Special Issue "Frontiers in Gold Chemistry"

Quicklinks

A special issue of Inorganics (ISSN 2304-6740).

Deadline for manuscript submissions: closed (15 October 2014)

Special Issue Editors

Guest Editor
Dr. Ahmed A. Mohamed

Department of Chemistry, Delaware State University, 1200 N DuPont Highway, Dover, Delaware 19901, USA
E-Mail
Interests: Synthesis of gold complexes; optical properties of gold complexes; gold-carbon nanoparticles and thin films; mechanism of gold catalysis; antifouling properties of gold-carbon nanoparticles and gold thiolate complexes in rheumatoid arthritis treatment
Guest Editor
Prof. Dr. Antonio Laguna

Departamento de Quimica Inorganica, ICMA, Universidad de Zaragoza-CSIC, Pedro Cerbuna 12, 50009-Zaragoza, Spain
E-Mail
Interests: synthesis and characterization of gold and silver complexes; structural, optical and medical properties of gold and silver derivatives, cyclo- and polyhosphazene derivatives

Special Issue Information

Dear Colleagues,

The chemistry of the Sleeping Beauty gold has attracted interest in basic chemistry and applications. Why is gold so attractive? Gold complexes have shown applications in volatile organic compound sensors, liquid crystal displays, optical limiting diodes, surface modification, and rheumatoid arthritis treatment. Gold has served as the main initiative in nanotechnology applications in catalysis, cancer detection, and energy conversion. Aurophilic bonding, which reproduces the attractive forces between the gold atoms, has imparted unique properties in gold chemistry and probably is the foundation of the unique electronic and optoelectronic properties of gold. This Special Issue focuses on recent advances in gold chemistry toward synthesis and applications in the optical, medical, nanotechnological, and catalytic fields.

Dr. Ahmed A. Mohamed
Prof. Dr. Antonio Laguna
Guest Editors

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed Open Access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 300 CHF (Swiss Francs). English correction and/or formatting fees of 250 CHF (Swiss Francs) will be charged in certain cases for those articles accepted for publication that require extensive additional formatting and/or English corrections.


Keywords

  • Synthesis of gold complexes
  • gold nanoparticles;
  • optical properties of gold complexes;
  • theoretical calculations involving gold;
  • medical applications of gold;
  • materials chemistry of gold;
  • catalysis using gold

Published Papers (9 papers)

View options order results:
result details:
Displaying articles 1-9
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial Frontiers in Gold Chemistry
Inorganics 2015, 3(3), 370-373; doi:10.3390/inorganics3030370
Received: 13 August 2015 / Revised: 19 August 2015 / Accepted: 19 August 2015 / Published: 24 August 2015
PDF Full-text (631 KB) | HTML Full-text | XML Full-text
Abstract
Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry
[...] Read more.
Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of gold. Full article
(This article belongs to the Special Issue Frontiers in Gold Chemistry)

Research

Jump to: Editorial, Review

Open AccessArticle Disulfide Competition for Phosphine Gold(I) Thiolates: Phosphine Oxide Formation vs. Thiolate Disulfide Exchange
Inorganics 2015, 3(1), 40-54; doi:10.3390/inorganics3010040
Received: 19 November 2014 / Revised: 6 February 2015 / Accepted: 9 February 2015 / Published: 27 February 2015
Cited by 3 | PDF Full-text (1731 KB) | HTML Full-text | XML Full-text
Abstract
Phosphine gold(I) thiolate complexes react with aromatic disulfides via two pathways: either thiolate–disulfide exchange or a pathway that leads to formation of phosphine oxide. We have been investigating the mechanism of gold(I) thiolate–disulfide exchange. Since the formation of phosphine oxide is a competing
[...] Read more.
Phosphine gold(I) thiolate complexes react with aromatic disulfides via two pathways: either thiolate–disulfide exchange or a pathway that leads to formation of phosphine oxide. We have been investigating the mechanism of gold(I) thiolate–disulfide exchange. Since the formation of phosphine oxide is a competing reaction, it is important for our kinetic analysis to understand the conditions under which phosphine oxide forms. 1H and 31P{1H} NMR, and GC-MS techniques were employed to study the mechanism of formation of phosphine oxide in reactions of R3PAu(SRʹ) (R = Ph, Et; SRʹ = SC6H4CH3, SC6H4Cl, SC6H4NO2, or tetraacetylthioglucose (TATG)) and R*SSR* (SR* = SC6H4CH3, SC6H4Cl, SC6H4NO2, or SC6H3(COOH)(NO2)). The phosphine oxide pathway is most significant for disulfides with strongly electron withdrawing groups and in high dielectric solvents, such as DMSO. Data suggest that phosphine does not dissociate from gold(I) prior to reaction with disulfide. 2D (1H-1H) NMR ROESY experiments are consistent with an intermediate in which the disulfide and phosphine gold(I) thiolate are in close proximity. Water is necessary but not sufficient for formation of phosphine oxide since no phosphine oxide forms in acetonitrile, a solvent, which frequently contains water. Full article
(This article belongs to the Special Issue Frontiers in Gold Chemistry)
Figures

Open AccessArticle [AuHg(o-C6H4PPh2)2I]: A Dinuclear Heterometallic Blue Emitter
Inorganics 2015, 3(1), 27-39; doi:10.3390/inorganics3010027
Received: 15 December 2014 / Accepted: 3 February 2015 / Published: 11 February 2015
Cited by 4 | PDF Full-text (3239 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The heteronuclear AuI/HgII complex [AuHg(o-C6H4PPh2)2I] (1) was prepared by reacting of [Hg(2-C6H4PPh2)2] with [Au(tht)2]ClO4 (1:1) and NaI
[...] Read more.
The heteronuclear AuI/HgII complex [AuHg(o-C6H4PPh2)2I] (1) was prepared by reacting of [Hg(2-C6H4PPh2)2] with [Au(tht)2]ClO4 (1:1) and NaI in excess. The heterometallic compound 1 has been structurally characterized and shows an unusual blue luminescent emission in the solid state. Theoretical calculations suggest that that the origin of the emission arises from the iodide ligand arriving at metal-based orbitals in a Ligand to Metal-Metal Charge Transfer transition. Full article
(This article belongs to the Special Issue Frontiers in Gold Chemistry)
Open AccessArticle Various Oxygen-Centered Phosphanegold(I) Cluster Cations Formed by Polyoxometalate (POM)-Mediated Clusterization: Effects of POMs and Phosphanes
Inorganics 2014, 2(4), 660-673; doi:10.3390/inorganics2040660
Received: 13 October 2014 / Revised: 13 November 2014 / Accepted: 14 November 2014 / Published: 10 December 2014
Cited by 5 | PDF Full-text (756 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Novel phosphanegold(I) cluster cations combined with polyoxometalate (POM) anions, i.e., intercluster compounds, [(Au{P(m-FPh)3})44-O)]2[{(Au{P(m-FPh)3})2 (μ-OH)}2][α-PMo12O40]2·EtOH (1), [(Au{P(m
[...] Read more.
Novel phosphanegold(I) cluster cations combined with polyoxometalate (POM) anions, i.e., intercluster compounds, [(Au{P(m-FPh)3})44-O)]2[{(Au{P(m-FPh)3})2 (μ-OH)}2][α-PMo12O40]2·EtOH (1), [(Au{P(m-FPh)3})44-O)]2[α-SiMo12O40]·4H2O (2), [(Au{P(m-MePh)3})44-O)]2[α-SiM12O40] (M = W (3), Mo (4)) and [{(Au {P(p-MePh)3})44-O)}{(Au{P(p-MePh)3})33-O)}][α-PW12O40] (5) were synthesized by POM-mediated clusterization, and unequivocally characterized by elemental analysis, TG/DTA, FT-IR, X-ray crystallography, solid-state CPMAS 31P NMR and solution (1H, 31P{1H}) NMR. Formation of the these gold(I) cluster cations was strongly dependent upon the charge density and acidity of the POMs, and the substituents and substituted positions on the aryl group of triarylphosphane ligands. These gold(I) cluster cations contained various bridged-oxygen atoms such as μ4-O, μ3-O and μ-OH groups. Full article
(This article belongs to the Special Issue Frontiers in Gold Chemistry)
Figures

Open AccessArticle Reactivity of Mononuclear and Dinuclear Gold(I) Amidinate Complexes with CS2 and CsBr3
Inorganics 2014, 2(4), 540-551; doi:10.3390/inorganics2040540
Received: 20 August 2014 / Revised: 10 September 2014 / Accepted: 11 September 2014 / Published: 8 October 2014
Cited by 2 | PDF Full-text (890 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
To probe the reactivity of gold-nitrogen bonds, we have examined the insertion chemistry with carbon disulfide (CS2) as well as oxidation with cesium tribromide (CsBr3) with Au(I) amidinate complexes. The reaction of Ph3PAuCl with Na[(2,6-Me2C
[...] Read more.
To probe the reactivity of gold-nitrogen bonds, we have examined the insertion chemistry with carbon disulfide (CS2) as well as oxidation with cesium tribromide (CsBr3) with Au(I) amidinate complexes. The reaction of Ph3PAuCl with Na[(2,6-Me2C6H3N)2C(H)] yields the mononuclear, two-coordinate gold(I) complex, Ph3PAu[κ1-(2,6-Me2C6H3N)2C(H)], 1. The reactivity of 1 with CS2 produced the mononuclear Au(I) compound, Ph3PAu{κ1-S2C[(2,6-Me2C6H3N)2C(H)]}, 2. In the case of CsBr3 the previously reported dinuclear Au(I) complex, Au[(2,6-Me2C6H3N)2C(H)]2, 3, was isolated with formation of Ph3PBr2. We also compared the reactivity of CS2 and CsBr3 with 3. Carbon disulfide insertion with 3 produces a dimeric product, Aun[CS2(2,6-Me2C6H3NC(H)=NC6H3Me2)]n, 4, featuring a dinuclear core with linking aurophilic interactions, making it appear polymeric in the solid state. When CsBr3 is reacted with 3 the Au(II,II) product is obtained, Au2[(2,6-Me2C6H3N)2C(H)]2(Br)2, 5. Full article
(This article belongs to the Special Issue Frontiers in Gold Chemistry)
Open AccessArticle Gold Thione Complexes
Inorganics 2014, 2(3), 424-432; doi:10.3390/inorganics2030424
Received: 2 June 2014 / Revised: 16 July 2014 / Accepted: 18 July 2014 / Published: 4 August 2014
Cited by 2 | PDF Full-text (1052 KB) | HTML Full-text | XML Full-text
Abstract
The reaction of the ligand Et4todit (4,5,6,7-Tetrathiocino-[1,2-b:3,4-b']-diimidazolyl-1,3,8,10-tetraethyl-2,9-dithione) with gold complexes leads to the dinuclear gold(I) complexes [{Au(C6F5)}2(Et4todit)] and [Au(Et4todit)]2(OTf)2, which do not contain
[...] Read more.
The reaction of the ligand Et4todit (4,5,6,7-Tetrathiocino-[1,2-b:3,4-b']-diimidazolyl-1,3,8,10-tetraethyl-2,9-dithione) with gold complexes leads to the dinuclear gold(I) complexes [{Au(C6F5)}2(Et4todit)] and [Au(Et4todit)]2(OTf)2, which do not contain any gold-gold interactions, or to the gold(III) derivative [{Au(C6F5)3}2(Et4todit)]. The crystal structures have been established by X-ray diffraction studies and show that the gold centers coordinate to the sulfur atoms of the imidazoline-2-thione groups. Full article
(This article belongs to the Special Issue Frontiers in Gold Chemistry)
Figures

Review

Jump to: Editorial, Research

Open AccessReview Gilded Hope for Medicine
Inorganics 2015, 3(2), 139-154; doi:10.3390/inorganics3020139
Received: 30 January 2015 / Revised: 13 April 2015 / Accepted: 15 April 2015 / Published: 15 May 2015
Cited by 1 | PDF Full-text (2335 KB) | HTML Full-text | XML Full-text
Abstract
Gold is emerging as a potential therapeutic agent in the treatment of arthritis, cancer and AIDS. The therapeutic mechanism of arthritic gold drugs and their modification in the presence of stomach hydrochloric acid, in the joints, and in the presence of mild and
[...] Read more.
Gold is emerging as a potential therapeutic agent in the treatment of arthritis, cancer and AIDS. The therapeutic mechanism of arthritic gold drugs and their modification in the presence of stomach hydrochloric acid, in the joints, and in the presence of mild and strong oxidizing agents is a matter of debate. It is believed that gold affects the entire immune response and reduces its potency and limits its oxidizing nature. DNA apparently is not the main target of gold in cancer treatment. Rheumatoid arthritis, cancer, heart diseases and recently AIDS have all been targeted with gold nanoparticles therapy. The era of gold nanoparticles started with cancer imaging and treatment studies. Gold nanoparticles have emerged as smart drug vehicles. Full article
(This article belongs to the Special Issue Frontiers in Gold Chemistry)
Open AccessReview Supramolecular Gold Metallogelators: The Key Role of Metallophilic Interactions
Inorganics 2015, 3(1), 1-18; doi:10.3390/inorganics3010001
Received: 15 October 2014 / Accepted: 11 December 2014 / Published: 31 December 2014
Cited by 6 | PDF Full-text (1733 KB) | HTML Full-text | XML Full-text
Abstract
Gold metallogelators is an emerging area of research. The number of results published in the literature is still scarce. The majority of these gels is observed in organic solvents, and the potential applications are still to be explored. In this work, we present
[...] Read more.
Gold metallogelators is an emerging area of research. The number of results published in the literature is still scarce. The majority of these gels is observed in organic solvents, and the potential applications are still to be explored. In this work, we present an overview about gold metallogelators divided in two different groups depending on the type of solvent used in the gelation process (organogelators and hydrogelators). A careful analysis of the data shows that aurophilic interactions are a common motif directly involved in gelation involving Au(I) complexes. There are also some Au(III) derivatives able to produce gels but in this case the organic ligands determine the aggregation process. A last section is included about the potential applications that have been reported until now with this new and amazing class of supramolecular assemblies. Full article
(This article belongs to the Special Issue Frontiers in Gold Chemistry)
Figures

Open AccessReview Gold Liquid Crystals in the XXI Century
Inorganics 2014, 2(3), 433-454; doi:10.3390/inorganics2030433
Received: 10 June 2014 / Revised: 16 July 2014 / Accepted: 17 July 2014 / Published: 6 August 2014
Cited by 2 | PDF Full-text (1204 KB) | HTML Full-text | XML Full-text
Abstract
Since the first gold liquid crystal was described in 1986, much effort has been done to prepare new compounds bearing this property. The review deals with the last results obtained in this new century. Gold(I) has a strong affinity to give linear co-ordination
[...] Read more.
Since the first gold liquid crystal was described in 1986, much effort has been done to prepare new compounds bearing this property. The review deals with the last results obtained in this new century. Gold(I) has a strong affinity to give linear co-ordination and metal-metal interactions, which produce a rich supramolecular chemistry, and can promote the behavior as liquid crystal. Therefore, most liquid crystals are based on rod-like gold(I) compounds, while gold(III) liquid crystals are scarce. Calamitic and discotic mesogens have been reported, as well as chiral liquid crystals. Weak interactions such as H-bonds have also been used to obtain gold mesogens. Some of them exhibit additional properties, such as color, luminescence, and chirality. Luminescence has been reported, not only in the solid state or in solution, but also in the mesophase. This is relevant for applications in LEDs (Light Emitting Diodes), information storage, and sensors. Full article
(This article belongs to the Special Issue Frontiers in Gold Chemistry)
Figures

Journal Contact

MDPI AG
Inorganics Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
inorganics@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Inorganics
Back to Top