E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Topical Collection "Environmental Risk Assessment"

Editor

Guest Editor
Assoc. Prof. Daniela Varrica

Dipartimento di Scienze della Terra e del Mare (DiSTeM) Via Archirafi 36 - 90123 Palermo, Italy
Website | E-Mail

Topical Collection Information

Dear Colleagues,

Several decades of research on fate and effects of chemicals in the environment have resulted in enhanced knowledge of the adverse effects of classes of pollutants of a widely varying nature. Combined with increased public and regulatory awareness on potential adverse ecological effects, regulatory activities have been implemented in order to safeguard the quality and quantity of our natural environment, and to protect essential functions of global, regional, and local ecosystems. Thereupon, impacts of combinations of pollutants and additional stressors on ecosystem functioning (like climate change, acidification, and nitrification) have been assessed and implemented in regulations. So far, most attention has been devoted to investigation of fate and effects of 'conventional' industrial chemicals such as hydrophobic organic compounds and metals. Driven by large-scale industrial developments, a plethora of novel chemical structures is being introduced into the environment, whilst information on the fate and adverse effects of these emerging chemicals is mostly lacking.

This collection is aimed at providing an opportunity to publish novel research findings related to the assessment and prediction of the fate and adverse effects of environmentally relevant chemicals, including 'conventional chemicals' like POPs, PBT-substances, and metals, as well as emerging chemicals like hydrophilic compounds (including perhalogenated chemicals), pharmaceuticals, pesticides, and nanomaterials. The collection will cover the whole chain of emissions–environmental fate–adverse effects–risk assessment–risk management.

Assoc. Prof. Daniela Varrica
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Risk assessment
  • Fate assessment
  • Effect assessment
  • Environment
  • Emerging chemicals
  • Metals
  • Organic pollutants
  • Pesticides
  • Hazard assessment
  • Pharmaceuticals
  • Nanomaterials

Published Papers (25 papers)

2018

Jump to: 2017

Open AccessArticle Spatial Distribution and Contamination Assessment of Surface Heavy Metals off the Western Guangdong Province and Northeastern Hainan Island
Int. J. Environ. Res. Public Health 2018, 15(9), 1897; https://doi.org/10.3390/ijerph15091897
Received: 29 July 2018 / Revised: 29 August 2018 / Accepted: 30 August 2018 / Published: 31 August 2018
PDF Full-text (2868 KB) | HTML Full-text | XML Full-text
Abstract
Surface sediments collected from the continental shelf off the western Guangdong Province and northeastern Hainan Island are analyzed for selected heavy metals contents including Cd, Cr, Cu, Pb, Zn, and As to determine spatial distribution, potential ecological risks, and sources. In addition, some
[...] Read more.
Surface sediments collected from the continental shelf off the western Guangdong Province and northeastern Hainan Island are analyzed for selected heavy metals contents including Cd, Cr, Cu, Pb, Zn, and As to determine spatial distribution, potential ecological risks, and sources. In addition, some of the controlling factors of heavy metals distribution are also discussed. The average heavy metals contents decrease in the order of Zn > Cr > Pb > Cu > As > Cd. The averaged pollution degree, as shown by the index of geo-accumulation (Igeo), decreases in the order of Zn > Cu > Pb > Cr > Cd > As. Due to the barrier of islands, the Igeo values of Zn, Pb, Cr, Cu, and Cd near the Hailing and Xiachuan Islands are larger than those in other areas. Meanwhile, the Igeo value of As near the coastal area off the estuary of Wanquan River is clearly larger than that in other areas. Based on the results of potential ecological risk index, Cd, Cu, and As should be paid more attention for the contamination risk in future. The results of Pearson correlation analysis and principal component analysis indicate that Zn, Cr, Pb, Cu, and Cd are mainly from the Pearl River and surrounding small rivers, whereas As originates from the Hainan Island. The grain size is one of the main controlling factors for heavy metals distribution, and the anthropogenic activity also plays an important role. Full article
Figures

Figure 1

Open AccessArticle Concentration and Potential Ecological Risk of PAHs in Different Layers of Soil in the Petroleum-Contaminated Areas of the Loess Plateau, China
Int. J. Environ. Res. Public Health 2018, 15(8), 1785; https://doi.org/10.3390/ijerph15081785
Received: 30 July 2018 / Revised: 15 August 2018 / Accepted: 17 August 2018 / Published: 20 August 2018
PDF Full-text (929 KB) | HTML Full-text | XML Full-text
Abstract
The three most representative areas of petroleum pollution on the Loess Plateau are the research subjects of this study. In this study, 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined by the QuEChERS method combined with gas chromatography-tandem mass spectrometry (GC-MS/MS). The total
[...] Read more.
The three most representative areas of petroleum pollution on the Loess Plateau are the research subjects of this study. In this study, 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined by the QuEChERS method combined with gas chromatography-tandem mass spectrometry (GC-MS/MS). The total concentrations of ∑16PAHs in top layer soils (0–10 cm), middle layer soils (10–30 cm), and bottom layer soils (30–50 cm) ranged from 1010.67 to 18,068.80, 495.85 to 9868.56 and 213.16 to 12,552.53 μg/kg, with an average of 5502.44, 2296.94 and 2203.88 μg/kg, respectively. The 3-ring and 4-ring PAHs were the most prominent components in all soil samples. Meanwhile, the average value of ∑16PAHs decreased with the depth, from 5502.44 μg/kg (0–10 cm) to 2203.88 μg/kg (30–50 cm). The PAHs levels in the studied soils were heavily polluted (over 1000 μg/kg) according to the Soils Quality Guidelines and 95% of PAHs come from petroleum sources. Moreover, the total of PAHs in petroleum-contaminated soils was assigned a high ecological risk level. Toxic equivalency quantities (TEQs) indicated that PAHs in petroleum-contaminated soils presented relatively high toxicity. Full article
Figures

Figure 1

Open AccessArticle Multi-Target Risk Assessment of Potentially Toxic Elements in Farmland Soil Based on the Environment-Ecological-Health Effect
Int. J. Environ. Res. Public Health 2018, 15(6), 1101; https://doi.org/10.3390/ijerph15061101
Received: 6 April 2018 / Revised: 16 May 2018 / Accepted: 22 May 2018 / Published: 28 May 2018
PDF Full-text (2989 KB) | HTML Full-text | XML Full-text
Abstract
There are potential impacts of Potentially Toxic Elements (PTEs) (e.g., Cd, Cr, Ni, Cu, As, Zn, Hg, and Pb) in soil from the perspective of the ecological environment and human health, and assessing the pollution and risk level of soil will play an
[...] Read more.
There are potential impacts of Potentially Toxic Elements (PTEs) (e.g., Cd, Cr, Ni, Cu, As, Zn, Hg, and Pb) in soil from the perspective of the ecological environment and human health, and assessing the pollution and risk level of soil will play an important role in formulating policies for soil pollution control. Lingyuan, in the west of Liaoning Province, China, is a typical low-relief terrain of a hilly area. The object of study in this research is the topsoil of farmland in this area, of which 71 soil samples are collected. In this study, research methods, such as the Nemerow Index, Potential Ecological Hazard Index, Ecological Risk Quotient, Environmental Exposure Hazard Analysis, Positive Matrix Factorization Model, and Land Statistical Analysis, are used for systematical assessment of the pollution scale, pollution level, and source of PTEs, as well as the ecological environmental risks and health risks in the study area. The main conclusions are: The average contents of As, Cd, Cr, Cu, Hg, Zn, Ni, and Pb of the soil are 5.32 mg/kg, 0.31 mg/kg, 50.44 mg/kg, 47.05 mg/kg, 0.03 mg/kg, 79.36 mg/kg, 26.01 mg/kg, and 35.65 mg/kg, respectively. The contents of Cd, Cu, Zn, and Pb exceed the background value of local soil; Cd content of some study plots exceeds the National Soil Environmental Quality Standard Value (0.6 mg/kg), and the exceeding standard rate of study plots is 5.63%; the comprehensive potential ecological hazard assessment in the study area indicates that the PTEs are at a slight ecological risk; probabilistic hazard quotient assessment indicates that the influence of PTEs on species caused by Cu is at a slight level (p = 10.93%), and Zn, Pb, and Cd are at an acceptable level. For the ecological process, Zn is at a medium level (p = 25.78%), Cu is at a slight level (19.77%), and the influence of Cd and Pb are acceptable; human health hazard assessment states that the Non-carcinogenic comprehensive health hazard index HI = 0.16 < 1, indicating that PTEs in soil have no significant effect on people’s health through exposure; the PMF model (Positive Matrix Factorization) shows that the contribution rates of agricultural source, industrial source, atmospheric dust source, and natural source are 13.15%, 25.33%, 18.47%, and 43.05%, respectively. Full article
Figures

Figure 1

Open AccessArticle Distribution of Arsenic and Risk Assessment of Activities on Soccer Pitches Irrigated with Arsenic-Contaminated Water
Int. J. Environ. Res. Public Health 2018, 15(6), 1060; https://doi.org/10.3390/ijerph15061060
Received: 6 February 2018 / Revised: 14 May 2018 / Accepted: 15 May 2018 / Published: 24 May 2018
PDF Full-text (21270 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this research was to estimate the risk of human exposure to arsenic due to sporting activities in a private soccer club in Mexico, where arsenic-contaminated water was regularly used for irrigation. For this purpose, the total concentration in the topsoil
[...] Read more.
The aim of this research was to estimate the risk of human exposure to arsenic due to sporting activities in a private soccer club in Mexico, where arsenic-contaminated water was regularly used for irrigation. For this purpose, the total concentration in the topsoil was considered for risk assessment. This was accomplished through three main objectives: (1) measuring arsenic concentrations in irrigation water and irrigated soils, (2) determining arsenic spatial distribution in shallow soils with Geographical Information Systems (GIS) using geostatistical analysis, and (3) collecting field and survey data to develop a risk assessment calculation for soccer activities in the soccer club. The results showed that the average arsenic concentrations in shallow soils (138.1 mg/kg) were 6.2 times higher than the Mexican threshold for domestic soils (22 mg/kg). Furthermore, dermal contact between exposed users and contaminated soils accounted for a maximum carcinogenic risk value of 1.8 × 10−5, which is one order of magnitude higher than the recommended risk value, while arsenic concentrations in the irrigation water were higher (6 mg/L) than the WHO’s permissible threshold in drinking water, explaining the contamination of soils after irrigation. To the best of our knowledge, this is the first risk study regarding dermal contact with arsenic following regular grass irrigation with contaminated water in soccer pitches. Full article
Figures

Graphical abstract

Open AccessArticle Human Health Risk Assessment of Toxic Elements in Farmland Topsoil with Source Identification in Jilin Province, China
Int. J. Environ. Res. Public Health 2018, 15(5), 1040; https://doi.org/10.3390/ijerph15051040
Received: 30 March 2018 / Revised: 16 May 2018 / Accepted: 17 May 2018 / Published: 22 May 2018
PDF Full-text (2021 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The presence of toxic elements in agricultural soils from anthropogenic activities is a potential threat to human health through the food chain. In this study, the concentration of toxic elements in 122 agricultural topsoil composite samples were determined in order to study the
[...] Read more.
The presence of toxic elements in agricultural soils from anthropogenic activities is a potential threat to human health through the food chain. In this study, the concentration of toxic elements in 122 agricultural topsoil composite samples were determined in order to study the current status, identify their sources and assess the level of pollution and human health risk. The results showed that the mean concentrations of Zn, Cu, Pb, Cd, Hg and As in the farmland topsoil were 21.72, 15.09, 36.08, 0.2451, 0.0378 and 4.957 mg·kg−1, respectively. The spatial distribution showed that the soils were mainly contaminated by Cd, Pb and Hg in midwest Jilin but by Cu and As in the east. According to the pollution index (Pi), Nemerow integrated pollution index (PN) and Geo-Accumulation Index (Igeo), Cd and Pb were the main pollutants in the soils. The occurrence of these elements was caused by anthropogenic activities and they were concentrated in the Songyuan-Changchun-Siping economic belt. There is limited non-carcinogenic and carcinogenic health risk to humans. Principal component analyses suggest the Pb, Cd and Hg soil contamination was mainly derived from anthropogenic activities in the Midwest, but all examined toxic elements in the east were mainly due to geogenic anomalies and came from atmospheric deposition. Full article
Figures

Figure 1

Open AccessArticle Temporal Variation and Ecological Risk Assessment of Metals in Soil Nearby a Pb–Zn Mine in Southern China
Int. J. Environ. Res. Public Health 2018, 15(5), 940; https://doi.org/10.3390/ijerph15050940
Received: 8 March 2018 / Revised: 19 April 2018 / Accepted: 30 April 2018 / Published: 9 May 2018
PDF Full-text (2293 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Metal contamination in soil from tailings induces risks for the ecosystem and for humans. In this study, the concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil contaminated by a tailing from Yangshuo (YS) lead and zinc (Pb–Zn) mine, which
[...] Read more.
Metal contamination in soil from tailings induces risks for the ecosystem and for humans. In this study, the concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil contaminated by a tailing from Yangshuo (YS) lead and zinc (Pb–Zn) mine, which collapsed for more than 40 years, were determined in 2015. The mean concentrations of Zn, Pb, Cu, and Cd were 1301.79, 768.41, 82.60, and 4.82 mg/kg, respectively, which, with years of remediation activities, decreased by 66.9%, 61.7%, 65.4%, and 65.3% since 1986, but still exceed the national standards. From 1986 to 2015, soil pH increased significantly, with available concentrations of Zn, Pb, Cu and Cd decreasing by 13%, 81%, 77%, and 67%, respectively, and potential ecological risk indexes (Er) of the determined metals decreasing by more than 60%. Horizontally, total contents and percentages of available concentrations of Zn, Pb, Cu, and Cd decreased with the distance from the tailing heap in SD village, while pH values showed the reverse pattern. Vertically, Zn and Cd, Pb, and Cu showed similar vertical distribution patterns in the soil profiles. There was a slight downward migration for the determined metals in soil of M and H area and the mobility was in the order of Cd > Zn > Pb > Cu. It can be concluded that although concentrations and ecological risks of Cd, Cu, Pb, and Zn in soil decreased significantly, SD village is still a high risk area, and the priority pollutant is Cd. Full article
Figures

Figure 1

Open AccessArticle Ecological Vulnerability Assessment Based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow River Delta
Int. J. Environ. Res. Public Health 2018, 15(5), 855; https://doi.org/10.3390/ijerph15050855
Received: 19 March 2018 / Revised: 17 April 2018 / Accepted: 21 April 2018 / Published: 25 April 2018
Cited by 1 | PDF Full-text (4905 KB) | HTML Full-text | XML Full-text
Abstract
The Yellow River Delta (YRD), located in Yellow River estuary, is characterized by rich ecological system types, and provides habitats or migration stations for wild birds, all of which makes the delta an ecological barrier or ecotone for inland areas. Nevertheless, the abundant
[...] Read more.
The Yellow River Delta (YRD), located in Yellow River estuary, is characterized by rich ecological system types, and provides habitats or migration stations for wild birds, all of which makes the delta an ecological barrier or ecotone for inland areas. Nevertheless, the abundant natural resources of YRD have brought huge challenges to the area, and frequent human activities and natural disasters have damaged the ecological systems seriously, and certain ecological functions have been threatened. Therefore, it is necessary to determine the status of the ecological environment based on scientific methods, which can provide scientifically robust data for the managers or stakeholders to adopt timely ecological protection measures. The aim of this study was to obtain the spatial distribution of the ecological vulnerability (EV) in YRD based on 21 indicators selected from underwater status, soil condition, land use, landform, vegetation cover, meteorological conditions, ocean influence, and social economy. In addition, the fuzzy analytic hierarchy process (FAHP) method was used to obtain the weights of the selected indicators, and a fuzzy logic model was constructed to obtain the result. The result showed that the spatial distribution of the EV grades was regular, while the fuzzy membership of EV decreased gradually from the coastline to inland area, especially around the river crossing, where it had the lowest EV. Along the coastline, the dikes had an obviously protective effect for the inner area, while the EV was higher in the area where no dikes were built. This result also showed that the soil condition and groundwater status were highly related to the EV spatially, with the correlation coefficients −0.55 and −0.74 respectively, and human activities had exerted considerable pressure on the ecological environment. Full article
Figures

Figure 1

Open AccessArticle An Extended Chemical Plant Environmental Protection Game on Addressing Uncertainties of Human Adversaries
Int. J. Environ. Res. Public Health 2018, 15(4), 609; https://doi.org/10.3390/ijerph15040609
Received: 31 January 2018 / Revised: 18 March 2018 / Accepted: 20 March 2018 / Published: 27 March 2018
Cited by 1 | PDF Full-text (4158 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chemical production activities in industrial districts pose great threats to the surrounding atmospheric environment and human health. Therefore, developing appropriate and intelligent pollution controlling strategies for the management team to monitor chemical production processes is significantly essential in a chemical industrial district. The
[...] Read more.
Chemical production activities in industrial districts pose great threats to the surrounding atmospheric environment and human health. Therefore, developing appropriate and intelligent pollution controlling strategies for the management team to monitor chemical production processes is significantly essential in a chemical industrial district. The literature shows that playing a chemical plant environmental protection (CPEP) game can force the chemical plants to be more compliant with environmental protection authorities and reduce the potential risks of hazardous gas dispersion accidents. However, results of the current literature strictly rely on several perfect assumptions which rarely hold in real-world domains, especially when dealing with human adversaries. To address bounded rationality and limited observability in human cognition, the CPEP game is extended to generate robust schedules of inspection resources for inspection agencies. The present paper is innovative on the following contributions: (i) The CPEP model is extended by taking observation frequency and observation cost of adversaries into account, and thus better reflects the industrial reality; (ii) Uncertainties such as attackers with bounded rationality, attackers with limited observation and incomplete information (i.e., the attacker’s parameters) are integrated into the extended CPEP model; (iii) Learning curve theory is employed to determine the attacker’s observability in the game solver. Results in the case study imply that this work improves the decision-making process for environmental protection authorities in practical fields by bringing more rewards to the inspection agencies and by acquiring more compliance from chemical plants. Full article
Figures

Figure 1

Open AccessArticle Geochemical Assessment and Spatial Analysis of Heavy Metals in the Surface Sediments in the Eastern Beibu Gulf: A Reflection on the Industrial Development of the South China Coast
Int. J. Environ. Res. Public Health 2018, 15(3), 496; https://doi.org/10.3390/ijerph15030496
Received: 10 February 2018 / Revised: 10 March 2018 / Accepted: 10 March 2018 / Published: 12 March 2018
Cited by 1 | PDF Full-text (1927 KB) | HTML Full-text | XML Full-text
Abstract
The Beibu Gulf (also named the Gulf of Tonkin), located in the northwest of the South China Sea, is representative of a bay suffering from turbulence and contamination associated with rapid industrialization and urbanization. In this study, we aim to provide the novel
[...] Read more.
The Beibu Gulf (also named the Gulf of Tonkin), located in the northwest of the South China Sea, is representative of a bay suffering from turbulence and contamination associated with rapid industrialization and urbanization. In this study, we aim to provide the novel baseline levels of heavy metals for the research area. Concentrations of five heavy metals (i.e., Cu, Pb, Zn, Cd and Cr) were determined in surface sediments from 35 sites in the eastern Beibu Gulf. The heavy metal content varied from 6.72 to 25.95 mg/kg for Cu, 16.99 to 57.98 mg/kg for Pb, 73.15 to 112.25 mg/kg for Zn, 0.03 to 0.12 mg/kg for Cd, and 20.69 to 56.47 mg/kg for Cr, respectively. With respect to the Chinese sediment quality criteria, sediments in the eastern Beibu Gulf have not been significantly affected by coastal metal pollutions. The results deduced from the geoaccumulation index (Igeo) showed that the study area has been slightly polluted by Pb, which might be caused by non-point sources. Relatively high concentrations of Cu, Pb and Cd were found around the coastal areas of Guangxi province, the Leizhou Peninsula and the northwest coast of Hainan Island, whereas the highest concentrations of Zn and Cr were found on the northwest coast of Hainan Island. Spatial distribution patterns of the heavy metals showed that bioavailable fractions of Pb were higher than in the residual fractions, while Cu and Cd concentrations in exchangeable and carbonate fractions were relatively higher than those in the bioavailable fractions. Hierarchical clustering analysis suggested that the sampling stations could be separated into three groups with different geographical distributions. Accompanying their similar spatial distribution in the study area, significant correlation coefficients among Cu, Cd and Pb were also found, indicating that these three metals might have had similar sources. Overall, the results indicated that the distribution of these heavy metals in the surface sediments collected from the Beibu Gulf was complex. Full article
Figures

Figure 1

Open AccessArticle Assessment of Metalloid and Metal Contamination in Soils from Hainan, China
Int. J. Environ. Res. Public Health 2018, 15(3), 454; https://doi.org/10.3390/ijerph15030454
Received: 22 January 2018 / Revised: 20 February 2018 / Accepted: 28 February 2018 / Published: 6 March 2018
Cited by 1 | PDF Full-text (5357 KB) | HTML Full-text | XML Full-text
Abstract
The characterization of the concentrations and sources of metals and metalloids in soils is necessary to establish quality standards on a regional level and to assess the potential threat of metals to food safety and human health. A total of 8713 soil samples
[...] Read more.
The characterization of the concentrations and sources of metals and metalloids in soils is necessary to establish quality standards on a regional level and to assess the potential threat of metals to food safety and human health. A total of 8713 soil samples throughout Hainan Island, China were collected at a density of one sample per 4 km2, and concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn were analyzed. The geometric mean values of the elements were 2.17, 0.60, 26.5, 9.43, 0.033, 8.74, 22.2, 0.26, and 39.6 mg·· kg−1 for As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn, respectively, significantly lower than the background values of Chinese soils with the exception of Se. Principal component analysis (PCA) suggested that multiple anthropogenic sources regulated the elemental compositions of the Hainan environment. Coal combustion and mining are important anthropogenic sources of metals for Hainan. The geochemical maps of elements in Hainan soils were produced using the Geographic Information System (GIS) method, and several hot-spot areas were identified. The ecological impact of As, Cd, Cu, Cr, Hg, Pb, Ni, and Zn pollution to the soils was extremely “low”. Full article
Figures

Figure 1a

Open AccessArticle Comparison of Toxic Metal Distribution Characteristics and Health Risk between Cultured and Wild Fish Captured from Honghu City, China
Int. J. Environ. Res. Public Health 2018, 15(2), 334; https://doi.org/10.3390/ijerph15020334
Received: 9 January 2018 / Revised: 4 February 2018 / Accepted: 5 February 2018 / Published: 14 February 2018
PDF Full-text (1710 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Honghu Lake, which listed in the “Ramsar Convention”, is the seventh largest freshwater lake in China and is regarded as one of the biggest freshwater product output areas in China. The toxic element distribution in cultured and wild fish and the corresponding health
[...] Read more.
Honghu Lake, which listed in the “Ramsar Convention”, is the seventh largest freshwater lake in China and is regarded as one of the biggest freshwater product output areas in China. The toxic element distribution in cultured and wild fish and the corresponding health risks through fish consumption from Honghu area were investigated. The mean concentration in the muscle of cultured and wild fish (Carassius auratus and Ctenopharyngodon idellus) decreased in the order: Zn (18.94) > Cu (0.8489) > Cr (0.2840) > Pb (0.2052) and Zn (16.30) > Cr (1.947) > Cu (0.4166) > Pb (0.0525) > Cd (0.0060) (mean; mg/kg, wet weight). Scales (Multi factor pollution index (MPI) = 3.342) and the liver (MPI = 1.276) were regarded as the main accumulation tissues for cultured fish, and the bladder (MPI = 0.640) and intestine (MPI = 0.477) were regarded as the main accumulation tissues for wild fish. There were no obvious health risks associated with the consumption of cultured and wild fish based on the calculated results of the target hazard quotient (THQ), carcinogenic risk (CR), and estimated weekly intake (EWI). Pb and Cr were recognized as the major health risk contributors for inhabitants through wild and cultured fish consumption. Cultured fish had a greater health risk than wild fish based on the calculation results of THQ and CR. Muscle consumption resulted in more health risks than mixed edible tissues for cultured fish, but for wild fish, the conclusion was the opposite. Mixed fish (cultured:wild = 1:1) muscle consumption had relatively lower risks than the consumption of cultured or wild fish muscle separately. Consuming no more than 465 g/day (wet wt) of cultured fish muscle, 68 g/day (wet wt) of wild fish muscle, 452 g/day (wet wt) of mixed cultured fish edible tissues or 186 g/day (wet wt) of mixed wild fish edible tissues from the Honghu area can assure human health. Full article
Figures

Figure 1

Open AccessArticle PM Origin or Exposure Duration? Health Hazards from PM-Bound Mercury and PM-Bound PAHs among Students and Lecturers
Int. J. Environ. Res. Public Health 2018, 15(2), 316; https://doi.org/10.3390/ijerph15020316
Received: 31 December 2017 / Revised: 27 January 2018 / Accepted: 7 February 2018 / Published: 12 February 2018
Cited by 1 | PDF Full-text (566 KB) | HTML Full-text | XML Full-text
Abstract
This study assessed inhalation exposure to particulate matter (PM1)-bound mercury (Hgp) and PM1-bound polycyclic aromatic hydrocarbons (PAHs) among university students. For this purpose, simultaneous indoor (I) and outdoor (O) measurements were taken from two Polish technical universities
[...] Read more.
This study assessed inhalation exposure to particulate matter (PM1)-bound mercury (Hgp) and PM1-bound polycyclic aromatic hydrocarbons (PAHs) among university students. For this purpose, simultaneous indoor (I) and outdoor (O) measurements were taken from two Polish technical universities (in Gliwice and Warsaw) located in distinct areas with respect to ambient concentrations and major sources of PM. The indoor geometric mean concentrations of Hgp were found to be 1.46 pg·m−3 and 6.38 pg·m−3 in Warsaw and Gliwice, while the corresponding outdoor concentrations were slightly lower at 1.38 pg·m−3 and 3.03 pg·m−3, respectively. A distinct pattern was found with respect to PAH concentrations with estimated I/O values of 22.2 ng·m−3/22.5 ng·m−3 in Gliwice and 10.9 ng·m−3/11.12 ng·m−3 in Warsaw. Hazard quotients (HQs) as a result of exposure to Hgp for students aged 21 ranged from 3.47 × 10−5 (Warsaw) to 1.3 × 10−4 (Gliwice) in terms of reasonable maximum exposure (RME). The non-cancer human health risk value related to Hgp exposure was thus found to be below the acceptable risk level value of 1.0 given by the US EPA. Daily exposure values for lecture hall occupants, adjusted to the benzo(a)pyrene (BaP) toxicity equivalent (BaPeq), were 2.9 and 1.02 ng·m−3 for the Gliwice and Warsaw students, respectively. The incremental lifetime cancer risk (ILCR) values with respect to exposure to PM1-bound PAHs during the students’ time of study were 5.49 × 10−8 (Warsaw) and 1.43 × 10−7 (Gliwice). Thus, students’ exposure to indoor PAHs does not lead to increased risk of lung cancer. Full article
Figures

Graphical abstract

Open AccessArticle Determining Exposure Factors of Anti-Fogging, Dye, Disinfectant, Repellent, and Preservative Products in Korea
Int. J. Environ. Res. Public Health 2018, 15(2), 232; https://doi.org/10.3390/ijerph15020232
Received: 28 December 2017 / Revised: 23 January 2018 / Accepted: 26 January 2018 / Published: 30 January 2018
PDF Full-text (1008 KB) | HTML Full-text | XML Full-text
Abstract
Reliable exposure factors are essential to determine health risks posed by chemicals in consumer products. We analyzed five risk-concerned product categories (anti-fogging, dye, disinfectant, repellent, and preservative products) for 13 products (three car anti-fogging products, a lens anti-fogging product, two car dye products,
[...] Read more.
Reliable exposure factors are essential to determine health risks posed by chemicals in consumer products. We analyzed five risk-concerned product categories (anti-fogging, dye, disinfectant, repellent, and preservative products) for 13 products (three car anti-fogging products, a lens anti-fogging product, two car dye products, two drain disinfectants, an air conditioner disinfectant, a chlorine-based disinfectant, a fabric repellent, an insect repellent for food, and a wood preservative) considered to be of high risk in order to determine exposure factors via web surveys and estimation of amount of product. Among the 3000 participants (1482 (49%) men) aged ≥19 years, drain disinfectants were used most frequently (38.2%); the rate of usage of the other products ranged between 1.1–24.0%. The usage rates for the consumer products differed by sex, age, income, and education. Some consumer products such as car and lens anti-fogging products, chlorine-based disinfectants, fabric repellents, and drain disinfectants were regularly used more than once a month, while car dye products, air conditioner disinfectants, insect repellents for food, and wood preservatives were not regularly used owing to the specific product purposes and seasonal needs. Our results could be used for managing or controlling chemical substances in consumer products and conducting accurate exposure assessments. Full article
Figures

Graphical abstract

Open AccessArticle Trace Elements in Soils and Selected Agricultural Plants in the Tongling Mining Area of China
Int. J. Environ. Res. Public Health 2018, 15(2), 202; https://doi.org/10.3390/ijerph15020202
Received: 24 November 2017 / Revised: 9 January 2018 / Accepted: 11 January 2018 / Published: 25 January 2018
Cited by 3 | PDF Full-text (3172 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The quality and safety of agricultural products from metal mining areas are of wide concern. In order to investigate the contents and health risks of trace elements in fruit vegetables planted in metal mining areas, 440 samples of fruit vegetables from 117 vegetable
[...] Read more.
The quality and safety of agricultural products from metal mining areas are of wide concern. In order to investigate the contents and health risks of trace elements in fruit vegetables planted in metal mining areas, 440 samples of fruit vegetables from 117 vegetable plots were collected from Tongling mining area. Trace element contents in fruit vegetables and soil were measured. The results indicated that the total concentration of trace elements in some of the soil samples exceeded the Grade II national standard in China. Transfer factor (TF) of Cd was the highest (8.360), followed by Zn, Cu, As, and Pb. Estimated daily intake (EDI) of the trace elements, except Cd, were generally below the maximum tolerable daily intake (MTDI). The target hazard quotient (THQ) of Zn for children was more than 1 in some vegetables, suggesting potential health hazards for child population. Total target hazard quotient (TTHQ) of Cu and Zn were also more than 1 through consumption of all vegetables, indicating significant health risks. For both adults and children, hazard index (HI) was more than 1 for the consumption of vegetables. The findings reveal the health risks associated with the consumption of trace elements through the intake of selected vegetables in the population of Tongling. Full article
Figures

Figure 1

Open AccessArticle Risk Assessment of Potentially Toxic Elements (PTEs) Pollution at a Rural Industrial Wasteland in an Abandoned Metallurgy Factory in North China
Int. J. Environ. Res. Public Health 2018, 15(1), 85; https://doi.org/10.3390/ijerph15010085
Received: 28 November 2017 / Revised: 29 December 2017 / Accepted: 3 January 2018 / Published: 6 January 2018
Cited by 2 | PDF Full-text (2440 KB) | HTML Full-text | XML Full-text
Abstract
The potential toxic elements (PTEs) pollution problems in many rural industrial wastelands have been observed to be conspicuous. Therefore, 40 top soil samples were collected from the wasteland of a typical rural metallurgy factory in Baoding, China. The total concentrations of six key
[...] Read more.
The potential toxic elements (PTEs) pollution problems in many rural industrial wastelands have been observed to be conspicuous. Therefore, 40 top soil samples were collected from the wasteland of a typical rural metallurgy factory in Baoding, China. The total concentrations of six key PTEs were measured. The soil properties and speciation of the PTEs were also identified. Extremely high concentrations of As, Cd, Pb, and Zn were observed in the surface soils. Using the PTEs concentration in the top soils of the rural industrial wasteland, the following indices of pollution were calculated: the pollution load index (PLI), the geo-accumulation Index (Igeo), the risk assessment code (RAC), and the health risk assessment (HRA). The analysis of the PLI and Igeo indicated that site #1 was relatively clean, while sites #2 and #3 were heavily polluted. The results of the RAC showed that PTEs in top soils at sites #2 and #3 were significantly increased (p <  0.05) for Cd and Zn. The HRA indicated that both As and Pb presented non-carcinogenic risks to children and adults at sites #2 and #3. Our findings can be a reference for risk prevention of industrially abandoned land in rural China. Full article
Figures

Figure 1

2017

Jump to: 2018

Open AccessArticle Heavy Metal Pollution and Ecological Assessment around the Jinsha Coal-Fired Power Plant (China)
Int. J. Environ. Res. Public Health 2017, 14(12), 1589; https://doi.org/10.3390/ijerph14121589
Received: 4 November 2017 / Revised: 3 December 2017 / Accepted: 13 December 2017 / Published: 18 December 2017
Cited by 1 | PDF Full-text (1138 KB) | HTML Full-text | XML Full-text
Abstract
Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr
[...] Read more.
Heavy metal pollution is a serious problem worldwide. In this study, 41 soil samples and 32 cabbage samples were collected from the area surrounding the Jinsha coal-fired power plant (JCFP Plant) in Guizhou Province, southwest China. Pb, Cd, Hg, As, Cu and Cr concentrations in soil samples and cabbage samples were analysed to study the pollution sources and risks of heavy metals around the power plant. The results indicate that the JCFP Plant contributes to the Pb, Cd, As, Hg, Cu, and Cr pollution in nearby soils, particularly Hg pollution. Cu and Cr in soils from both croplands and forestlands in the study area derive mainly from crustal materials or natural processes. Pb, Cd and As in soils from croplands arise partly through anthropogenic activities, but these elements in soils from forestlands originate mainly from crustal materials or natural processes. Hg pollution in soils from both croplands and forestlands is caused mainly by fly ash from the JCFP Plant. The cabbages grown in the study area were severely contaminated with heavy metals, and more than 90% of the cabbages had Pb concentrations exceeding the permissible level established by the Ministry of Health and the Standardization Administration of the People’s Republic of China. Additionally, 30% of the cabbages had As concentrations exceeding the permissible level. Because forests can protect soils from heavy metal pollution caused by atmospheric deposition, close attention should be given to the Hg pollution in soils and to the concentrations of Pb, As, Hg and Cr in vegetables from the study area. Full article
Figures

Figure 1

Open AccessArticle Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China
Int. J. Environ. Res. Public Health 2017, 14(12), 1557; https://doi.org/10.3390/ijerph14121557
Received: 27 October 2017 / Revised: 29 November 2017 / Accepted: 30 November 2017 / Published: 12 December 2017
Cited by 6 | PDF Full-text (2004 KB) | HTML Full-text | XML Full-text
Abstract
The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the
[...] Read more.
The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the tailing pond. Results showed that surface water was just polluted by Ni and As, while groundwater was not contaminated by heavy metals. The concentrations of Pb, Zn, Cu, Cd, Ni, and As in the paddy soil exceeded the standard values but not those of Cr. In vegetable soils, the concentration of heavy metals was above the standard values except for Ni and As. Soil heavy metal concentrations generally decreased with increasing distance from the polluting source. Leafy vegetables were contaminated by Pb, Cr, Cd, and Ni, while the non-leafy vegetables were contaminated only by Cr. There was a significant difference in heavy metal concentrations between leafy vegetables and non-leafy vegetables. Almost all the rice was polluted by heavy metals. Diet was the most significant contributor to non-carcinogenic risk, which was significantly higher than the safe level of 1. The total cancer risk was also beyond the safe range (10−6–10−4). Results revealed that there is a risk of potential health problems to residents in the vicinity of the tailing pond. Full article
Figures

Figure 1

Open AccessArticle Microbial Risk Assessment of Tidal−Induced Urban Flooding in Can Tho City (Mekong Delta, Vietnam)
Int. J. Environ. Res. Public Health 2017, 14(12), 1485; https://doi.org/10.3390/ijerph14121485
Received: 15 October 2017 / Revised: 16 November 2017 / Accepted: 17 November 2017 / Published: 30 November 2017
PDF Full-text (807 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries.
[...] Read more.
Public health risks from urban flooding are a global concern. Contaminated floodwater may expose residents living in cities as they are in direct contact with the water. However, the recent literature does not provide much information about this issue, especially for developing countries. In this paper, the health risk due to a flood event occurred in Can Tho City (Mekong Delta, Vietnam) on 7 October 2013 was investigated. The Quantitative Microbial Risk Assessment method was used in this study. The data showed that the pathogen concentrations were highly variable during the flood event and exceeded water standards for surface water. Per 10,000 people in contact with the floodwater, we found Salmonella caused the highest number of infections to adults and children (137 and 374, respectively), while E. coli caused 4 and 12 cases, per single event, respectively. The results show that further investigations on health risk related to flood issues in Can Tho City are required, especially because of climate change and urbanization. In addition, activities to raise awareness- about floods, e.g., “living with floods”, in the Mekong Delta should also consider health risk issues. Full article
Figures

Figure 1

Open AccessArticle A Novel Experimental and Modelling Strategy for Nanoparticle Toxicity Testing Enabling the Use of Small Quantities
Int. J. Environ. Res. Public Health 2017, 14(11), 1348; https://doi.org/10.3390/ijerph14111348
Received: 25 September 2017 / Revised: 19 October 2017 / Accepted: 2 November 2017 / Published: 6 November 2017
PDF Full-text (2974 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Metallic nanoparticles (NPs) differ from other metal forms with respect to their large surface to volume ratio and subsequent inherent reactivity. Each new modification to a nanoparticle alters the surface to volume ratio, fate and subsequently the toxicity of the particle. Newly-engineered NPs
[...] Read more.
Metallic nanoparticles (NPs) differ from other metal forms with respect to their large surface to volume ratio and subsequent inherent reactivity. Each new modification to a nanoparticle alters the surface to volume ratio, fate and subsequently the toxicity of the particle. Newly-engineered NPs are commonly available only in low quantities whereas, in general, rather large amounts are needed for fate characterizations and effect studies. This challenge is especially relevant for those NPs that have low inherent toxicity combined with low bioavailability. Therefore, within our study, we developed new testing strategies that enable working with low quantities of NPs. The experimental testing method was tailor-made for NPs, whereas we also developed translational models based on different dose-metrics allowing to determine dose-response predictions for NPs. Both the experimental method and the predictive models were verified on the basis of experimental effect data collected using zebrafish embryos exposed to metallic NPs in a range of different chemical compositions and shapes. It was found that the variance in the effect data in the dose-response predictions was best explained by the minimal diameter of the NPs, whereas the data confirmed that the predictive model is widely applicable to soluble metallic NPs. The experimental and model approach developed in our study support the development of (eco)toxicity assays tailored to nano-specific features. Full article
Figures

Figure 1

Open AccessArticle Spatiotemporal Changes in Fine Particulate Matter Pollution and the Associated Mortality Burden in China between 2015 and 2016
Int. J. Environ. Res. Public Health 2017, 14(11), 1321; https://doi.org/10.3390/ijerph14111321
Received: 15 September 2017 / Revised: 19 October 2017 / Accepted: 27 October 2017 / Published: 30 October 2017
Cited by 8 | PDF Full-text (3350 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In recent years, research on the spatiotemporal distribution and health effects of fine particulate matter (PM2.5) has been conducted in China. However, the limitations of different research scopes and methods have led to low comparability between regions regarding the mortality burden
[...] Read more.
In recent years, research on the spatiotemporal distribution and health effects of fine particulate matter (PM2.5) has been conducted in China. However, the limitations of different research scopes and methods have led to low comparability between regions regarding the mortality burden of PM2.5. A kriging model was used to simulate the distribution of PM2.5 in 2015 and 2016. Relative risk (RR) at a specified PM2.5 exposure concentration was estimated with an integrated exposure–response (IER) model for different causes of mortality: lung cancer (LC), ischaemic heart disease (IHD), cerebrovascular disease (stroke) and chronic obstructive pulmonary disease (COPD). The population attributable fraction (PAF) was adopted to estimate deaths attributed to PM2.5. 72.02% of cities experienced decreases in PM2.5 from 2015 to 2016. Due to the overall decrease in the PM2.5 concentration, the total number of deaths decreased by approximately 10,658 per million in 336 cities, including a decrease of 1400, 1836, 6312 and 1110 caused by LC, IHD, stroke and COPD, respectively. Our results suggest that the overall PM2.5 concentration and PM2.5-related deaths exhibited decreasing trends in China, although air quality in local areas has deteriorated. To improve air pollution control strategies, regional PM2.5 concentrations and trends should be fully considered. Full article
Figures

Figure 1

Open AccessArticle Environmental Risk Assessment Strategy for Nanomaterials
Int. J. Environ. Res. Public Health 2017, 14(10), 1251; https://doi.org/10.3390/ijerph14101251
Received: 29 August 2017 / Revised: 1 October 2017 / Accepted: 9 October 2017 / Published: 19 October 2017
Cited by 3 | PDF Full-text (3257 KB) | HTML Full-text | XML Full-text
Abstract
An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials,
[...] Read more.
An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials, (ii) release, fate and exposure, (iii) hazard and (iv) risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES) and relevant exposure scenarios (RES) and, subsequently, the possible release routes, both with regard to which compartment(s) NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC), but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC), either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC) or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models. Full article
Figures

Figure 1

Open AccessArticle Concentration Levels, Pollution Characteristics and Potential Ecological Risk of Dust Heavy Metals in the Metropolitan Area of Beijing, China
Int. J. Environ. Res. Public Health 2017, 14(10), 1159; https://doi.org/10.3390/ijerph14101159
Received: 26 August 2017 / Revised: 25 September 2017 / Accepted: 26 September 2017 / Published: 30 September 2017
Cited by 2 | PDF Full-text (659 KB) | HTML Full-text | XML Full-text
Abstract
This study aims to investigate the concentration levels, pollution characteristics and the associated potential ecological risks of the heavy metals found in dust in the metropolitan area of Beijing, China during the winter. Dust samples were collected at 49 different spatial locations of
[...] Read more.
This study aims to investigate the concentration levels, pollution characteristics and the associated potential ecological risks of the heavy metals found in dust in the metropolitan area of Beijing, China during the winter. Dust samples were collected at 49 different spatial locations of Beijing’s metropolitan area from November 2013 to January 2014, in which the concentration levels of Cd, Cr, Pb, Cu, Zn, Ni, Co, V, Bi and Mo were measured by Elan DRC II type inductively coupled plasma mass spectrometry (ICP-MS). Test results showed that the concentrations of dust heavy metals Pb, Cr, Cu and Zn in the urban areas (147.1 mg·kg−1, 195.9 mg·kg−1, 239.2 mg·kg−1 and 713.2 mg·kg−1) were significantly higher than those in the suburbs (91.6 mg·kg−1, 125.1 mg·kg−1, 131.9 mg·kg−1 and 514.5 mg·kg−1). Enrichment factors and the geo-accumulation index were used to describe the pollution characteristics of dust heavy metals in urban and suburban areas. Results indicated that Zn and Cu were moderately polluting in both urban and suburban areas, Cd was severely polluting in urban areas and heavily polluting in the suburbs. Furthermore, potential ecological risk assessment revealed that the degrees of ecological harm of dust heavy metals were very strong in both urban and suburban areas, but especially in urban areas. The potential ecological risk of heavy metal Cd, whose single factor of ecological damage was extremely strong, accounted for about 90% of the total ecological risk. Full article
Figures

Figure 1

Open AccessArticle Playing Chemical Plant Environmental Protection Games with Historical Monitoring Data
Int. J. Environ. Res. Public Health 2017, 14(10), 1155; https://doi.org/10.3390/ijerph14101155
Received: 12 August 2017 / Revised: 26 September 2017 / Accepted: 27 September 2017 / Published: 29 September 2017
Cited by 4 | PDF Full-text (2315 KB) | HTML Full-text | XML Full-text
Abstract
The chemical industry is very important for the world economy and this industrial sector represents a substantial income source for developing countries. However, existing regulations on controlling atmospheric pollutants, and the enforcement of these regulations, often are insufficient in such countries. As a
[...] Read more.
The chemical industry is very important for the world economy and this industrial sector represents a substantial income source for developing countries. However, existing regulations on controlling atmospheric pollutants, and the enforcement of these regulations, often are insufficient in such countries. As a result, the deterioration of surrounding ecosystems and a quality decrease of the atmospheric environment can be observed. Previous works in this domain fail to generate executable and pragmatic solutions for inspection agencies due to practical challenges. In addressing these challenges, we introduce a so-called Chemical Plant Environment Protection Game (CPEP) to generate reasonable schedules of high-accuracy air quality monitoring stations (i.e., daily management plans) for inspection agencies. First, so-called Stackelberg Security Games (SSGs) in conjunction with source estimation methods are applied into this research. Second, high-accuracy air quality monitoring stations as well as gas sensor modules are modeled in the CPEP game. Third, simplified data analysis on the regularly discharging of chemical plants is utilized to construct the CPEP game. Finally, an illustrative case study is used to investigate the effectiveness of the CPEP game, and a realistic case study is conducted to illustrate how the models and algorithms being proposed in this paper, work in daily practice. Results show that playing a CPEP game can reduce operational costs of high-accuracy air quality monitoring stations. Moreover, evidence suggests that playing the game leads to more compliance from the chemical plants towards the inspection agencies. Therefore, the CPEP game is able to assist the environmental protection authorities in daily management work and reduce the potential risks of gaseous pollutants dispersion incidents. Full article
Figures

Figure 1

Open AccessArticle Risk Assessment of Metals in Urban Soils from a Typical Industrial City, Suzhou, Eastern China
Int. J. Environ. Res. Public Health 2017, 14(9), 1025; https://doi.org/10.3390/ijerph14091025
Received: 14 August 2017 / Revised: 2 September 2017 / Accepted: 5 September 2017 / Published: 7 September 2017
PDF Full-text (3310 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Risk of metals in urban soils is less studied, compared to that in other types of soils, hindering accurate assessment of human exposure to metals. In this study, the concentrations of five metals (As, Cd, Cr, Pb, and Hg) were analyzed in 167
[...] Read more.
Risk of metals in urban soils is less studied, compared to that in other types of soils, hindering accurate assessment of human exposure to metals. In this study, the concentrations of five metals (As, Cd, Cr, Pb, and Hg) were analyzed in 167 surface soil samples collected from Suzhou city and their potential ecological and human health risks were assessed. The mean concentrations of As, Cd, Pb, and Hg except Cr, were higher than the background values in Jiangsu Province. Metal concentrations varied among districts, where sites of high contamination showed a punctate distribution. Principal components and correlation analyses revealed that As, Pb, and Cd could originate from the same sources. The geo-accumulation (Igeo) and potential ecological risk indices (RI) were calculated and the relatively low values of Igeo (<0) and RI (<150) suggested generally low ecological risk. The noncarcinogenic risks of the metals were relatively low for Suzhou residents (i.e., average hazard index or HI: 0.1199 for adults and 0.5935 for children, <1), while the total carcinogenic risks (TCR) of Cr and As were acceptable (TCR in the range of 1.0 × 10−6 to 1.0 × 10−4). Children faced a higher threat than adults. Results of Monte-Carlo simulations were lower than those obtained from models using deterministic parameters. Of all the uncertain parameters, the ingestion rate and body weight were the most sensitive for adults and children, respectively, while As was an important factor for both. The results as well as the factors controlling risks of metals could help better understand the risks of metals in urban soils of industrial cities in China. Full article
Figures

Figure 1

Open AccessArticle Health Risks and Contamination Levels of Heavy Metals in Dusts from Parks and Squares of an Industrial City in Semi-Arid Area of China
Int. J. Environ. Res. Public Health 2017, 14(8), 886; https://doi.org/10.3390/ijerph14080886
Received: 26 July 2017 / Revised: 4 August 2017 / Accepted: 5 August 2017 / Published: 7 August 2017
Cited by 4 | PDF Full-text (1277 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The contamination characteristics and health risk of barium (Ba), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V), zinc (Zn), arsenic (As), mercury (Hg), and cadmium (Cd) in samples of dust gathered from squares and parks of Baotou
[...] Read more.
The contamination characteristics and health risk of barium (Ba), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V), zinc (Zn), arsenic (As), mercury (Hg), and cadmium (Cd) in samples of dust gathered from squares and parks of Baotou city, an industrial city situated in a semi-arid location of the northwest China were investigated. The contents of Ba, Co, Cr, Cu, Mn, Ni, V, Pb, and Zn in the collected dust samples were determined using X-ray fluorescence spectrometry, while the contents of As and Hg in the dust were investigated by use of the ICP-MS. Further, cadmium was quantified through the atomic absorption spectrometry. Levels of contamination of heavy metals analyzed in the dust samples were evaluated using the Geo-Accumulation index (Igeo) as well as through a Pollution Load Index (PLI). Their health risks to children and adults were evaluated based on the US EPA model of health risk. The findings portrayed that the mean concentrations of Ba, Co Cr, Cu, Pb, V, Cd, and Hg were elevated as compared with their local soil background values. Mean values of Igeo illustrate the order of Co > Cr> Cd > Hg > Pb > Cu > Ba > V > Ni > Mn > Zn > As. It was evident that dusts from the parks and squares were “unpolluted” to “moderately polluted”. Assessment of health risk depicts that ingestion is the foremost route of exposure in regard to the heavy metals, then the dermal adsorption follows. Hg exposure from dust might also set impending health threats to children. Besides, the cancer risks of Co, Cr, Ni, Cd, and As are considered to be within the presently tolerable range. Full article
Figures

Figure 1

Back to Top