You are currently viewing a new version of our website. To view the old version click .

Machines

Machines is an international, peer-reviewed, open access journal on machinery and engineering published monthly online by MDPI.
The IFToMM is affiliated with Machines and its members receive a discount on the article processing charges.
Quartile Ranking JCR - Q2 (Engineering, Mechanical | Engineering, Electrical and Electronic)

All Articles (5,038)

This article focuses on the design, development and optimization of a mechanical system with the aim of increasing the efficiency of the production process. The article describes the issues involved in the production of molds used for EPS (Expanded Polystyrene) and EPP (Expanded Polypropylene) materials, specifically the assembly of mold nozzles. Currently, the assembly of nozzles is performed manually, and the proposed solution aims to automate this process using software and robotics. The solution involves scanning the mounting holes and then modifying the mold model in Siemens NX, based on which a trajectory is generated in the virtual environment of RoboDK software. Communication between Siemens NX and RoboDK software is implemented via a Python algorithm using NXOpen and RoboDK API (Application Programming Interface) libraries. The proposed tool has flexible settings and is not dependent on a robotic arm or tool. The result is a prototype software tool for offline programming of automated assembly, which is adapted to different hole layouts, allowing its use in small-batch production in the future. The proposed tool has flexible settings and is not dependent on a specific robotic arm or tool. The solution was validated through comprehensive simulation testing in the RoboDK environment, demonstrating significant potential for time reduction and process optimization.

14 November 2025

Forming cycle.

In certain mining areas, bauxite ore exhibits high and uneven hardness, causing frequent overloads in the cutting heads of bauxite mining equipment and challenging the dynamic performance and reliability of its gear transmission system. To investigate the influence of macro-geometric parameters, a dynamic model was built using MASTA software (version 13.0.1). This study systematically analyzed the effects of pressure angle, face width, and bottom clearance coefficient on gear meshing characteristics, service life, and vibration noise under various loads. A preferred set of parameters was determined and validated through vibration and noise tests. The results show that increasing the pressure angle and face width improves gear meshing and fatigue life, while the bottom clearance coefficient has an optimal value of 0.4. Increasing the bottom clearance coefficient exacerbates vibration and noise, with other parameters causing fluctuations under different conditions. The optimal parameters of 23° pressure angle, 75 mm face width, and 0.4 bottom clearance coefficient effectively reduce vibration and noise, providing a theoretical and practical basis for improving the cutting transmission system.

14 November 2025

Theoretical model of bearing joint element dynamics.

Electron beam melting (EBM) is an additive manufacturing method that enables the manufacturing of metallic parts. EBM-printed parts require post-processing to meet the surface quality and dimensional accuracy requirements. Machining is one approach that is beneficial for achieving these requirements. However, during machining, particles are emitted and can affect the environment and the operator’s health. This study aims to investigate the concentration of particles emitted during the milling of 3D-printed Ti6Al4V alloy produced by EBM. First, the influence of machining speed and cutting fluids, namely flood and minimum quantity lubricant (MQL), on particle emissions was statistically investigated. Then, the standby time required for the operator to safely open the machine door and interact with the machine within the machining area was studied. In this regard, two scenarios were proposed. In the first scenario, the machine door is open immediately after machining, and the operator waits until the particle concentration is acceptable. In the second, the machine door will be opened only when the particle concentration is acceptable. Statistical findings revealed that cutting fluids have a significant impact on particle emissions, exhibiting distinct patterns for both fine and coarse particles. Irrespective of the scenario, MQL results in higher particle concentration peaks and larger particle sizes, and the operator needs a longer standby time before interacting with the machine. For instance, the standby time in MQL is 328% more than that of the flood system. This study provides insight into sustainable manufacturing by taking into account social factors such as worker health and safety.

13 November 2025

EBM printing and materials properties: (a) Ti6Al4V powder, (b) EBM ARCAM A2 Machine, (c) 3D-printed Ti6Al4V sample, and (d) SEM image showing surface morphology of the EBM-printed Ti6Al4V sample.

This research presents the first known example of a Thrust-Augmented Rocker Bogie (TARB). As a robust and passive mechanisms, the rocker bogie suspension system has seen widespread application in ground-based robotic planetary exploration rovers. However, with the first demonstration of a multirotor on Mars, there is clearly a need to expand the locomotion capacity for planetary rovers. The TARB builds on the existing flight heritage of the rocker rogie but also innovatively combines the system with a multirotor configuration. The combined homogeneous mobility solution can successfully demonstrate multimodal mobility including in terrestrial, aerial, and hybrid forms of locomotion. The prototype TARB developed for this research was constructed in the form of a CanBot. CanBots provide a means to test space-oriented rover technologies with earth-based analogues. Three prototype multimodal CanBots are described in this work, with each showing improvements in mobility and overall design robustness. Laboratory validation of the final TARB-equipped CanBot showed that it could utilize the rocker-bogie system to engage complicated terrestrial terrains while also maintaining the capacity to fly as an aerial vehicle. The laboratory testing also indicated that the CanBot could climb significantly steeper slopes when employing the TARB in a hybrid mode, successfully climbing slopes of 60 degrees, demonstrating static stability on inclines of up to 90 degrees, and successfully navigating along fully inverted surfaces.

13 November 2025

Comparison of (a) original rocker-bogie system on Sojourner rover [7] to (b) advanced new Thrust-Augmented Rocker Bogie (TARB) CanBot [8].

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Advanced Electrical Machines and Drives Technologies, 2nd Edition
Reprint

Advanced Electrical Machines and Drives Technologies, 2nd Edition

Editors: Loránd Szabó, Marcin Wardach
Nonlinear Phenomena, Chaos, Control and Applications to Engineering and Science and Experimental Aspects of Complex Systems
Reprint

Nonlinear Phenomena, Chaos, Control and Applications to Engineering and Science and Experimental Aspects of Complex Systems

Editors: José Manoel Balthazar, Angelo Marcelo Tusset, Átila Madureira Bueno, Diego Colón, Marcus Varanis

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Machines - ISSN 2075-1702