembly of nozzles is performed manually, and the proposed solution aims to automate this process using software and robotics. The solution involves scanning the mounting holes and then modifying the mold model in Siemens NX, based on which a trajectory is generated in the virtual environment of RoboDK software. Communication between Siemens NX and RoboDK software is implemented via a Python algorithm using NXOpen and RoboDK API (Application Programming Interface) libraries. The proposed tool has flexible settings and is not dependent on a robotic arm or tool. The result is a prototype software tool for offline programming of automated assembly, which is adapted to different hole layouts, allowing its use in small-batch production in the future. The proposed tool has flexible settings and is not dependent on a specific robotic arm or tool. The solution was validated through comprehensive simulation testing in the RoboDK environment, demonstrating significant potential for time reduction and process optimization.
14 November 2025






